Deciphering the quantitative relationship between NRF2 and SRXN1 through semi-mechanistic computational modeling

Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, proliferation and apoptosis to maintain cellular homeostasis. It is not understood i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicology (Amsterdam) Jg. 519; S. 154284
Hauptverfasser: Sharma, Raju Prasad, Loonstra-Wolters, Liesanne, ter Braak, Bas, Niemeijer, Marije, White, Andrew, van de Water, Bob, Middleton, Alistair M., Beltman, Joost B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Ireland Elsevier B.V 01.01.2026
Schlagworte:
ISSN:0300-483X, 1879-3185, 1879-3185
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, proliferation and apoptosis to maintain cellular homeostasis. It is not understood in detail how the NRF2 program acquires its flexibility with respect to regulation of its downstream targets. Various NRF2 binding partners and cofactors specific to ARE genes are involved in this regulation, and are potentially condition-specific (e.g., type of stressor) and dependent on non-canonical signaling pathways (i.e., crosstalk). Here, we explored the quantitative relationship between NRF2 and sulfiredoxin 1 (SRXN1), a bona fide key NRF2 target gene. We developed a semi-mechanistic mathematical model based on time course experimental data of NRF2 and SRXN1 protein expression in HepG2 cells following single or repeated exposure to NRF2 activating soft electrophiles (sulforaphane, andrographolide, ethacrynic acid or CDDO-me) at a wide concentration range. We showed that a nonlinear mixed effect modeling approach with partially hierarchical parameters accurately captures the observed experimental dynamics. Our analysis highlights that NRF2 requires a cofactor or post-translational modification to regulate its activity as a transcription factor. Moreover, this modulation of the transcription factor activity of NRF2 is time-, compound- and exposure scenario specific. We conclude that a complete understanding of NRF2-mediated ARE genes activation requires detailed dynamic information on NRF2 binding partners and cofactors.
AbstractList Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, proliferation and apoptosis to maintain cellular homeostasis. It is not understood in detail how the NRF2 program acquires its flexibility with respect to regulation of its downstream targets. Various NRF2 binding partners and cofactors specific to ARE genes are involved in this regulation, and are potentially condition-specific (e.g., type of stressor) and dependent on non-canonical signaling pathways (i.e., crosstalk). Here, we explored the quantitative relationship between NRF2 and sulfiredoxin 1 (SRXN1), a bona fide key NRF2 target gene. We developed a semi-mechanistic mathematical model based on time course experimental data of NRF2 and SRXN1 protein expression in HepG2 cells following single or repeated exposure to NRF2 activating soft electrophiles (sulforaphane, andrographolide, ethacrynic acid or CDDO-me) at a wide concentration range. We showed that a nonlinear mixed effect modeling approach with partially hierarchical parameters accurately captures the observed experimental dynamics. Our analysis highlights that NRF2 requires a cofactor or post-translational modification to regulate its activity as a transcription factor. Moreover, this modulation of the transcription factor activity of NRF2 is time-, compound- and exposure scenario specific. We conclude that a complete understanding of NRF2-mediated ARE genes activation requires detailed dynamic information on NRF2 binding partners and cofactors.Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, proliferation and apoptosis to maintain cellular homeostasis. It is not understood in detail how the NRF2 program acquires its flexibility with respect to regulation of its downstream targets. Various NRF2 binding partners and cofactors specific to ARE genes are involved in this regulation, and are potentially condition-specific (e.g., type of stressor) and dependent on non-canonical signaling pathways (i.e., crosstalk). Here, we explored the quantitative relationship between NRF2 and sulfiredoxin 1 (SRXN1), a bona fide key NRF2 target gene. We developed a semi-mechanistic mathematical model based on time course experimental data of NRF2 and SRXN1 protein expression in HepG2 cells following single or repeated exposure to NRF2 activating soft electrophiles (sulforaphane, andrographolide, ethacrynic acid or CDDO-me) at a wide concentration range. We showed that a nonlinear mixed effect modeling approach with partially hierarchical parameters accurately captures the observed experimental dynamics. Our analysis highlights that NRF2 requires a cofactor or post-translational modification to regulate its activity as a transcription factor. Moreover, this modulation of the transcription factor activity of NRF2 is time-, compound- and exposure scenario specific. We conclude that a complete understanding of NRF2-mediated ARE genes activation requires detailed dynamic information on NRF2 binding partners and cofactors.
Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, proliferation and apoptosis to maintain cellular homeostasis. It is not understood in detail how the NRF2 program acquires its flexibility with respect to regulation of its downstream targets. Various NRF2 binding partners and cofactors specific to ARE genes are involved in this regulation, and are potentially condition-specific (e.g., type of stressor) and dependent on non-canonical signaling pathways (i.e., crosstalk). Here, we explored the quantitative relationship between NRF2 and sulfiredoxin 1 (SRXN1), a bona fide key NRF2 target gene. We developed a semi-mechanistic mathematical model based on time course experimental data of NRF2 and SRXN1 protein expression in HepG2 cells following single or repeated exposure to NRF2 activating soft electrophiles (sulforaphane, andrographolide, ethacrynic acid or CDDO-me) at a wide concentration range. We showed that a nonlinear mixed effect modeling approach with partially hierarchical parameters accurately captures the observed experimental dynamics. Our analysis highlights that NRF2 requires a cofactor or post-translational modification to regulate its activity as a transcription factor. Moreover, this modulation of the transcription factor activity of NRF2 is time-, compound- and exposure scenario specific. We conclude that a complete understanding of NRF2-mediated ARE genes activation requires detailed dynamic information on NRF2 binding partners and cofactors.
AbstractNuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, proliferation and apoptosis to maintain cellular homeostasis. It is not understood in detail how the NRF2 program acquires its flexibility with respect to regulation of its downstream targets. Various NRF2 binding partners and cofactors specific to ARE genes are involved in this regulation, and are potentially condition-specific (e.g., type of stressor) and dependent on non-canonical signaling pathways (i.e., crosstalk). Here, we explored the quantitative relationship between NRF2 and sulfiredoxin 1 (SRXN1), a bona fide key NRF2 target gene. We developed a semi-mechanistic mathematical model based on time course experimental data of NRF2 and SRXN1 protein expression in HepG2 cells following single or repeated exposure to NRF2 activating soft electrophiles (sulforaphane, andrographolide, ethacrynic acid or CDDO-me) at a wide concentration range. We showed that a nonlinear mixed effect modeling approach with partially hierarchical parameters accurately captures the observed experimental dynamics. Our analysis highlights that NRF2 requires a cofactor or post-translational modification to regulate its activity as a transcription factor. Moreover, this modulation of the transcription factor activity of NRF2 is time-, compound- and exposure scenario specific. We conclude that a complete understanding of NRF2-mediated ARE genes activation requires detailed dynamic information on NRF2 binding partners and cofactors.
ArticleNumber 154284
Author Loonstra-Wolters, Liesanne
White, Andrew
Beltman, Joost B.
ter Braak, Bas
Sharma, Raju Prasad
Middleton, Alistair M.
van de Water, Bob
Niemeijer, Marije
Author_xml – sequence: 1
  givenname: Raju Prasad
  surname: Sharma
  fullname: Sharma, Raju Prasad
  organization: Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
– sequence: 2
  givenname: Liesanne
  surname: Loonstra-Wolters
  fullname: Loonstra-Wolters, Liesanne
  organization: Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
– sequence: 3
  givenname: Bas
  surname: ter Braak
  fullname: ter Braak, Bas
  organization: Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
– sequence: 4
  givenname: Marije
  surname: Niemeijer
  fullname: Niemeijer, Marije
  organization: Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
– sequence: 5
  givenname: Andrew
  surname: White
  fullname: White, Andrew
  organization: Safety, Environmental and Regulatory Science, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK
– sequence: 6
  givenname: Bob
  surname: van de Water
  fullname: van de Water, Bob
  organization: Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
– sequence: 7
  givenname: Alistair M.
  surname: Middleton
  fullname: Middleton, Alistair M.
  organization: Safety, Environmental and Regulatory Science, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, UK
– sequence: 8
  givenname: Joost B.
  orcidid: 0000-0001-9215-3087
  surname: Beltman
  fullname: Beltman, Joost B.
  email: j.b.beltman@lacdr.leidenuniv.nl
  organization: Division of Cell Systems and Drug Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40972999$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7G31B7iRLN3MNZ_zgSBIa1UoFVqF7kImc6aT60wyTTLV_nsz3upCUFdJ4H3OIe9zhA6cd4DQc0q2lNDy1W6b_PctI0xuqRSsFo_QhtZVU3BaywO0IZyQQtT8-hAdxbgjhDAuyifoUJCmYk3TbNB8CsbOAwTrbnAaAN8u2iWbdLJ3gAOM-eJdHOyMW0jfABy-uDxjWLsOX11eX9AMBb_cDDjCZIsJzKCdjckabPw0L-knr0c8-Q7GvOQpetzrMcKzh_MYfTl79_nkQ3H-6f3Hk7fnhRFSpkIwzlldSeikYS0tdU1ANCA1Z7rs25JUbde2hkspqOH5XROtdVt1vaZS0p4fo5f7uXPwtwvEpCYbDYyjduCXqDiTTHIhmzJHXzxEl3aCTs3BTjrcq18t5QDdB0zwMQbof0coUasJtVPZhFpNqL2JzLzeM5A_eWchqGgsOAOdDWCS6rz9J_3mD9rk8qzR41e4h7jzS8ilRkVVZIqoq9X0KprJ7FjwdUDz9wH_Wf4DjYC54Q
Cites_doi 10.1007/s10565-021-09610-3
10.18433/J3GP53
10.1074/jbc.M411451200
10.1016/j.tibs.2014.02.002
10.1177/09603271211027947
10.1371/journal.pone.0051111
10.1038/srep16889
10.1128/MCB.01639-08
10.18637/jss.v002.i09
10.1038/s41598-022-10857-x
10.1073/pnas.220418997
10.1073/pnas.0502402102
10.1074/jbc.M206911200
10.1016/j.softx.2020.100609
10.1158/0008-5472.CAN-03-3924
10.1021/tx300524p
10.1016/j.bbamcr.2008.05.024
10.1089/ars.2014.5962
10.1007/s10565-015-9302-0
10.1038/s41467-024-47837-w
10.1002/etc.4505
10.1152/physrev.00023.2017
10.1038/s41540-020-00150-w
10.1089/ars.2017.7342
10.1186/s13075-015-0774-3
10.1371/journal.pcbi.0030024
10.1128/MCB.26.1.221-229.2006
10.1074/jbc.274.39.27545
10.1016/j.ecoenv.2021.112185
10.1007/s00204-020-02774-7
10.1007/s00204-016-1781-0
10.1007/s00204-018-2353-2
10.1016/j.freeradbiomed.2012.05.020
10.1006/bbrc.1997.6943
10.1016/j.freeradbiomed.2012.11.001
10.1006/bbrc.2000.3830
10.1128/MCB.15.4.2180
10.1016/j.jbiotec.2014.09.027
10.1016/j.cbi.2014.05.001
10.1073/pnas.0307301101
10.1146/annurev-pharmtox-011112-140320
10.1016/j.freeradbiomed.2015.06.006
10.1007/s00204-018-2178-z
10.1124/pr.109.002014
10.1074/jbc.M307633200
10.2165/00002018-200124070-00001
10.1093/nar/gkm638
10.1016/j.gene.2016.03.058
ContentType Journal Article
Copyright 2025 The Authors
The Authors
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright © 2025. Published by Elsevier B.V.
Copyright_xml – notice: 2025 The Authors
– notice: The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
– notice: Copyright © 2025. Published by Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.tox.2025.154284
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1879-3185
EndPage 154284
ExternalDocumentID 40972999
10_1016_j_tox_2025_154284
S0300483X25002434
1_s2_0_S0300483X25002434
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9DU
9JM
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABOCM
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKIFW
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OB~
OGGZJ
OM0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SPT
SSJ
SSP
SSZ
T5K
WH7
WUQ
XPP
Y6R
Z5R
ZGI
ZXP
~G-
~HD
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c455t-42332875ed5c2b16a80e49e5a32a6fb607bdbbc35541c3b6080aaab7dfa1551f3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001584661900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0300-483X
1879-3185
IngestDate Sun Sep 28 08:50:11 EDT 2025
Fri Nov 28 01:41:35 EST 2025
Thu Nov 27 00:56:53 EST 2025
Sat Oct 25 17:13:39 EDT 2025
Sat Oct 25 09:09:04 EDT 2025
Sat Nov 29 06:57:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Repeated exposure
Chemical exposure
NRF2
SRXN1
Hepatotoxicity
Nonlinear mixed effect modeling
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-42332875ed5c2b16a80e49e5a32a6fb607bdbbc35541c3b6080aaab7dfa1551f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9215-3087
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S0300483X25002434
PMID 40972999
PQID 3252534596
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3252534596
pubmed_primary_40972999
crossref_primary_10_1016_j_tox_2025_154284
elsevier_sciencedirect_doi_10_1016_j_tox_2025_154284
elsevier_clinicalkeyesjournals_1_s2_0_S0300483X25002434
elsevier_clinicalkey_doi_10_1016_j_tox_2025_154284
PublicationCentury 2000
PublicationDate 2026-01-01
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: 2026-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Toxicology (Amsterdam)
PublicationTitleAlternate Toxicology
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Katsuoka, Motohashi, Engel, Yamamoto (bib20) 2005; 280
Sun, Chin, Zhang (bib40) 2009; 29
Wakabayashi, Dinkova-Kostova, Holtzclaw (bib46) 2004; 101
Kataoka, Igarashi, Itoh (bib19) 1995; 15
Wijaya, Rau, Braun (bib47) 2022; 38
Park, Cho, Kim (bib33) 2004; 64
Leclerc, Hamon, Claude, Jellali, Naudot, Bois (bib26) 2015; 31
Hayes, Dinkova-Kostova (bib10) 2014; 39
Li, Yu, Liu (bib27) 2008; 1783
Spinu, Cronin, Enoch, Madden, Worth (bib39) 2020; 94
Vehtarh, Gelman, Simpson, Carpenter, Burkner (bib44) 2021; 16
Eggler, Liu, Pezzuto, van Breemen, Mesecar (bib8) 2005; 102
Hsieh, Reisfeld, Chiu (bib12) 2020; 12
Cai, Yin, Yang, Jiang, Cao (bib6) 2015; 17
Zhang, Andersen (bib53) 2007; 3
Kaplowitz (bib18) 2001; 24
Zipper, Mulcahy (bib54) 2000; 278
Niemeijer, Wolters, ter Braak (bib32) 2025
Perkins, Ashauer, Burgoon (bib34) 2019; 38
Ghanim, Ahmad, Abdallah, Qatouseh, Qinna (bib9) 2021; 40
Rooney, Chorley, Hiemstra (bib38) 2020; 15
Ma (bib29) 2013; 53
Kolodkin, Sharma, Colangelo (bib30) 2020; 6
Itoh K., Chiba T., Takahashi S., et al. An Nrf2 / Small Maf Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes through Antioxidant Response Elements. 1997;322(236):313-322.
Bois, Maszle (bib4) 1997; 2
Katsuoka, Yamamoto (bib21) 2016; 586
Bischoff, Kuijper, Schimming (bib2) 2019; 93
Centers, States, Ostapowicz (bib7) 2002; 15
ter Braak, Klip, Wink (bib5) 2022; 84
Klaassen, Aleksunes (bib24) 2010; 62
Tonelli, Chio, Tuveson (bib43) 2018; 29
Huang, Nguyen, Pickett (bib13) 2000; 97
Abbas, Riquier, Drapier (bib1) 2013; 527
Jeong, Bae, Toledano, Rhee (bib16) 2012; 53
Jose, March-Steinman, Wilson (bib17) 2024; 15
Louizos, Yáñez, Forrest, Davies (bib28) 2014; 17
Narasimhan, Patel, Vedpathak, Rathinam, Henderson, Mahimainathan (bib31) 2012; 7
Wink, Hiemstra, Herpers, van de Water (bib48) 2017; 91
Wink, Hiemstra, Huppelschoten, Klip, Water, Van De (bib49) 2018; 92
Suzuki, Yamamoto (bib41) 2015; 88
Pickering, Vojtovich, Tower, A Davies (bib35) 2013; 55
Vorrink, Domann (bib45) 2014; 218
Khalil, Goltsov, Langdon, Harrison, Bown, Deeni (bib23) 2015; 202
Su, Khor, Shu (bib42) 2013; 26
Xue, Momiji, Rabbani (bib50) 2015; 23
Yu, Lei, Mandlekar (bib52) 1999; 274
Bloom, Jaiswal (bib3) 2003; 278
Ke, Yang, Liu (bib22) 2021; 216
Yamamoto, Kensler, Motohashi (bib51) 2018; 98
Hiemstra, Fehling-Kaschek, Kuijper (bib11) 2022; 12
Kobayashi, Kang, Watai (bib25) 2006; 26
Reichard, Motz, Puga (bib37) 2007; 35
Huang, Nguyen, Pickett (bib14) 2002; 277
Qian, Zhou, Gurguis (bib36) 2015; 5
Reichard (10.1016/j.tox.2025.154284_bib37) 2007; 35
Vehtarh (10.1016/j.tox.2025.154284_bib44) 2021; 16
Ma (10.1016/j.tox.2025.154284_bib29) 2013; 53
Pickering (10.1016/j.tox.2025.154284_bib35) 2013; 55
Khalil (10.1016/j.tox.2025.154284_bib23) 2015; 202
Huang (10.1016/j.tox.2025.154284_bib14) 2002; 277
Huang (10.1016/j.tox.2025.154284_bib13) 2000; 97
Kaplowitz (10.1016/j.tox.2025.154284_bib18) 2001; 24
Kolodkin (10.1016/j.tox.2025.154284_bib30) 2020; 6
Bischoff (10.1016/j.tox.2025.154284_bib2) 2019; 93
Kobayashi (10.1016/j.tox.2025.154284_bib25) 2006; 26
Niemeijer (10.1016/j.tox.2025.154284_bib32) 2025
Klaassen (10.1016/j.tox.2025.154284_bib24) 2010; 62
Kataoka (10.1016/j.tox.2025.154284_bib19) 1995; 15
Spinu (10.1016/j.tox.2025.154284_bib39) 2020; 94
Jose (10.1016/j.tox.2025.154284_bib17) 2024; 15
Leclerc (10.1016/j.tox.2025.154284_bib26) 2015; 31
Li (10.1016/j.tox.2025.154284_bib27) 2008; 1783
Rooney (10.1016/j.tox.2025.154284_bib38) 2020; 15
Katsuoka (10.1016/j.tox.2025.154284_bib21) 2016; 586
Perkins (10.1016/j.tox.2025.154284_bib34) 2019; 38
Yu (10.1016/j.tox.2025.154284_bib52) 1999; 274
Wink (10.1016/j.tox.2025.154284_bib49) 2018; 92
Zipper (10.1016/j.tox.2025.154284_bib54) 2000; 278
10.1016/j.tox.2025.154284_bib15
Qian (10.1016/j.tox.2025.154284_bib36) 2015; 5
Louizos (10.1016/j.tox.2025.154284_bib28) 2014; 17
Hsieh (10.1016/j.tox.2025.154284_bib12) 2020; 12
Xue (10.1016/j.tox.2025.154284_bib50) 2015; 23
Bois (10.1016/j.tox.2025.154284_bib4) 1997; 2
Su (10.1016/j.tox.2025.154284_bib42) 2013; 26
Wakabayashi (10.1016/j.tox.2025.154284_bib46) 2004; 101
ter Braak (10.1016/j.tox.2025.154284_bib5) 2022; 84
Jeong (10.1016/j.tox.2025.154284_bib16) 2012; 53
Park (10.1016/j.tox.2025.154284_bib33) 2004; 64
Sun (10.1016/j.tox.2025.154284_bib40) 2009; 29
Ghanim (10.1016/j.tox.2025.154284_bib9) 2021; 40
Wijaya (10.1016/j.tox.2025.154284_bib47) 2022; 38
Hiemstra (10.1016/j.tox.2025.154284_bib11) 2022; 12
Zhang (10.1016/j.tox.2025.154284_bib53) 2007; 3
Hayes (10.1016/j.tox.2025.154284_bib10) 2014; 39
Ke (10.1016/j.tox.2025.154284_bib22) 2021; 216
Yamamoto (10.1016/j.tox.2025.154284_bib51) 2018; 98
Katsuoka (10.1016/j.tox.2025.154284_bib20) 2005; 280
Wink (10.1016/j.tox.2025.154284_bib48) 2017; 91
Narasimhan (10.1016/j.tox.2025.154284_bib31) 2012; 7
Suzuki (10.1016/j.tox.2025.154284_bib41) 2015; 88
Eggler (10.1016/j.tox.2025.154284_bib8) 2005; 102
Tonelli (10.1016/j.tox.2025.154284_bib43) 2018; 29
Cai (10.1016/j.tox.2025.154284_bib6) 2015; 17
Centers (10.1016/j.tox.2025.154284_bib7) 2002; 15
Abbas (10.1016/j.tox.2025.154284_bib1) 2013; 527
Bloom (10.1016/j.tox.2025.154284_bib3) 2003; 278
Vorrink (10.1016/j.tox.2025.154284_bib45) 2014; 218
References_xml – volume: 53
  start-page: 401
  year: 2013
  end-page: 426
  ident: bib29
  article-title: Role of Nrf2 in oxidative stress and toxicity
  publication-title: Annu Rev. Pharm. Toxicol.
– volume: 24
  start-page: 483
  year: 2001
  end-page: 490
  ident: bib18
  article-title: Drug-induced liver disorders: implications for drug development and regulation
  publication-title: Drug Saf.
– volume: 280
  start-page: 4483
  year: 2005
  end-page: 4490
  ident: bib20
  article-title: Nrf2 transcriptionally activates the mafg gene through an antioxidant response element
  publication-title: J. Biol. Chem.
– volume: 17
  start-page: 34
  year: 2014
  end-page: 91
  ident: bib28
  article-title: Understanding the hysteresis loop conundrum in pharmacokinetic/pharmacodynamic relationships
  publication-title: J. Pharm. Pharm. Sci.
– volume: 6
  year: 2020
  ident: bib30
  article-title: ROS networks: designs, aging, Parkinson’s disease and precision therapies
  publication-title: npj Syst. Biol. Appl.
– volume: 62
  start-page: 1
  year: 2010
  end-page: 96
  ident: bib24
  article-title: Xenobiotic, bile acid, and cholesterol transporters: function and regulation
  publication-title: Pharm. Rev.
– volume: 101
  start-page: 2040
  year: 2004
  end-page: 2045
  ident: bib46
  article-title: Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers
  publication-title: Proc. Natl. Acad. Sci.
– volume: 218
  start-page: 82
  year: 2014
  end-page: 88
  ident: bib45
  article-title: Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1α signaling node
  publication-title: Chem. Biol. Interact.
– volume: 277
  start-page: 42769
  year: 2002
  end-page: 42774
  ident: bib14
  article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase c regulates antioxidant response element-mediated transcription
  publication-title: J. Biol. Chem.
– year: 2025
  ident: bib32
  article-title: Imaging-based temporal dynamics of electrophile-induced NRF2 signaling in liver cells identifies adaptive versus adverse repeated exposure conditions
  publication-title: bioRxiv
– volume: 97
  start-page: 12475
  year: 2000
  end-page: 12480
  ident: bib13
  article-title: Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 1
  year: 2020
  end-page: 26
  ident: bib38
  article-title: Mining a human transcriptome database for chemical modulators of NRF2
  publication-title: PLoS One
– volume: 2
  year: 1997
  ident: bib4
  article-title: MCSim: a Monte Carlo simulation program
  publication-title: J. Stat. Softw.
– volume: 278
  start-page: 44675
  year: 2003
  end-page: 44682
  ident: bib3
  article-title: Phosphorylation of Nrf2 at Ser40 by protein kinase c in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element
  publication-title: J. Biol. Chem.
– volume: 5
  year: 2015
  ident: bib36
  article-title: Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival
  publication-title: Sci. Rep.
– volume: 29
  start-page: 2658
  year: 2009
  end-page: 2672
  ident: bib40
  article-title: Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response
  publication-title: Mol. Cell Biol.
– volume: 16
  start-page: 667
  year: 2021
  end-page: 718
  ident: bib44
  article-title: Rank-Normalization, folding, and localization: an improved (Formula presented) for assessing convergence of MCMC (with Discussion)*†
  publication-title: Bayesian Anal.
– volume: 586
  start-page: 197
  year: 2016
  end-page: 205
  ident: bib21
  article-title: Small maf proteins (MafF, MafG, MafK): history, structure and function
  publication-title: Gene
– volume: 40
  start-page: 2223
  year: 2021
  end-page: 2236
  ident: bib9
  article-title: Modulation of NRF2/ARE pathway- and cell death-related genes during drug-induced liver injury
  publication-title: Hum. Exp. Toxicol.
– volume: 15
  start-page: 3440
  year: 2024
  ident: bib17
  article-title: Temporal coordination of the transcription factor response to H2O2 stress
  publication-title: Nat. Commun.
– volume: 17
  start-page: 269
  year: 2015
  ident: bib6
  article-title: Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis
  publication-title: Arthritis Res. Ther.
– volume: 91
  start-page: 1367
  year: 2017
  end-page: 1383
  ident: bib48
  article-title: High-content imaging-based BAC-GFP toxicity pathway reporters to assess chemical adversity liabilities
  publication-title: Arch. Toxicol.
– volume: 98
  start-page: 1169
  year: 2018
  end-page: 1203
  ident: bib51
  article-title: The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis
  publication-title: Physiol. Rev.
– volume: 527
  year: 2013
  ident: bib1
  publication-title: Peroxiredoxins and Sulfiredoxin at the Crossroads of the NO and H 2O2 Signaling Pathways
– volume: 26
  start-page: 477
  year: 2013
  end-page: 485
  ident: bib42
  article-title: Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and radix angelica sinensis via promoter CpG demethylation
  publication-title: Chem. Res. Toxicol.
– volume: 64
  start-page: 3701
  year: 2004
  end-page: 3713
  ident: bib33
  article-title: Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathione S-transferase gene by the peroxisome proliferator-activated receptor-γ and retinoid x receptor heterodimer
  publication-title: Cancer Res.
– reference: Itoh K., Chiba T., Takahashi S., et al. An Nrf2 / Small Maf Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes through Antioxidant Response Elements. 1997;322(236):313-322.
– volume: 94
  start-page: 1497
  year: 2020
  end-page: 1510
  ident: bib39
  article-title: Quantitative adverse outcome pathway (qAOP) models for toxicity prediction
  publication-title: Arch. Toxicol.
– volume: 38
  start-page: 1850
  year: 2019
  end-page: 1865
  ident: bib34
  article-title: Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment
  publication-title: Environ. Toxicol. Chem.
– volume: 35
  start-page: 7074
  year: 2007
  end-page: 7086
  ident: bib37
  article-title: Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1
  publication-title: Nucleic Acids Res.
– volume: 92
  start-page: 1797
  year: 2018
  end-page: 1814
  ident: bib49
  article-title: Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury
  publication-title: Arch. Toxicol.
– volume: 12
  year: 2020
  ident: bib12
  article-title: Pksensi: an R package to apply global sensitivity analysis in physiologically based kinetic modeling
  publication-title: SoftwareX
– volume: 39
  start-page: 199
  year: 2014
  end-page: 218
  ident: bib10
  article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism
  publication-title: Trends Biochem. Sci.
– volume: 278
  start-page: 484
  year: 2000
  end-page: 492
  ident: bib54
  article-title: Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 216
  year: 2021
  ident: bib22
  article-title: Dose- and time-effects responses of nonylphenol on oxidative stress in rat through the Keap1-Nrf2 signaling pathway
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 12
  start-page: 7336
  year: 2022
  ident: bib11
  article-title: Dynamic modeling of Nrf2 pathway activation in liver cells after toxicant exposure
  publication-title: Sci. Rep.
– volume: 3
  start-page: 0345
  year: 2007
  end-page: 0363
  ident: bib53
  article-title: Dose response relationship in anti-stress gene regulatory networks
  publication-title: PLoS Comput. Biol.
– volume: 55
  start-page: 109
  year: 2013
  end-page: 118
  ident: bib35
  article-title: Oxidative stress adaptation with acute, chronic, and repeated stress
  publication-title: Free Radic. Biol. Med.
– volume: 38
  start-page: 847
  year: 2022
  end-page: 864
  ident: bib47
  article-title: Stimulation of de novo glutathione synthesis by nitrofurantoin for enhanced resilience of hepatocytes
  publication-title: Cell Biol. Toxicol.
– volume: 202
  start-page: 12
  year: 2015
  end-page: 30
  ident: bib23
  article-title: Quantitative analysis of NRF2 pathway reveals key elements of the regulatory circuits underlying antioxidant response and proliferation of ovarian cancer cells
  publication-title: J. Biotechnol.
– volume: 102
  start-page: 10070
  year: 2005
  end-page: 10075
  ident: bib8
  article-title: Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2
  publication-title: Proc. Natl. Acad. Sci.
– volume: 26
  start-page: 221
  year: 2006
  end-page: 229
  ident: bib25
  article-title: Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1
  publication-title: Mol. Cell Biol.
– volume: 15
  start-page: 2180
  year: 1995
  end-page: 2190
  ident: bib19
  article-title: Small maf proteins heterodimerize with fos and may act as competitive repressors of the NF-E2 transcription factor
  publication-title: Mol. Cell Biol.
– volume: 53
  start-page: 447
  year: 2012
  end-page: 456
  ident: bib16
  article-title: Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression
  publication-title: Free Radic. Biol. Med.
– volume: 31
  start-page: 173
  year: 2015
  end-page: 185
  ident: bib26
  article-title: Investigation of acetaminophen toxicity in HepG2/C3a microscale cultures using a system biology model of glutathione depletion
  publication-title: Cell Biol. Toxicol.
– volume: 1783
  start-page: 1847
  year: 2008
  end-page: 1856
  ident: bib27
  article-title: Heterodimerization with small maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– volume: 88
  start-page: 93
  year: 2015
  end-page: 100
  ident: bib41
  article-title: Molecular basis of the Keap1-Nrf2 system
  publication-title: Free Radic. Biol. Med.
– volume: 29
  start-page: 1727
  year: 2018
  end-page: 1745
  ident: bib43
  article-title: Transcriptional regulation by Nrf2
  publication-title: Antioxid. Redox Signal
– volume: 7
  year: 2012
  ident: bib31
  article-title: Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells
  publication-title: PLoS One
– volume: 274
  start-page: 27545
  year: 1999
  end-page: 27552
  ident: bib52
  article-title: Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals
  publication-title: J. Biol. Chem.
– volume: 84
  year: 2022
  ident: bib5
  article-title: Mapping the dynamics of Nrf2 antioxidant and NFκB inflammatory responses by soft electrophilic chemicals in human liver cells defines the transition from adaptive to adverse responses
  publication-title: Toxicol. Vitr.
– volume: 15
  start-page: 947
  year: 2002
  end-page: 955
  ident: bib7
  article-title: Article results of a prospective study of acute liver failure at 17 tertiary
  publication-title: Ann. Intern. Med.
– volume: 93
  start-page: 435
  year: 2019
  end-page: 451
  ident: bib2
  article-title: A systematic analysis of Nrf2 pathway activation dynamics during repeated xenobiotic exposure
  publication-title: Arch. Toxicol.
– volume: 23
  start-page: 613
  year: 2015
  end-page: 629
  ident: bib50
  article-title: Frequency modulated translocational oscillations of Nrf2 mediate the antioxidant response element cytoprotective transcriptional response
  publication-title: Antioxid. Redox Signal
– volume: 38
  start-page: 847
  issue: 5
  year: 2022
  ident: 10.1016/j.tox.2025.154284_bib47
  article-title: Stimulation of de novo glutathione synthesis by nitrofurantoin for enhanced resilience of hepatocytes
  publication-title: Cell Biol. Toxicol.
  doi: 10.1007/s10565-021-09610-3
– volume: 17
  start-page: 34
  issue: 1
  year: 2014
  ident: 10.1016/j.tox.2025.154284_bib28
  article-title: Understanding the hysteresis loop conundrum in pharmacokinetic/pharmacodynamic relationships
  publication-title: J. Pharm. Pharm. Sci.
  doi: 10.18433/J3GP53
– volume: 280
  start-page: 4483
  issue: 6
  year: 2005
  ident: 10.1016/j.tox.2025.154284_bib20
  article-title: Nrf2 transcriptionally activates the mafg gene through an antioxidant response element
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M411451200
– volume: 39
  start-page: 199
  issue: 4
  year: 2014
  ident: 10.1016/j.tox.2025.154284_bib10
  article-title: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2014.02.002
– volume: 40
  start-page: 2223
  issue: 12
  year: 2021
  ident: 10.1016/j.tox.2025.154284_bib9
  article-title: Modulation of NRF2/ARE pathway- and cell death-related genes during drug-induced liver injury
  publication-title: Hum. Exp. Toxicol.
  doi: 10.1177/09603271211027947
– volume: 7
  issue: 12
  year: 2012
  ident: 10.1016/j.tox.2025.154284_bib31
  article-title: Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0051111
– volume: 5
  year: 2015
  ident: 10.1016/j.tox.2025.154284_bib36
  article-title: Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival
  publication-title: Sci. Rep.
  doi: 10.1038/srep16889
– volume: 29
  start-page: 2658
  issue: 10
  year: 2009
  ident: 10.1016/j.tox.2025.154284_bib40
  article-title: Acetylation of Nrf2 by p300/CBP augments promoter-specific DNA binding of Nrf2 during the antioxidant response
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01639-08
– volume: 16
  start-page: 667
  issue: 2
  year: 2021
  ident: 10.1016/j.tox.2025.154284_bib44
  article-title: Rank-Normalization, folding, and localization: an improved (Formula presented) for assessing convergence of MCMC (with Discussion)*†
  publication-title: Bayesian Anal.
– volume: 2
  issue: 9
  year: 1997
  ident: 10.1016/j.tox.2025.154284_bib4
  article-title: MCSim: a Monte Carlo simulation program
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v002.i09
– volume: 12
  start-page: 7336
  issue: 1
  year: 2022
  ident: 10.1016/j.tox.2025.154284_bib11
  article-title: Dynamic modeling of Nrf2 pathway activation in liver cells after toxicant exposure
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-10857-x
– volume: 97
  start-page: 12475
  issue: 23
  year: 2000
  ident: 10.1016/j.tox.2025.154284_bib13
  article-title: Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.220418997
– volume: 102
  start-page: 10070
  issue: 29
  year: 2005
  ident: 10.1016/j.tox.2025.154284_bib8
  article-title: Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0502402102
– year: 2025
  ident: 10.1016/j.tox.2025.154284_bib32
  article-title: Imaging-based temporal dynamics of electrophile-induced NRF2 signaling in liver cells identifies adaptive versus adverse repeated exposure conditions
  publication-title: bioRxiv
– volume: 277
  start-page: 42769
  issue: 45
  year: 2002
  ident: 10.1016/j.tox.2025.154284_bib14
  article-title: Phosphorylation of Nrf2 at Ser-40 by protein kinase c regulates antioxidant response element-mediated transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M206911200
– volume: 12
  year: 2020
  ident: 10.1016/j.tox.2025.154284_bib12
  article-title: Pksensi: an R package to apply global sensitivity analysis in physiologically based kinetic modeling
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2020.100609
– volume: 64
  start-page: 3701
  issue: 10
  year: 2004
  ident: 10.1016/j.tox.2025.154284_bib33
  article-title: Transactivation of the PPAR-responsive enhancer module in chemopreventive glutathione S-transferase gene by the peroxisome proliferator-activated receptor-γ and retinoid x receptor heterodimer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-03-3924
– volume: 26
  start-page: 477
  issue: 3
  year: 2013
  ident: 10.1016/j.tox.2025.154284_bib42
  article-title: Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and radix angelica sinensis via promoter CpG demethylation
  publication-title: Chem. Res. Toxicol.
  doi: 10.1021/tx300524p
– volume: 1783
  start-page: 1847
  issue: 10
  year: 2008
  ident: 10.1016/j.tox.2025.154284_bib27
  article-title: Heterodimerization with small maf proteins enhances nuclear retention of Nrf2 via masking the NESzip motif
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2008.05.024
– volume: 23
  start-page: 613
  issue: 7
  year: 2015
  ident: 10.1016/j.tox.2025.154284_bib50
  article-title: Frequency modulated translocational oscillations of Nrf2 mediate the antioxidant response element cytoprotective transcriptional response
  publication-title: Antioxid. Redox Signal
  doi: 10.1089/ars.2014.5962
– volume: 31
  start-page: 173
  issue: 3
  year: 2015
  ident: 10.1016/j.tox.2025.154284_bib26
  article-title: Investigation of acetaminophen toxicity in HepG2/C3a microscale cultures using a system biology model of glutathione depletion
  publication-title: Cell Biol. Toxicol.
  doi: 10.1007/s10565-015-9302-0
– volume: 15
  start-page: 3440
  issue: 1
  year: 2024
  ident: 10.1016/j.tox.2025.154284_bib17
  article-title: Temporal coordination of the transcription factor response to H2O2 stress
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-47837-w
– volume: 38
  start-page: 1850
  issue: 9
  year: 2019
  ident: 10.1016/j.tox.2025.154284_bib34
  article-title: Building and applying quantitative adverse outcome pathway models for chemical hazard and risk assessment
  publication-title: Environ. Toxicol. Chem.
  doi: 10.1002/etc.4505
– volume: 98
  start-page: 1169
  issue: 3
  year: 2018
  ident: 10.1016/j.tox.2025.154284_bib51
  article-title: The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00023.2017
– volume: 15
  start-page: 1
  issue: 9 September
  year: 2020
  ident: 10.1016/j.tox.2025.154284_bib38
  article-title: Mining a human transcriptome database for chemical modulators of NRF2
  publication-title: PLoS One
– volume: 6
  issue: 1
  year: 2020
  ident: 10.1016/j.tox.2025.154284_bib30
  article-title: ROS networks: designs, aging, Parkinson’s disease and precision therapies
  publication-title: npj Syst. Biol. Appl.
  doi: 10.1038/s41540-020-00150-w
– volume: 29
  start-page: 1727
  issue: 17
  year: 2018
  ident: 10.1016/j.tox.2025.154284_bib43
  article-title: Transcriptional regulation by Nrf2
  publication-title: Antioxid. Redox Signal
  doi: 10.1089/ars.2017.7342
– volume: 17
  start-page: 269
  issue: 1
  year: 2015
  ident: 10.1016/j.tox.2025.154284_bib6
  article-title: Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/s13075-015-0774-3
– volume: 3
  start-page: 0345
  issue: 3
  year: 2007
  ident: 10.1016/j.tox.2025.154284_bib53
  article-title: Dose response relationship in anti-stress gene regulatory networks
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030024
– volume: 26
  start-page: 221
  issue: 1
  year: 2006
  ident: 10.1016/j.tox.2025.154284_bib25
  article-title: Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.26.1.221-229.2006
– volume: 274
  start-page: 27545
  issue: 39
  year: 1999
  ident: 10.1016/j.tox.2025.154284_bib52
  article-title: Role of a mitogen-activated protein kinase pathway in the induction of phase II detoxifying enzymes by chemicals
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.39.27545
– volume: 216
  year: 2021
  ident: 10.1016/j.tox.2025.154284_bib22
  article-title: Dose- and time-effects responses of nonylphenol on oxidative stress in rat through the Keap1-Nrf2 signaling pathway
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2021.112185
– volume: 94
  start-page: 1497
  issue: 5
  year: 2020
  ident: 10.1016/j.tox.2025.154284_bib39
  article-title: Quantitative adverse outcome pathway (qAOP) models for toxicity prediction
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-020-02774-7
– volume: 91
  start-page: 1367
  issue: 3
  year: 2017
  ident: 10.1016/j.tox.2025.154284_bib48
  article-title: High-content imaging-based BAC-GFP toxicity pathway reporters to assess chemical adversity liabilities
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-016-1781-0
– volume: 93
  start-page: 435
  issue: 2
  year: 2019
  ident: 10.1016/j.tox.2025.154284_bib2
  article-title: A systematic analysis of Nrf2 pathway activation dynamics during repeated xenobiotic exposure
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-018-2353-2
– volume: 53
  start-page: 447
  issue: 3
  year: 2012
  ident: 10.1016/j.tox.2025.154284_bib16
  article-title: Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.05.020
– ident: 10.1016/j.tox.2025.154284_bib15
  doi: 10.1006/bbrc.1997.6943
– volume: 55
  start-page: 109
  year: 2013
  ident: 10.1016/j.tox.2025.154284_bib35
  article-title: Oxidative stress adaptation with acute, chronic, and repeated stress
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.11.001
– volume: 15
  start-page: 947
  year: 2002
  ident: 10.1016/j.tox.2025.154284_bib7
  article-title: Article results of a prospective study of acute liver failure at 17 tertiary
  publication-title: Ann. Intern. Med.
– volume: 278
  start-page: 484
  issue: 2
  year: 2000
  ident: 10.1016/j.tox.2025.154284_bib54
  article-title: Inhibition of ERK and p38 MAP kinases inhibits binding of Nrf2 and induction of GCS genes
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2000.3830
– volume: 15
  start-page: 2180
  issue: 4
  year: 1995
  ident: 10.1016/j.tox.2025.154284_bib19
  article-title: Small maf proteins heterodimerize with fos and may act as competitive repressors of the NF-E2 transcription factor
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.15.4.2180
– volume: 202
  start-page: 12
  year: 2015
  ident: 10.1016/j.tox.2025.154284_bib23
  article-title: Quantitative analysis of NRF2 pathway reveals key elements of the regulatory circuits underlying antioxidant response and proliferation of ovarian cancer cells
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2014.09.027
– volume: 218
  start-page: 82
  year: 2014
  ident: 10.1016/j.tox.2025.154284_bib45
  article-title: Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1α signaling node
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2014.05.001
– volume: 101
  start-page: 2040
  issue: 7
  year: 2004
  ident: 10.1016/j.tox.2025.154284_bib46
  article-title: Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0307301101
– volume: 53
  start-page: 401
  issue: 1
  year: 2013
  ident: 10.1016/j.tox.2025.154284_bib29
  article-title: Role of Nrf2 in oxidative stress and toxicity
  publication-title: Annu Rev. Pharm. Toxicol.
  doi: 10.1146/annurev-pharmtox-011112-140320
– volume: 88
  start-page: 93
  issue: Pt B
  year: 2015
  ident: 10.1016/j.tox.2025.154284_bib41
  article-title: Molecular basis of the Keap1-Nrf2 system
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2015.06.006
– volume: 92
  start-page: 1797
  issue: 5
  year: 2018
  ident: 10.1016/j.tox.2025.154284_bib49
  article-title: Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury
  publication-title: Arch. Toxicol.
  doi: 10.1007/s00204-018-2178-z
– volume: 527
  year: 2013
  ident: 10.1016/j.tox.2025.154284_bib1
– volume: 62
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.tox.2025.154284_bib24
  article-title: Xenobiotic, bile acid, and cholesterol transporters: function and regulation
  publication-title: Pharm. Rev.
  doi: 10.1124/pr.109.002014
– volume: 84
  issue: January
  year: 2022
  ident: 10.1016/j.tox.2025.154284_bib5
  article-title: Mapping the dynamics of Nrf2 antioxidant and NFκB inflammatory responses by soft electrophilic chemicals in human liver cells defines the transition from adaptive to adverse responses
  publication-title: Toxicol. Vitr.
– volume: 278
  start-page: 44675
  issue: 45
  year: 2003
  ident: 10.1016/j.tox.2025.154284_bib3
  article-title: Phosphorylation of Nrf2 at Ser40 by protein kinase c in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M307633200
– volume: 24
  start-page: 483
  issue: 7
  year: 2001
  ident: 10.1016/j.tox.2025.154284_bib18
  article-title: Drug-induced liver disorders: implications for drug development and regulation
  publication-title: Drug Saf.
  doi: 10.2165/00002018-200124070-00001
– volume: 35
  start-page: 7074
  issue: 21
  year: 2007
  ident: 10.1016/j.tox.2025.154284_bib37
  article-title: Heme oxygenase-1 induction by NRF2 requires inactivation of the transcriptional repressor BACH1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm638
– volume: 586
  start-page: 197
  issue: 2
  year: 2016
  ident: 10.1016/j.tox.2025.154284_bib21
  article-title: Small maf proteins (MafF, MafG, MafK): history, structure and function
  publication-title: Gene
  doi: 10.1016/j.gene.2016.03.058
SSID ssj0002346
Score 2.4804676
Snippet Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which control...
AbstractNuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant response element (ARE) genes, which...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 154284
SubjectTerms Chemical exposure
Computer Simulation
Emergency
Hep G2 Cells
Hepatotoxicity
Humans
Models, Biological
NF-E2-Related Factor 2 - genetics
NF-E2-Related Factor 2 - metabolism
Nonlinear mixed effect modeling
NRF2
Oxidoreductases Acting on Sulfur Group Donors - genetics
Oxidoreductases Acting on Sulfur Group Donors - metabolism
Repeated exposure
SRXN1
Title Deciphering the quantitative relationship between NRF2 and SRXN1 through semi-mechanistic computational modeling
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0300483X25002434
https://www.clinicalkey.es/playcontent/1-s2.0-S0300483X25002434
https://dx.doi.org/10.1016/j.tox.2025.154284
https://www.ncbi.nlm.nih.gov/pubmed/40972999
https://www.proquest.com/docview/3252534596
Volume 519
WOSCitedRecordID wos001584661900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3185
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002346
  issn: 0300-483X
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DaFJCMG4lctkJLQHtEypY-fyWMEmQFBNW4G-WU7iSCk0KUk7db-FP8uxHadho1weeIlyc6L2-3JuPucYoRdumJIsCVNHUBo7NIt9J8zCyJFh5pOIplmmF-379D4YjcLJJDrt9b7bWpiLr0FRhKtVNP-vUMM5AFuVzv4D3O1D4QTsA-iwBdhh-1fAv5ZJPtdVfaYO6ttSFLqSTOUIVTb3rZujNTo7ISaF82wyGrRL99RyljszqUqDdTdnnX6-XNjooV5Dxyq-xrwdl6s8MV2dwHIdzlQXhlRRrg03nOtW2RpYMV2qdkm1SNusoFJZq5VwPpdqEr82QQNZi2I9-T9W1TGVEF_MbEnrEoxyOZP51DDwg6hgtxvRIN2IhjRSOAwiXdbdFdOsEa1G0ILlR8zactd0gAlHTI8W5Qr8f8KOrt8LiM1nGn_V7gs0crRWh22Sor20hXZIwCIQmTvDt8eTd62iJx717US5Thm88sZddNM-Y5PVs8mr0dbN-A663bgleGjodBf1ZLGHDk5NX_PLQzxel-nVh_gAn647nl_uoVsm-ItNTds9NO9wEAMHcZeDuMtB3HAQKw5i4CDWHMQNB_FVDuKfOIgtB--jjyfH41dvnGZpDyehjC0cMOI98NWZTFlC4oEvQlfSSDLhEeGDwHCDOI3jRBnDg8SD49AVQsRBmgll42feA7RdlIV8hDAYuG4iaUpTN6SU-jHxJMukYKkUPomjPnpp_3o-Nx1cuE1tnHKAjCvIuIGsj4gFh9vSZFCmHLj1u0HBrwbJupEKNR_wmnCXn7ueXsJhAn6H6gQKI2k7srF4jSX7pxc-t7zhoA3UFJ8oZLmsuUcYYR5lkd9HDw2h2h9tufh445UnaHf9PT5F24tqKZ-hG8nFIq-rfbQVTML95iP4ATCJ3sk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+the+quantitative+relationship+between+NRF2+and+SRXN1+through+semi-mechanistic+computational+modeling&rft.jtitle=Toxicology+%28Amsterdam%29&rft.au=Sharma%2C+Raju+Prasad&rft.au=Loonstra-Wolters%2C+Liesanne&rft.au=Ter+Braak%2C+Bas&rft.au=Niemeijer%2C+Marije&rft.date=2026-01-01&rft.eissn=1879-3185&rft.volume=519&rft.spage=154284&rft_id=info:doi/10.1016%2Fj.tox.2025.154284&rft_id=info%3Apmid%2F40972999&rft.externalDocID=40972999
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F0300483X%2Fcov200h.gif