Deciphering the quantitative relationship between NRF2 and SRXN1 through semi-mechanistic computational modeling
Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, proliferation and apoptosis to maintain cellular homeostasis. It is not understood i...
Gespeichert in:
| Veröffentlicht in: | Toxicology (Amsterdam) Jg. 519; S. 154284 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Ireland
Elsevier B.V
01.01.2026
|
| Schlagworte: | |
| ISSN: | 0300-483X, 1879-3185, 1879-3185 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, proliferation and apoptosis to maintain cellular homeostasis. It is not understood in detail how the NRF2 program acquires its flexibility with respect to regulation of its downstream targets. Various NRF2 binding partners and cofactors specific to ARE genes are involved in this regulation, and are potentially condition-specific (e.g., type of stressor) and dependent on non-canonical signaling pathways (i.e., crosstalk). Here, we explored the quantitative relationship between NRF2 and sulfiredoxin 1 (SRXN1), a bona fide key NRF2 target gene. We developed a semi-mechanistic mathematical model based on time course experimental data of NRF2 and SRXN1 protein expression in HepG2 cells following single or repeated exposure to NRF2 activating soft electrophiles (sulforaphane, andrographolide, ethacrynic acid or CDDO-me) at a wide concentration range. We showed that a nonlinear mixed effect modeling approach with partially hierarchical parameters accurately captures the observed experimental dynamics. Our analysis highlights that NRF2 requires a cofactor or post-translational modification to regulate its activity as a transcription factor. Moreover, this modulation of the transcription factor activity of NRF2 is time-, compound- and exposure scenario specific. We conclude that a complete understanding of NRF2-mediated ARE genes activation requires detailed dynamic information on NRF2 binding partners and cofactors. |
|---|---|
| AbstractList | Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, proliferation and apoptosis to maintain cellular homeostasis. It is not understood in detail how the NRF2 program acquires its flexibility with respect to regulation of its downstream targets. Various NRF2 binding partners and cofactors specific to ARE genes are involved in this regulation, and are potentially condition-specific (e.g., type of stressor) and dependent on non-canonical signaling pathways (i.e., crosstalk). Here, we explored the quantitative relationship between NRF2 and sulfiredoxin 1 (SRXN1), a bona fide key NRF2 target gene. We developed a semi-mechanistic mathematical model based on time course experimental data of NRF2 and SRXN1 protein expression in HepG2 cells following single or repeated exposure to NRF2 activating soft electrophiles (sulforaphane, andrographolide, ethacrynic acid or CDDO-me) at a wide concentration range. We showed that a nonlinear mixed effect modeling approach with partially hierarchical parameters accurately captures the observed experimental dynamics. Our analysis highlights that NRF2 requires a cofactor or post-translational modification to regulate its activity as a transcription factor. Moreover, this modulation of the transcription factor activity of NRF2 is time-, compound- and exposure scenario specific. We conclude that a complete understanding of NRF2-mediated ARE genes activation requires detailed dynamic information on NRF2 binding partners and cofactors.Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, proliferation and apoptosis to maintain cellular homeostasis. It is not understood in detail how the NRF2 program acquires its flexibility with respect to regulation of its downstream targets. Various NRF2 binding partners and cofactors specific to ARE genes are involved in this regulation, and are potentially condition-specific (e.g., type of stressor) and dependent on non-canonical signaling pathways (i.e., crosstalk). Here, we explored the quantitative relationship between NRF2 and sulfiredoxin 1 (SRXN1), a bona fide key NRF2 target gene. We developed a semi-mechanistic mathematical model based on time course experimental data of NRF2 and SRXN1 protein expression in HepG2 cells following single or repeated exposure to NRF2 activating soft electrophiles (sulforaphane, andrographolide, ethacrynic acid or CDDO-me) at a wide concentration range. We showed that a nonlinear mixed effect modeling approach with partially hierarchical parameters accurately captures the observed experimental dynamics. Our analysis highlights that NRF2 requires a cofactor or post-translational modification to regulate its activity as a transcription factor. Moreover, this modulation of the transcription factor activity of NRF2 is time-, compound- and exposure scenario specific. We conclude that a complete understanding of NRF2-mediated ARE genes activation requires detailed dynamic information on NRF2 binding partners and cofactors. Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, proliferation and apoptosis to maintain cellular homeostasis. It is not understood in detail how the NRF2 program acquires its flexibility with respect to regulation of its downstream targets. Various NRF2 binding partners and cofactors specific to ARE genes are involved in this regulation, and are potentially condition-specific (e.g., type of stressor) and dependent on non-canonical signaling pathways (i.e., crosstalk). Here, we explored the quantitative relationship between NRF2 and sulfiredoxin 1 (SRXN1), a bona fide key NRF2 target gene. We developed a semi-mechanistic mathematical model based on time course experimental data of NRF2 and SRXN1 protein expression in HepG2 cells following single or repeated exposure to NRF2 activating soft electrophiles (sulforaphane, andrographolide, ethacrynic acid or CDDO-me) at a wide concentration range. We showed that a nonlinear mixed effect modeling approach with partially hierarchical parameters accurately captures the observed experimental dynamics. Our analysis highlights that NRF2 requires a cofactor or post-translational modification to regulate its activity as a transcription factor. Moreover, this modulation of the transcription factor activity of NRF2 is time-, compound- and exposure scenario specific. We conclude that a complete understanding of NRF2-mediated ARE genes activation requires detailed dynamic information on NRF2 binding partners and cofactors. AbstractNuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, proliferation and apoptosis to maintain cellular homeostasis. It is not understood in detail how the NRF2 program acquires its flexibility with respect to regulation of its downstream targets. Various NRF2 binding partners and cofactors specific to ARE genes are involved in this regulation, and are potentially condition-specific (e.g., type of stressor) and dependent on non-canonical signaling pathways (i.e., crosstalk). Here, we explored the quantitative relationship between NRF2 and sulfiredoxin 1 (SRXN1), a bona fide key NRF2 target gene. We developed a semi-mechanistic mathematical model based on time course experimental data of NRF2 and SRXN1 protein expression in HepG2 cells following single or repeated exposure to NRF2 activating soft electrophiles (sulforaphane, andrographolide, ethacrynic acid or CDDO-me) at a wide concentration range. We showed that a nonlinear mixed effect modeling approach with partially hierarchical parameters accurately captures the observed experimental dynamics. Our analysis highlights that NRF2 requires a cofactor or post-translational modification to regulate its activity as a transcription factor. Moreover, this modulation of the transcription factor activity of NRF2 is time-, compound- and exposure scenario specific. We conclude that a complete understanding of NRF2-mediated ARE genes activation requires detailed dynamic information on NRF2 binding partners and cofactors. |
| ArticleNumber | 154284 |
| Author | Loonstra-Wolters, Liesanne White, Andrew Beltman, Joost B. ter Braak, Bas Sharma, Raju Prasad Middleton, Alistair M. van de Water, Bob Niemeijer, Marije |
| Author_xml | – sequence: 1 givenname: Raju Prasad surname: Sharma fullname: Sharma, Raju Prasad organization: Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands – sequence: 2 givenname: Liesanne surname: Loonstra-Wolters fullname: Loonstra-Wolters, Liesanne organization: Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands – sequence: 3 givenname: Bas surname: ter Braak fullname: ter Braak, Bas organization: Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands – sequence: 4 givenname: Marije surname: Niemeijer fullname: Niemeijer, Marije organization: Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands – sequence: 5 givenname: Andrew surname: White fullname: White, Andrew organization: Safety, Environmental and Regulatory Science, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK – sequence: 6 givenname: Bob surname: van de Water fullname: van de Water, Bob organization: Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands – sequence: 7 givenname: Alistair M. surname: Middleton fullname: Middleton, Alistair M. organization: Safety, Environmental and Regulatory Science, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK – sequence: 8 givenname: Joost B. orcidid: 0000-0001-9215-3087 surname: Beltman fullname: Beltman, Joost B. email: j.b.beltman@lacdr.leidenuniv.nl organization: Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40972999$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1rFTEUhoNU7G31B7iRLN3MNZ_zgSBIa1UoFVqF7kImc6aT60wyTTLV_nsz3upCUFdJ4H3OIe9zhA6cd4DQc0q2lNDy1W6b_PctI0xuqRSsFo_QhtZVU3BaywO0IZyQQtT8-hAdxbgjhDAuyifoUJCmYk3TbNB8CsbOAwTrbnAaAN8u2iWbdLJ3gAOM-eJdHOyMW0jfABy-uDxjWLsOX11eX9AMBb_cDDjCZIsJzKCdjckabPw0L-knr0c8-Q7GvOQpetzrMcKzh_MYfTl79_nkQ3H-6f3Hk7fnhRFSpkIwzlldSeikYS0tdU1ANCA1Z7rs25JUbde2hkspqOH5XROtdVt1vaZS0p4fo5f7uXPwtwvEpCYbDYyjduCXqDiTTHIhmzJHXzxEl3aCTs3BTjrcq18t5QDdB0zwMQbof0coUasJtVPZhFpNqL2JzLzeM5A_eWchqGgsOAOdDWCS6rz9J_3mD9rk8qzR41e4h7jzS8ilRkVVZIqoq9X0KprJ7FjwdUDz9wH_Wf4DjYC54Q |
| Cites_doi | 10.1007/s10565-021-09610-3 10.18433/J3GP53 10.1074/jbc.M411451200 10.1016/j.tibs.2014.02.002 10.1177/09603271211027947 10.1371/journal.pone.0051111 10.1038/srep16889 10.1128/MCB.01639-08 10.18637/jss.v002.i09 10.1038/s41598-022-10857-x 10.1073/pnas.220418997 10.1073/pnas.0502402102 10.1074/jbc.M206911200 10.1016/j.softx.2020.100609 10.1158/0008-5472.CAN-03-3924 10.1021/tx300524p 10.1016/j.bbamcr.2008.05.024 10.1089/ars.2014.5962 10.1007/s10565-015-9302-0 10.1038/s41467-024-47837-w 10.1002/etc.4505 10.1152/physrev.00023.2017 10.1038/s41540-020-00150-w 10.1089/ars.2017.7342 10.1186/s13075-015-0774-3 10.1371/journal.pcbi.0030024 10.1128/MCB.26.1.221-229.2006 10.1074/jbc.274.39.27545 10.1016/j.ecoenv.2021.112185 10.1007/s00204-020-02774-7 10.1007/s00204-016-1781-0 10.1007/s00204-018-2353-2 10.1016/j.freeradbiomed.2012.05.020 10.1006/bbrc.1997.6943 10.1016/j.freeradbiomed.2012.11.001 10.1006/bbrc.2000.3830 10.1128/MCB.15.4.2180 10.1016/j.jbiotec.2014.09.027 10.1016/j.cbi.2014.05.001 10.1073/pnas.0307301101 10.1146/annurev-pharmtox-011112-140320 10.1016/j.freeradbiomed.2015.06.006 10.1007/s00204-018-2178-z 10.1124/pr.109.002014 10.1074/jbc.M307633200 10.2165/00002018-200124070-00001 10.1093/nar/gkm638 10.1016/j.gene.2016.03.058 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors The Authors Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. Copyright © 2025. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2025 The Authors – notice: The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. – notice: Copyright © 2025. Published by Elsevier B.V. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.tox.2025.154284 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1879-3185 |
| EndPage | 154284 |
| ExternalDocumentID | 40972999 10_1016_j_tox_2025_154284 S0300483X25002434 1_s2_0_S0300483X25002434 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9DU 9JM AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABOCM ABWVN ABXDB ABZDS ACDAQ ACGFO ACGFS ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKIFW AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HZ~ IHE J1W KCYFY KOM M34 M41 MO0 N9A O-L O9- OAUVE OB~ OGGZJ OM0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SPT SSJ SSP SSZ T5K WH7 WUQ XPP Y6R Z5R ZGI ZXP ~G- ~HD 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c455t-42332875ed5c2b16a80e49e5a32a6fb607bdbbc35541c3b6080aaab7dfa1551f3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001584661900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0300-483X 1879-3185 |
| IngestDate | Sun Sep 28 08:50:11 EDT 2025 Fri Nov 28 01:41:35 EST 2025 Thu Nov 27 00:56:53 EST 2025 Sat Oct 25 17:13:39 EDT 2025 Sat Oct 25 09:09:04 EDT 2025 Sat Nov 29 06:57:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Repeated exposure Chemical exposure NRF2 SRXN1 Hepatotoxicity Nonlinear mixed effect modeling |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c455t-42332875ed5c2b16a80e49e5a32a6fb607bdbbc35541c3b6080aaab7dfa1551f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9215-3087 |
| OpenAccessLink | https://www.clinicalkey.com/#!/content/1-s2.0-S0300483X25002434 |
| PMID | 40972999 |
| PQID | 3252534596 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3252534596 pubmed_primary_40972999 crossref_primary_10_1016_j_tox_2025_154284 elsevier_sciencedirect_doi_10_1016_j_tox_2025_154284 elsevier_clinicalkeyesjournals_1_s2_0_S0300483X25002434 elsevier_clinicalkey_doi_10_1016_j_tox_2025_154284 |
| PublicationCentury | 2000 |
| PublicationDate | 2026-01-01 |
| PublicationDateYYYYMMDD | 2026-01-01 |
| PublicationDate_xml | – month: 01 year: 2026 text: 2026-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland |
| PublicationTitle | Toxicology (Amsterdam) |
| PublicationTitleAlternate | Toxicology |
| PublicationYear | 2026 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Katsuoka, Motohashi, Engel, Yamamoto (bib20) 2005; 280 Sun, Chin, Zhang (bib40) 2009; 29 Wakabayashi, Dinkova-Kostova, Holtzclaw (bib46) 2004; 101 Kataoka, Igarashi, Itoh (bib19) 1995; 15 Wijaya, Rau, Braun (bib47) 2022; 38 Park, Cho, Kim (bib33) 2004; 64 Leclerc, Hamon, Claude, Jellali, Naudot, Bois (bib26) 2015; 31 Hayes, Dinkova-Kostova (bib10) 2014; 39 Li, Yu, Liu (bib27) 2008; 1783 Spinu, Cronin, Enoch, Madden, Worth (bib39) 2020; 94 Vehtarh, Gelman, Simpson, Carpenter, Burkner (bib44) 2021; 16 Eggler, Liu, Pezzuto, van Breemen, Mesecar (bib8) 2005; 102 Hsieh, Reisfeld, Chiu (bib12) 2020; 12 Cai, Yin, Yang, Jiang, Cao (bib6) 2015; 17 Zhang, Andersen (bib53) 2007; 3 Kaplowitz (bib18) 2001; 24 Zipper, Mulcahy (bib54) 2000; 278 Niemeijer, Wolters, ter Braak (bib32) 2025 Perkins, Ashauer, Burgoon (bib34) 2019; 38 Ghanim, Ahmad, Abdallah, Qatouseh, Qinna (bib9) 2021; 40 Rooney, Chorley, Hiemstra (bib38) 2020; 15 Ma (bib29) 2013; 53 Kolodkin, Sharma, Colangelo (bib30) 2020; 6 Itoh K., Chiba T., Takahashi S., et al. An Nrf2 / Small Maf Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes through Antioxidant Response Elements. 1997;322(236):313-322. Bois, Maszle (bib4) 1997; 2 Katsuoka, Yamamoto (bib21) 2016; 586 Bischoff, Kuijper, Schimming (bib2) 2019; 93 Centers, States, Ostapowicz (bib7) 2002; 15 ter Braak, Klip, Wink (bib5) 2022; 84 Klaassen, Aleksunes (bib24) 2010; 62 Tonelli, Chio, Tuveson (bib43) 2018; 29 Huang, Nguyen, Pickett (bib13) 2000; 97 Abbas, Riquier, Drapier (bib1) 2013; 527 Jeong, Bae, Toledano, Rhee (bib16) 2012; 53 Jose, March-Steinman, Wilson (bib17) 2024; 15 Louizos, Yáñez, Forrest, Davies (bib28) 2014; 17 Narasimhan, Patel, Vedpathak, Rathinam, Henderson, Mahimainathan (bib31) 2012; 7 Wink, Hiemstra, Herpers, van de Water (bib48) 2017; 91 Wink, Hiemstra, Huppelschoten, Klip, Water, Van De (bib49) 2018; 92 Suzuki, Yamamoto (bib41) 2015; 88 Pickering, Vojtovich, Tower, A Davies (bib35) 2013; 55 Vorrink, Domann (bib45) 2014; 218 Khalil, Goltsov, Langdon, Harrison, Bown, Deeni (bib23) 2015; 202 Su, Khor, Shu (bib42) 2013; 26 Xue, Momiji, Rabbani (bib50) 2015; 23 Yu, Lei, Mandlekar (bib52) 1999; 274 Bloom, Jaiswal (bib3) 2003; 278 Ke, Yang, Liu (bib22) 2021; 216 Yamamoto, Kensler, Motohashi (bib51) 2018; 98 Hiemstra, Fehling-Kaschek, Kuijper (bib11) 2022; 12 Kobayashi, Kang, Watai (bib25) 2006; 26 Reichard, Motz, Puga (bib37) 2007; 35 Huang, Nguyen, Pickett (bib14) 2002; 277 Qian, Zhou, Gurguis (bib36) 2015; 5 Reichard (10.1016/j.tox.2025.154284_bib37) 2007; 35 Vehtarh (10.1016/j.tox.2025.154284_bib44) 2021; 16 Ma (10.1016/j.tox.2025.154284_bib29) 2013; 53 Pickering (10.1016/j.tox.2025.154284_bib35) 2013; 55 Khalil (10.1016/j.tox.2025.154284_bib23) 2015; 202 Huang (10.1016/j.tox.2025.154284_bib14) 2002; 277 Huang (10.1016/j.tox.2025.154284_bib13) 2000; 97 Kaplowitz (10.1016/j.tox.2025.154284_bib18) 2001; 24 Kolodkin (10.1016/j.tox.2025.154284_bib30) 2020; 6 Bischoff (10.1016/j.tox.2025.154284_bib2) 2019; 93 Kobayashi (10.1016/j.tox.2025.154284_bib25) 2006; 26 Niemeijer (10.1016/j.tox.2025.154284_bib32) 2025 Klaassen (10.1016/j.tox.2025.154284_bib24) 2010; 62 Kataoka (10.1016/j.tox.2025.154284_bib19) 1995; 15 Spinu (10.1016/j.tox.2025.154284_bib39) 2020; 94 Jose (10.1016/j.tox.2025.154284_bib17) 2024; 15 Leclerc (10.1016/j.tox.2025.154284_bib26) 2015; 31 Li (10.1016/j.tox.2025.154284_bib27) 2008; 1783 Rooney (10.1016/j.tox.2025.154284_bib38) 2020; 15 Katsuoka (10.1016/j.tox.2025.154284_bib21) 2016; 586 Perkins (10.1016/j.tox.2025.154284_bib34) 2019; 38 Yu (10.1016/j.tox.2025.154284_bib52) 1999; 274 Wink (10.1016/j.tox.2025.154284_bib49) 2018; 92 Zipper (10.1016/j.tox.2025.154284_bib54) 2000; 278 10.1016/j.tox.2025.154284_bib15 Qian (10.1016/j.tox.2025.154284_bib36) 2015; 5 Louizos (10.1016/j.tox.2025.154284_bib28) 2014; 17 Hsieh (10.1016/j.tox.2025.154284_bib12) 2020; 12 Xue (10.1016/j.tox.2025.154284_bib50) 2015; 23 Bois (10.1016/j.tox.2025.154284_bib4) 1997; 2 Su (10.1016/j.tox.2025.154284_bib42) 2013; 26 Wakabayashi (10.1016/j.tox.2025.154284_bib46) 2004; 101 ter Braak (10.1016/j.tox.2025.154284_bib5) 2022; 84 Jeong (10.1016/j.tox.2025.154284_bib16) 2012; 53 Park (10.1016/j.tox.2025.154284_bib33) 2004; 64 Sun (10.1016/j.tox.2025.154284_bib40) 2009; 29 Ghanim (10.1016/j.tox.2025.154284_bib9) 2021; 40 Wijaya (10.1016/j.tox.2025.154284_bib47) 2022; 38 Hiemstra (10.1016/j.tox.2025.154284_bib11) 2022; 12 Zhang (10.1016/j.tox.2025.154284_bib53) 2007; 3 Hayes (10.1016/j.tox.2025.154284_bib10) 2014; 39 Ke (10.1016/j.tox.2025.154284_bib22) 2021; 216 Yamamoto (10.1016/j.tox.2025.154284_bib51) 2018; 98 Katsuoka (10.1016/j.tox.2025.154284_bib20) 2005; 280 Wink (10.1016/j.tox.2025.154284_bib48) 2017; 91 Narasimhan (10.1016/j.tox.2025.154284_bib31) 2012; 7 Suzuki (10.1016/j.tox.2025.154284_bib41) 2015; 88 Eggler (10.1016/j.tox.2025.154284_bib8) 2005; 102 Tonelli (10.1016/j.tox.2025.154284_bib43) 2018; 29 Cai (10.1016/j.tox.2025.154284_bib6) 2015; 17 Centers (10.1016/j.tox.2025.154284_bib7) 2002; 15 Abbas (10.1016/j.tox.2025.154284_bib1) 2013; 527 Bloom (10.1016/j.tox.2025.154284_bib3) 2003; 278 Vorrink (10.1016/j.tox.2025.154284_bib45) 2014; 218 |
| References_xml | – volume: 53 start-page: 401 year: 2013 end-page: 426 ident: bib29 article-title: Role of Nrf2 in oxidative stress and toxicity publication-title: Annu Rev. Pharm. Toxicol. – volume: 24 start-page: 483 year: 2001 end-page: 490 ident: bib18 article-title: Drug-induced liver disorders: implications for drug development and regulation publication-title: Drug Saf. – volume: 280 start-page: 4483 year: 2005 end-page: 4490 ident: bib20 article-title: Nrf2 transcriptionally activates the mafg gene through an antioxidant response element publication-title: J. Biol. Chem. – volume: 17 start-page: 34 year: 2014 end-page: 91 ident: bib28 article-title: Understanding the hysteresis loop conundrum in pharmacokinetic/pharmacodynamic relationships publication-title: J. Pharm. Pharm. Sci. – volume: 6 year: 2020 ident: bib30 article-title: ROS networks: designs, aging, Parkinson’s disease and precision therapies publication-title: npj Syst. Biol. Appl. – volume: 62 start-page: 1 year: 2010 end-page: 96 ident: bib24 article-title: Xenobiotic, bile acid, and cholesterol transporters: function and regulation publication-title: Pharm. Rev. – volume: 101 start-page: 2040 year: 2004 end-page: 2045 ident: bib46 article-title: Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers publication-title: Proc. Natl. Acad. Sci. – volume: 218 start-page: 82 year: 2014 end-page: 88 ident: bib45 article-title: Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1α signaling node publication-title: Chem. Biol. Interact. – volume: 277 start-page: 42769 year: 2002 end-page: 42774 ident: bib14 article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase c regulates antioxidant response element-mediated transcription publication-title: J. Biol. Chem. – year: 2025 ident: bib32 article-title: Imaging-based temporal dynamics of electrophile-induced NRF2 signaling in liver cells identifies adaptive versus adverse repeated exposure conditions publication-title: bioRxiv – volume: 97 start-page: 12475 year: 2000 end-page: 12480 ident: bib13 article-title: Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2 publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 1 year: 2020 end-page: 26 ident: bib38 article-title: Mining a human transcriptome database for chemical modulators of NRF2 publication-title: PLoS One – volume: 2 year: 1997 ident: bib4 article-title: MCSim: a Monte Carlo simulation program publication-title: J. Stat. Softw. – volume: 278 start-page: 44675 year: 2003 end-page: 44682 ident: bib3 article-title: Phosphorylation of Nrf2 at Ser40 by protein kinase c in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element publication-title: J. Biol. Chem. – volume: 5 year: 2015 ident: bib36 article-title: Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival publication-title: Sci. Rep. – volume: 29 start-page: 2658 year: 2009 end-page: 2672 ident: bib40 article-title: Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response publication-title: Mol. Cell Biol. – volume: 16 start-page: 667 year: 2021 end-page: 718 ident: bib44 article-title: Rank-Normalization, folding, and localization: an improved (Formula presented) for assessing convergence of MCMC (with Discussion)*† publication-title: Bayesian Anal. – volume: 586 start-page: 197 year: 2016 end-page: 205 ident: bib21 article-title: Small maf proteins (MafF, MafG, MafK): history, structure and function publication-title: Gene – volume: 40 start-page: 2223 year: 2021 end-page: 2236 ident: bib9 article-title: Modulation of NRF2/ARE pathway- and cell death-related genes during drug-induced liver injury publication-title: Hum. Exp. Toxicol. – volume: 15 start-page: 3440 year: 2024 ident: bib17 article-title: Temporal coordination of the transcription factor response to H2O2 stress publication-title: Nat. Commun. – volume: 17 start-page: 269 year: 2015 ident: bib6 article-title: Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis publication-title: Arthritis Res. Ther. – volume: 91 start-page: 1367 year: 2017 end-page: 1383 ident: bib48 article-title: High-content imaging-based BAC-GFP toxicity pathway reporters to assess chemical adversity liabilities publication-title: Arch. Toxicol. – volume: 98 start-page: 1169 year: 2018 end-page: 1203 ident: bib51 article-title: The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis publication-title: Physiol. Rev. – volume: 527 year: 2013 ident: bib1 publication-title: Peroxiredoxins and Sulfiredoxin at the Crossroads of the NO and H 2O2 Signaling Pathways – volume: 26 start-page: 477 year: 2013 end-page: 485 ident: bib42 article-title: Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and radix angelica sinensis via promoter CpG demethylation publication-title: Chem. Res. Toxicol. – volume: 64 start-page: 3701 year: 2004 end-page: 3713 ident: bib33 article-title: Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathione S-transferase gene by the peroxisome proliferator-activated receptor-γ and retinoid x receptor heterodimer publication-title: Cancer Res. – reference: Itoh K., Chiba T., Takahashi S., et al. An Nrf2 / Small Maf Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes through Antioxidant Response Elements. 1997;322(236):313-322. – volume: 94 start-page: 1497 year: 2020 end-page: 1510 ident: bib39 article-title: Quantitative adverse outcome pathway (qAOP) models for toxicity prediction publication-title: Arch. Toxicol. – volume: 38 start-page: 1850 year: 2019 end-page: 1865 ident: bib34 article-title: Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment publication-title: Environ. Toxicol. Chem. – volume: 35 start-page: 7074 year: 2007 end-page: 7086 ident: bib37 article-title: Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1 publication-title: Nucleic Acids Res. – volume: 92 start-page: 1797 year: 2018 end-page: 1814 ident: bib49 article-title: Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury publication-title: Arch. Toxicol. – volume: 12 year: 2020 ident: bib12 article-title: Pksensi: an R package to apply global sensitivity analysis in physiologically based kinetic modeling publication-title: SoftwareX – volume: 39 start-page: 199 year: 2014 end-page: 218 ident: bib10 article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism publication-title: Trends Biochem. Sci. – volume: 278 start-page: 484 year: 2000 end-page: 492 ident: bib54 article-title: Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes publication-title: Biochem. Biophys. Res. Commun. – volume: 216 year: 2021 ident: bib22 article-title: Dose- and time-effects responses of nonylphenol on oxidative stress in rat through the Keap1-Nrf2 signaling pathway publication-title: Ecotoxicol. Environ. Saf. – volume: 12 start-page: 7336 year: 2022 ident: bib11 article-title: Dynamic modeling of Nrf2 pathway activation in liver cells after toxicant exposure publication-title: Sci. Rep. – volume: 3 start-page: 0345 year: 2007 end-page: 0363 ident: bib53 article-title: Dose response relationship in anti-stress gene regulatory networks publication-title: PLoS Comput. Biol. – volume: 55 start-page: 109 year: 2013 end-page: 118 ident: bib35 article-title: Oxidative stress adaptation with acute, chronic, and repeated stress publication-title: Free Radic. Biol. Med. – volume: 38 start-page: 847 year: 2022 end-page: 864 ident: bib47 article-title: Stimulation of de novo glutathione synthesis by nitrofurantoin for enhanced resilience of hepatocytes publication-title: Cell Biol. Toxicol. – volume: 202 start-page: 12 year: 2015 end-page: 30 ident: bib23 article-title: Quantitative analysis of NRF2 pathway reveals key elements of the regulatory circuits underlying antioxidant response and proliferation of ovarian cancer cells publication-title: J. Biotechnol. – volume: 102 start-page: 10070 year: 2005 end-page: 10075 ident: bib8 article-title: Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2 publication-title: Proc. Natl. Acad. Sci. – volume: 26 start-page: 221 year: 2006 end-page: 229 ident: bib25 article-title: Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1 publication-title: Mol. Cell Biol. – volume: 15 start-page: 2180 year: 1995 end-page: 2190 ident: bib19 article-title: Small maf proteins heterodimerize with fos and may act as competitive repressors of the NF-E2 transcription factor publication-title: Mol. Cell Biol. – volume: 53 start-page: 447 year: 2012 end-page: 456 ident: bib16 article-title: Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression publication-title: Free Radic. Biol. Med. – volume: 31 start-page: 173 year: 2015 end-page: 185 ident: bib26 article-title: Investigation of acetaminophen toxicity in HepG2/C3a microscale cultures using a system biology model of glutathione depletion publication-title: Cell Biol. Toxicol. – volume: 1783 start-page: 1847 year: 2008 end-page: 1856 ident: bib27 article-title: Heterodimerization with small maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif publication-title: Biochim. Biophys. Acta Mol. Cell Res. – volume: 88 start-page: 93 year: 2015 end-page: 100 ident: bib41 article-title: Molecular basis of the Keap1-Nrf2 system publication-title: Free Radic. Biol. Med. – volume: 29 start-page: 1727 year: 2018 end-page: 1745 ident: bib43 article-title: Transcriptional regulation by Nrf2 publication-title: Antioxid. Redox Signal – volume: 7 year: 2012 ident: bib31 article-title: Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells publication-title: PLoS One – volume: 274 start-page: 27545 year: 1999 end-page: 27552 ident: bib52 article-title: Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals publication-title: J. Biol. Chem. – volume: 84 year: 2022 ident: bib5 article-title: Mapping the dynamics of Nrf2 antioxidant and NFκB inflammatory responses by soft electrophilic chemicals in human liver cells defines the transition from adaptive to adverse responses publication-title: Toxicol. Vitr. – volume: 15 start-page: 947 year: 2002 end-page: 955 ident: bib7 article-title: Article results of a prospective study of acute liver failure at 17 tertiary publication-title: Ann. Intern. Med. – volume: 93 start-page: 435 year: 2019 end-page: 451 ident: bib2 article-title: A systematic analysis of Nrf2 pathway activation dynamics during repeated xenobiotic exposure publication-title: Arch. Toxicol. – volume: 23 start-page: 613 year: 2015 end-page: 629 ident: bib50 article-title: Frequency modulated translocational oscillations of Nrf2 mediate the antioxidant response element cytoprotective transcriptional response publication-title: Antioxid. Redox Signal – volume: 38 start-page: 847 issue: 5 year: 2022 ident: 10.1016/j.tox.2025.154284_bib47 article-title: Stimulation of de novo glutathione synthesis by nitrofurantoin for enhanced resilience of hepatocytes publication-title: Cell Biol. Toxicol. doi: 10.1007/s10565-021-09610-3 – volume: 17 start-page: 34 issue: 1 year: 2014 ident: 10.1016/j.tox.2025.154284_bib28 article-title: Understanding the hysteresis loop conundrum in pharmacokinetic/pharmacodynamic relationships publication-title: J. Pharm. Pharm. Sci. doi: 10.18433/J3GP53 – volume: 280 start-page: 4483 issue: 6 year: 2005 ident: 10.1016/j.tox.2025.154284_bib20 article-title: Nrf2 transcriptionally activates the mafg gene through an antioxidant response element publication-title: J. Biol. Chem. doi: 10.1074/jbc.M411451200 – volume: 39 start-page: 199 issue: 4 year: 2014 ident: 10.1016/j.tox.2025.154284_bib10 article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2014.02.002 – volume: 40 start-page: 2223 issue: 12 year: 2021 ident: 10.1016/j.tox.2025.154284_bib9 article-title: Modulation of NRF2/ARE pathway- and cell death-related genes during drug-induced liver injury publication-title: Hum. Exp. Toxicol. doi: 10.1177/09603271211027947 – volume: 7 issue: 12 year: 2012 ident: 10.1016/j.tox.2025.154284_bib31 article-title: Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells publication-title: PLoS One doi: 10.1371/journal.pone.0051111 – volume: 5 year: 2015 ident: 10.1016/j.tox.2025.154284_bib36 article-title: Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival publication-title: Sci. Rep. doi: 10.1038/srep16889 – volume: 29 start-page: 2658 issue: 10 year: 2009 ident: 10.1016/j.tox.2025.154284_bib40 article-title: Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01639-08 – volume: 16 start-page: 667 issue: 2 year: 2021 ident: 10.1016/j.tox.2025.154284_bib44 article-title: Rank-Normalization, folding, and localization: an improved (Formula presented) for assessing convergence of MCMC (with Discussion)*† publication-title: Bayesian Anal. – volume: 2 issue: 9 year: 1997 ident: 10.1016/j.tox.2025.154284_bib4 article-title: MCSim: a Monte Carlo simulation program publication-title: J. Stat. Softw. doi: 10.18637/jss.v002.i09 – volume: 12 start-page: 7336 issue: 1 year: 2022 ident: 10.1016/j.tox.2025.154284_bib11 article-title: Dynamic modeling of Nrf2 pathway activation in liver cells after toxicant exposure publication-title: Sci. Rep. doi: 10.1038/s41598-022-10857-x – volume: 97 start-page: 12475 issue: 23 year: 2000 ident: 10.1016/j.tox.2025.154284_bib13 article-title: Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.220418997 – volume: 102 start-page: 10070 issue: 29 year: 2005 ident: 10.1016/j.tox.2025.154284_bib8 article-title: Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0502402102 – year: 2025 ident: 10.1016/j.tox.2025.154284_bib32 article-title: Imaging-based temporal dynamics of electrophile-induced NRF2 signaling in liver cells identifies adaptive versus adverse repeated exposure conditions publication-title: bioRxiv – volume: 277 start-page: 42769 issue: 45 year: 2002 ident: 10.1016/j.tox.2025.154284_bib14 article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase c regulates antioxidant response element-mediated transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M206911200 – volume: 12 year: 2020 ident: 10.1016/j.tox.2025.154284_bib12 article-title: Pksensi: an R package to apply global sensitivity analysis in physiologically based kinetic modeling publication-title: SoftwareX doi: 10.1016/j.softx.2020.100609 – volume: 64 start-page: 3701 issue: 10 year: 2004 ident: 10.1016/j.tox.2025.154284_bib33 article-title: Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathione S-transferase gene by the peroxisome proliferator-activated receptor-γ and retinoid x receptor heterodimer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-03-3924 – volume: 26 start-page: 477 issue: 3 year: 2013 ident: 10.1016/j.tox.2025.154284_bib42 article-title: Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and radix angelica sinensis via promoter CpG demethylation publication-title: Chem. Res. Toxicol. doi: 10.1021/tx300524p – volume: 1783 start-page: 1847 issue: 10 year: 2008 ident: 10.1016/j.tox.2025.154284_bib27 article-title: Heterodimerization with small maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2008.05.024 – volume: 23 start-page: 613 issue: 7 year: 2015 ident: 10.1016/j.tox.2025.154284_bib50 article-title: Frequency modulated translocational oscillations of Nrf2 mediate the antioxidant response element cytoprotective transcriptional response publication-title: Antioxid. Redox Signal doi: 10.1089/ars.2014.5962 – volume: 31 start-page: 173 issue: 3 year: 2015 ident: 10.1016/j.tox.2025.154284_bib26 article-title: Investigation of acetaminophen toxicity in HepG2/C3a microscale cultures using a system biology model of glutathione depletion publication-title: Cell Biol. Toxicol. doi: 10.1007/s10565-015-9302-0 – volume: 15 start-page: 3440 issue: 1 year: 2024 ident: 10.1016/j.tox.2025.154284_bib17 article-title: Temporal coordination of the transcription factor response to H2O2 stress publication-title: Nat. Commun. doi: 10.1038/s41467-024-47837-w – volume: 38 start-page: 1850 issue: 9 year: 2019 ident: 10.1016/j.tox.2025.154284_bib34 article-title: Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.4505 – volume: 98 start-page: 1169 issue: 3 year: 2018 ident: 10.1016/j.tox.2025.154284_bib51 article-title: The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis publication-title: Physiol. Rev. doi: 10.1152/physrev.00023.2017 – volume: 15 start-page: 1 issue: 9 September year: 2020 ident: 10.1016/j.tox.2025.154284_bib38 article-title: Mining a human transcriptome database for chemical modulators of NRF2 publication-title: PLoS One – volume: 6 issue: 1 year: 2020 ident: 10.1016/j.tox.2025.154284_bib30 article-title: ROS networks: designs, aging, Parkinson’s disease and precision therapies publication-title: npj Syst. Biol. Appl. doi: 10.1038/s41540-020-00150-w – volume: 29 start-page: 1727 issue: 17 year: 2018 ident: 10.1016/j.tox.2025.154284_bib43 article-title: Transcriptional regulation by Nrf2 publication-title: Antioxid. Redox Signal doi: 10.1089/ars.2017.7342 – volume: 17 start-page: 269 issue: 1 year: 2015 ident: 10.1016/j.tox.2025.154284_bib6 article-title: Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis publication-title: Arthritis Res. Ther. doi: 10.1186/s13075-015-0774-3 – volume: 3 start-page: 0345 issue: 3 year: 2007 ident: 10.1016/j.tox.2025.154284_bib53 article-title: Dose response relationship in anti-stress gene regulatory networks publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030024 – volume: 26 start-page: 221 issue: 1 year: 2006 ident: 10.1016/j.tox.2025.154284_bib25 article-title: Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1 publication-title: Mol. Cell Biol. doi: 10.1128/MCB.26.1.221-229.2006 – volume: 274 start-page: 27545 issue: 39 year: 1999 ident: 10.1016/j.tox.2025.154284_bib52 article-title: Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.39.27545 – volume: 216 year: 2021 ident: 10.1016/j.tox.2025.154284_bib22 article-title: Dose- and time-effects responses of nonylphenol on oxidative stress in rat through the Keap1-Nrf2 signaling pathway publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.112185 – volume: 94 start-page: 1497 issue: 5 year: 2020 ident: 10.1016/j.tox.2025.154284_bib39 article-title: Quantitative adverse outcome pathway (qAOP) models for toxicity prediction publication-title: Arch. Toxicol. doi: 10.1007/s00204-020-02774-7 – volume: 91 start-page: 1367 issue: 3 year: 2017 ident: 10.1016/j.tox.2025.154284_bib48 article-title: High-content imaging-based BAC-GFP toxicity pathway reporters to assess chemical adversity liabilities publication-title: Arch. Toxicol. doi: 10.1007/s00204-016-1781-0 – volume: 93 start-page: 435 issue: 2 year: 2019 ident: 10.1016/j.tox.2025.154284_bib2 article-title: A systematic analysis of Nrf2 pathway activation dynamics during repeated xenobiotic exposure publication-title: Arch. Toxicol. doi: 10.1007/s00204-018-2353-2 – volume: 53 start-page: 447 issue: 3 year: 2012 ident: 10.1016/j.tox.2025.154284_bib16 article-title: Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.05.020 – ident: 10.1016/j.tox.2025.154284_bib15 doi: 10.1006/bbrc.1997.6943 – volume: 55 start-page: 109 year: 2013 ident: 10.1016/j.tox.2025.154284_bib35 article-title: Oxidative stress adaptation with acute, chronic, and repeated stress publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.11.001 – volume: 15 start-page: 947 year: 2002 ident: 10.1016/j.tox.2025.154284_bib7 article-title: Article results of a prospective study of acute liver failure at 17 tertiary publication-title: Ann. Intern. Med. – volume: 278 start-page: 484 issue: 2 year: 2000 ident: 10.1016/j.tox.2025.154284_bib54 article-title: Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2000.3830 – volume: 15 start-page: 2180 issue: 4 year: 1995 ident: 10.1016/j.tox.2025.154284_bib19 article-title: Small maf proteins heterodimerize with fos and may act as competitive repressors of the NF-E2 transcription factor publication-title: Mol. Cell Biol. doi: 10.1128/MCB.15.4.2180 – volume: 202 start-page: 12 year: 2015 ident: 10.1016/j.tox.2025.154284_bib23 article-title: Quantitative analysis of NRF2 pathway reveals key elements of the regulatory circuits underlying antioxidant response and proliferation of ovarian cancer cells publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2014.09.027 – volume: 218 start-page: 82 year: 2014 ident: 10.1016/j.tox.2025.154284_bib45 article-title: Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1α signaling node publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2014.05.001 – volume: 101 start-page: 2040 issue: 7 year: 2004 ident: 10.1016/j.tox.2025.154284_bib46 article-title: Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0307301101 – volume: 53 start-page: 401 issue: 1 year: 2013 ident: 10.1016/j.tox.2025.154284_bib29 article-title: Role of Nrf2 in oxidative stress and toxicity publication-title: Annu Rev. Pharm. Toxicol. doi: 10.1146/annurev-pharmtox-011112-140320 – volume: 88 start-page: 93 issue: Pt B year: 2015 ident: 10.1016/j.tox.2025.154284_bib41 article-title: Molecular basis of the Keap1-Nrf2 system publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2015.06.006 – volume: 92 start-page: 1797 issue: 5 year: 2018 ident: 10.1016/j.tox.2025.154284_bib49 article-title: Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury publication-title: Arch. Toxicol. doi: 10.1007/s00204-018-2178-z – volume: 527 year: 2013 ident: 10.1016/j.tox.2025.154284_bib1 – volume: 62 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.tox.2025.154284_bib24 article-title: Xenobiotic, bile acid, and cholesterol transporters: function and regulation publication-title: Pharm. Rev. doi: 10.1124/pr.109.002014 – volume: 84 issue: January year: 2022 ident: 10.1016/j.tox.2025.154284_bib5 article-title: Mapping the dynamics of Nrf2 antioxidant and NFκB inflammatory responses by soft electrophilic chemicals in human liver cells defines the transition from adaptive to adverse responses publication-title: Toxicol. Vitr. – volume: 278 start-page: 44675 issue: 45 year: 2003 ident: 10.1016/j.tox.2025.154284_bib3 article-title: Phosphorylation of Nrf2 at Ser40 by protein kinase c in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element publication-title: J. Biol. Chem. doi: 10.1074/jbc.M307633200 – volume: 24 start-page: 483 issue: 7 year: 2001 ident: 10.1016/j.tox.2025.154284_bib18 article-title: Drug-induced liver disorders: implications for drug development and regulation publication-title: Drug Saf. doi: 10.2165/00002018-200124070-00001 – volume: 35 start-page: 7074 issue: 21 year: 2007 ident: 10.1016/j.tox.2025.154284_bib37 article-title: Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm638 – volume: 586 start-page: 197 issue: 2 year: 2016 ident: 10.1016/j.tox.2025.154284_bib21 article-title: Small maf proteins (MafF, MafG, MafK): history, structure and function publication-title: Gene doi: 10.1016/j.gene.2016.03.058 |
| SSID | ssj0002346 |
| Score | 2.4804676 |
| Snippet | Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control... AbstractNuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 154284 |
| SubjectTerms | Chemical exposure Computer Simulation Emergency Hep G2 Cells Hepatotoxicity Humans Models, Biological NF-E2-Related Factor 2 - genetics NF-E2-Related Factor 2 - metabolism Nonlinear mixed effect modeling NRF2 Oxidoreductases Acting on Sulfur Group Donors - genetics Oxidoreductases Acting on Sulfur Group Donors - metabolism Repeated exposure SRXN1 |
| Title | Deciphering the quantitative relationship between NRF2 and SRXN1 through semi-mechanistic computational modeling |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0300483X25002434 https://www.clinicalkey.es/playcontent/1-s2.0-S0300483X25002434 https://dx.doi.org/10.1016/j.tox.2025.154284 https://www.ncbi.nlm.nih.gov/pubmed/40972999 https://www.proquest.com/docview/3252534596 |
| Volume | 519 |
| WOSCitedRecordID | wos001584661900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3185 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002346 issn: 0300-483X databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DaFJCMG4lctkJLQHtEypY-fyWMEmQFBNW4G-WU7iSCk0KUk7db-FP8uxHadho1weeIlyc6L2-3JuPucYoRdumJIsCVNHUBo7NIt9J8zCyJFh5pOIplmmF-379D4YjcLJJDrt9b7bWpiLr0FRhKtVNP-vUMM5AFuVzv4D3O1D4QTsA-iwBdhh-1fAv5ZJPtdVfaYO6ttSFLqSTOUIVTb3rZujNTo7ISaF82wyGrRL99RyljszqUqDdTdnnX6-XNjooV5Dxyq-xrwdl6s8MV2dwHIdzlQXhlRRrg03nOtW2RpYMV2qdkm1SNusoFJZq5VwPpdqEr82QQNZi2I9-T9W1TGVEF_MbEnrEoxyOZP51DDwg6hgtxvRIN2IhjRSOAwiXdbdFdOsEa1G0ILlR8zactd0gAlHTI8W5Qr8f8KOrt8LiM1nGn_V7gs0crRWh22Sor20hXZIwCIQmTvDt8eTd62iJx717US5Thm88sZddNM-Y5PVs8mr0dbN-A663bgleGjodBf1ZLGHDk5NX_PLQzxel-nVh_gAn647nl_uoVsm-ItNTds9NO9wEAMHcZeDuMtB3HAQKw5i4CDWHMQNB_FVDuKfOIgtB--jjyfH41dvnGZpDyehjC0cMOI98NWZTFlC4oEvQlfSSDLhEeGDwHCDOI3jRBnDg8SD49AVQsRBmgll42feA7RdlIV8hDAYuG4iaUpTN6SU-jHxJMukYKkUPomjPnpp_3o-Nx1cuE1tnHKAjCvIuIGsj4gFh9vSZFCmHLj1u0HBrwbJupEKNR_wmnCXn7ueXsJhAn6H6gQKI2k7srF4jSX7pxc-t7zhoA3UFJ8oZLmsuUcYYR5lkd9HDw2h2h9tufh445UnaHf9PT5F24tqKZ-hG8nFIq-rfbQVTML95iP4ATCJ3sk |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+the+quantitative+relationship+between+NRF2+and+SRXN1+through+semi-mechanistic+computational+modeling&rft.jtitle=Toxicology+%28Amsterdam%29&rft.au=Sharma%2C+Raju+Prasad&rft.au=Loonstra-Wolters%2C+Liesanne&rft.au=Ter+Braak%2C+Bas&rft.au=Niemeijer%2C+Marije&rft.date=2026-01-01&rft.eissn=1879-3185&rft.volume=519&rft.spage=154284&rft_id=info:doi/10.1016%2Fj.tox.2025.154284&rft_id=info%3Apmid%2F40972999&rft.externalDocID=40972999 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F0300483X%2Fcov200h.gif |