Fundamental Limits of Weak Recovery with Applications to Phase Retrieval
In phase retrieval, we want to recover an unknown signal x ∈ C d from n quadratic measurements of the form y i = | ⟨ a i , x ⟩ | 2 + w i , where a i ∈ C d are known sensing vectors and w i is measurement noise. We ask the following weak recovery question: What is the minimum number of measurements n...
Gespeichert in:
| Veröffentlicht in: | Foundations of computational mathematics Jg. 19; H. 3; S. 703 - 773 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.06.2019
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1615-3375, 1615-3383 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In phase retrieval, we want to recover an unknown signal
x
∈
C
d
from
n
quadratic measurements of the form
y
i
=
|
⟨
a
i
,
x
⟩
|
2
+
w
i
, where
a
i
∈
C
d
are known sensing vectors and
w
i
is measurement noise. We ask the following
weak recovery
question: What is the minimum number of measurements
n
needed to produce an estimator
x
^
(
y
)
that is positively correlated with the signal
x
? We consider the case of Gaussian vectors
a
i
. We prove that—in the high-dimensional limit—a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For
n
≤
d
-
o
(
d
)
, no estimator can do significantly better than random and achieve a strictly positive correlation. For
n
≥
d
+
o
(
d
)
, a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theoretic arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper bound and lower bound generalize beyond phase retrieval to measurements
y
i
produced according to a generalized linear model. As a by-product of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm. |
|---|---|
| AbstractList | In phase retrieval, we want to recover an unknown signal x∈Cd from n quadratic measurements of the form yi=|⟨ai,x⟩|2+wi, where ai∈Cd are known sensing vectors and wi is measurement noise. We ask the following weak recovery question: What is the minimum number of measurements n needed to produce an estimator x^(y) that is positively correlated with the signal x? We consider the case of Gaussian vectors ai. We prove that—in the high-dimensional limit—a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For n≤d-o(d), no estimator can do significantly better than random and achieve a strictly positive correlation. For n≥d+o(d), a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theoretic arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper bound and lower bound generalize beyond phase retrieval to measurements yi produced according to a generalized linear model. As a by-product of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm. In phase retrieval, we want to recover an unknown signal x ∈ C d from n quadratic measurements of the form y i = | ⟨ a i , x ⟩ | 2 + w i , where a i ∈ C d are known sensing vectors and w i is measurement noise. We ask the following weak recovery question: What is the minimum number of measurements n needed to produce an estimator x ^ ( y ) that is positively correlated with the signal x ? We consider the case of Gaussian vectors a i . We prove that—in the high-dimensional limit—a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For n ≤ d - o ( d ) , no estimator can do significantly better than random and achieve a strictly positive correlation. For n ≥ d + o ( d ) , a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theoretic arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper bound and lower bound generalize beyond phase retrieval to measurements y i produced according to a generalized linear model. As a by-product of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm. |
| Author | Mondelli, Marco Montanari, Andrea |
| Author_xml | – sequence: 1 givenname: Marco surname: Mondelli fullname: Mondelli, Marco email: mondelli@stanford.edu organization: Department of Electrical Engineering, Stanford University – sequence: 2 givenname: Andrea surname: Montanari fullname: Montanari, Andrea organization: Department of Electrical Engineering, Stanford University, Department of Statistics, Stanford University |
| BookMark | eNp9kN1LwzAUxYNMcJv-Ab4FfK7mo-nH4xjOCQNFFB9Dmt66zK6tSTbpf29mRUHQp3sezu-ee88EjZq2AYTOKbmkhKRXjhJGsojQLMp5LqL-CI1pQkXEecZH3zoVJ2ji3IYQKnIaj9FysWtKtYXGqxqvzNZ4h9sKP4N6xQ-g2z3YHr8bv8azrquNVt60jcO-xfdr5SB4vDWwV_UpOq5U7eDsa07R0-L6cb6MVnc3t_PZKtKxED5iTBVlInJSckE0p1mqS6GKBICCKGPBKmBFwoqUFSJOocxyTjTjoIWGoghqii6GvZ1t33bgvNy0O9uESMkYj0VIiePgooNL29Y5C5XsrNkq20tK5KEwORQmQ2HyUJjsA5P-YrTxn_96q0z9L8kG0oWU5gXsz01_Qx_B4IJw |
| CitedBy_id | crossref_primary_10_1109_TSP_2019_2937282 crossref_primary_10_1109_TCI_2025_3527140 crossref_primary_10_1109_TIT_2020_2981910 crossref_primary_10_1109_TSP_2020_2975914 crossref_primary_10_1007_s10208_021_09531_x crossref_primary_10_1109_ACCESS_2019_2914278 crossref_primary_10_1137_20M1388061 crossref_primary_10_1038_s41467_023_36657_z crossref_primary_10_1088_1742_5468_adf4bc crossref_primary_10_1017_S0962492920000069 crossref_primary_10_1088_1361_6420_ac37fa crossref_primary_10_1088_1742_5468_ac9828 crossref_primary_10_1109_TIT_2022_3182018 crossref_primary_10_1109_TCI_2023_3236155 crossref_primary_10_1088_1742_5468_abc62c crossref_primary_10_1109_TIT_2021_3049172 crossref_primary_10_1109_MSP_2022_3219240 crossref_primary_10_1109_TIT_2020_3015173 crossref_primary_10_1088_1361_6420_acd8b8 crossref_primary_10_1088_1742_5468_adfa75 crossref_primary_10_1137_21M1450537 crossref_primary_10_1109_TIT_2023_3307553 crossref_primary_10_1109_TIT_2024_3455228 crossref_primary_10_1109_LAWP_2024_3489715 crossref_primary_10_1108_JBIM_02_2021_0119 crossref_primary_10_1109_TAP_2022_3145383 crossref_primary_10_1109_TSP_2020_3007967 crossref_primary_10_1038_s41467_020_19696_8 crossref_primary_10_1109_TSP_2020_2971192 crossref_primary_10_1007_s00041_020_09797_9 |
| Cites_doi | 10.1073/pnas.0909892106 10.1007/s10107-013-0738-9 10.1080/00018732.2016.1211393 10.1016/j.acha.2014.06.005 10.1016/j.jmva.2011.10.009 10.1364/JOSAA.7.000394 10.1109/TIT.2016.2556702 10.1214/14-AAP1010 10.1109/ALLERTON.2015.7447133 10.1109/ISIT.2011.6033942 10.1016/S0034-4877(06)80008-X 10.2977/prims/1195166573 10.1016/j.acha.2014.09.004 10.1109/ISIT.2016.7541382 10.1109/TIT.2016.2636204 10.1214/16-AOS1443 10.1016/j.acha.2005.07.001 10.1109/MSP.2014.2352673 10.1109/Allerton.2013.6736635 10.1109/TIT.2013.2274513 10.1017/CBO9781139020411 10.1109/TIT.2016.2517008 10.1016/j.acha.2013.10.002 10.1364/AO.21.002758 10.1002/cpa.21432 10.1145/2488608.2488693 10.1109/18.904562 10.1109/29.1613 10.1088/0266-5611/31/12/125008 10.1002/cpa.21638 10.1109/TIT.2015.2457942 10.1109/TCI.2017.2688923 10.1109/TIT.2011.2165823 10.1109/TIT.2010.2094817 10.1109/TIT.2015.2399924 10.1364/JOSAA.10.001046 10.1103/PhysRevE.84.066106 10.1006/jmva.1995.1058 10.1109/TSP.2014.2386294 10.1016/j.aim.2011.02.007 10.1070/SM1967v001n04ABEH001994 10.1214/15-AOS1397 10.1146/annurev.physchem.59.032607.093642 10.1109/ISIT.2013.6620308 10.1109/TIT.2011.2174612 10.1109/TIP.2011.2179306 10.1137/0707001 10.1137/151005099 10.1093/imaiai/iat004 10.1007/BF01245072 10.1007/s00440-015-0675-z 10.1109/TIT.2010.2046205 |
| ContentType | Journal Article |
| Copyright | SFoCM 2018 Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: SFoCM 2018 – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s10208-018-9395-y |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Mathematics Applied Sciences Computer Science |
| EISSN | 1615-3383 |
| EndPage | 773 |
| ExternalDocumentID | 10_1007_s10208_018_9395_y |
| GroupedDBID | -5D -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 203 29H 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BAPOH BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF I-F IAO IEA IJ- IKXTQ IOF ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MK~ N9A NPVJJ NQJWS NU0 O93 O9J OAM P2P P9R PF0 PQQKQ PT4 Q2X QOS R89 R9I ROL RPX RSV S16 S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z81 Z83 Z88 ZMTXR ~8M -Y2 1SB 2P1 2VQ 5VS AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGQPQ AHPBZ AHSBF AHWEU AIXLP AJBLW AMVHM ATHPR AYFIA CAG CITATION COF H13 HZ~ ICD IHE N2Q O9- S1Z 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c455t-22abd6590d350c3187cd5ab6ee1e5d452fe2b62b72b547ed8930c23ec5cebbc23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470144600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1615-3375 |
| IngestDate | Fri Jul 25 19:30:49 EDT 2025 Tue Nov 18 22:53:25 EST 2025 Sat Nov 29 06:41:14 EST 2025 Fri Feb 21 02:36:12 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Spectral initialization Second-moment method 91E40 68T05 Phase retrieval 68Q32 Mutual information Phase transition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c455t-22abd6590d350c3187cd5ab6ee1e5d452fe2b62b72b547ed8930c23ec5cebbc23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2234545544 |
| PQPubID | 43692 |
| PageCount | 71 |
| ParticipantIDs | proquest_journals_2234545544 crossref_primary_10_1007_s10208_018_9395_y crossref_citationtrail_10_1007_s10208_018_9395_y springer_journals_10_1007_s10208_018_9395_y |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | The Journal of the Society for the Foundations of Computational Mathematics |
| PublicationTitle | Foundations of computational mathematics |
| PublicationTitleAbbrev | Found Comput Math |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | BayatiMLelargeMMontanariAUniversality in polytope phase transitions and message passing algorithmsAnnals of Applied Probability2015252753822331375510.1214/14-AAP10101322.60207 MontanariARichardENon-negative principal component analysis: Message passing algorithms and sharp asymptoticsIEEE Trans. Inform. Theory201662314581484347226010.1109/TIT.2015.24579421359.62224 CaiTTLiXMaZOptimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flowThe Annals of Statistics201644522212251354644910.1214/16-AOS14431349.62019 WaltherAThe question of phase retrieval in opticsJournal of Modern Optics19631014149163589 Wang, G., Giannakis, G.B., Eldar, Y.C.: Solving systems of random quadratic equations via truncated amplitude flow (2016). arXiv:1605.08285 Dhifallah, O., Thrampoulidis, C., Lu, Y.M.: Phase retrieval via linear programming: Fundamental limits and algorithmic improvements. In: 55th Annual Allerton Conference on Communication, Control, and Computing (2017). arXiv:1710.05234 CorbettJVThe Pauli problem, state reconstruction and quantum-real numbersReports on Mathematical Physics20065715368220978110.1016/S0034-4877(06)80008-X1110.81007 YangFLuYMSbaizLVetterliMBits from photons: Oversampled image acquisition using binary Poisson statisticsIEEE Trans. Image Process.201221414211436295946010.1109/TIP.2011.21793061373.94849 KabashimaYKrzakalaFMézardMSakataAZdeborováLPhase transitions and sample complexity in bayes-optimal matrix factorizationIEEE Trans. Inform. Theory201662742284265351574810.1109/TIT.2016.25567021359.94109 Zhang, H., Liang, Y.: Reshaped Wirtinger Flow for solving quadratic system of equations. In: Advances in Neural Information Processing Systems, pp. 2622–2630 (2016) Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72, 457–483 (in Russian) (1967) Venkataramanan, R., Johnson, O.: Strong converse bounds for high-dimensional estimation (2017). arXiv:1706.04410 VoiculescuDLimit laws for random matrices and free productsInventiones Mathematicae1991104201220109405210.1007/BF012450720736.60007 Javanmard, A., Montanari, A.: State evolution for general approximate message passing algorithms, with applications to spatial coupling. Information and Inference pp. 115–144 (2013) Barbier, J., Macris, N., Dia, M., Krzakala, F.: Mutual information and optimality of approximate message-passing in random linear estimation (2017). arXiv:1311.2445 Neykov, M., Wang, Z., Liu, H.: Agnostic estimation for misspecified phase retrieval models. In: Advances in Neural Information Processing Systems, pp. 4089–4097 (2016) BayatiMMontanariAThe dynamics of message passing on dense graphs, with applications to compressed sensingIEEE Trans. Inform. Theory201157764785281028510.1109/TIT.2010.20948171366.94079 Mossel, E., Neeman, J., Sly, A.: Belief propagation, robust reconstruction and optimal recovery of block models. In: Conference on Learning Theory (COLT), pp. 356–370. Barcelona, Spain (2014) DonohoDLMontanariAHigh dimensional robust M-estimation: Asymptotic variance via approximate message passingProbability Theory and Related Fields20161663–4935969356804310.1007/s00440-015-0675-z1357.62220 UnserMEdenMMaximum likelihood estimation of linear signal parameters for Poisson processesIEEE Trans. Acoust., Speech, and Signal Process.198836694294510.1109/29.16130651.93063 Dhifallah, O., Lu, Y.M.: Fundamental limits of PhaseMax for phase retrieval: A replica analysis (2017). arXiv:1708.03355 Oymak, S., Thrampoulidis, C., Hassibi, B.: The squared-error of generalized LASSO: A precise analysis. In: Proc. of the 51st Annual Allerton Conf. on Commun., Control, and Computing (Allerton), pp. 1002–1009. Monticello, IL (2013) ShechtmanYEldarYCCohenOChapmanHNMiaoJSegevMPhase retrieval with application to optical imaging: a contemporary overviewIEEE Signal Processing Magazine20153238710910.1109/MSP.2014.2352673 CandèsEJLiXSoltanolkotabiMPhase retrieval from coded diffraction patternsApplied and Computational Harmonic Analysis2015392277299335201610.1016/j.acha.2014.09.0041329.78056 SilversteinJWChoiSIAnalysis of the limiting spectral distribution of large-dimensional random matricesJournal of Multivariate Analysis1995542295309134554110.1006/jmva.1995.10580872.60013 CandèsEJStrohmerTVoroninskiVPhaselift: Exact and stable signal recovery from magnitude measurements via convex programmingCommunications on Pure and Applied Mathematics201366812411274306995810.1002/cpa.214321335.94013 Silverstein, J.W., Bai, Z.: Spectral Analysis of Large Dimensional Random Matrices. (2nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{nd}$$\end{document} edition) Springer, (2010) DonohoDLMalekiAMontanariAMessage Passing Algorithms for Compressed SensingProceedings of the National Academy of Sciences2009106189141891910.1073/pnas.0909892106 SuWCandèsEJSlope is adaptive to unknown sparsity and asymptotically minimaxAnnals of Statistics201644310381068348595310.1214/15-AOS13971338.62032 Soltanolkotabi, M.: Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization (2017). arXiv:1702.06175 Chen, Y., Candès, E.J.: The projected power method: An efficient algorithm for joint alignment from pairwise differences (2016). arXiv:1609.05820 Lu, Y.M., Li, G.: Phase transitions of spectral initialization for high-dimensional nonconvex estimation (2017). arXiv:1702.06435 CandèsEJLiXSoltanolkotabiMPhase retrieval via Wirtinger flow: Theory and algorithmsIEEE Trans. Inform. Theory201561419852007333299310.1109/TIT.2015.23999241359.94069 ZdeborováLKrzakalaFStatistical physics of inference: Thresholds and algorithmsAdvances in Physics201665545355210.1080/00018732.2016.1211393 BalanRCasazzaPEdidinDOn signal reconstruction without phaseApplied and Computational Harmonic Analysis2006203345356222490210.1016/j.acha.2005.07.0011090.94006 Reeves, G., Pfister, H.D.: The replica-symmetric prediction for compressed sensing with Gaussian matrices is exact. In: Proc. of the IEEE Int. Symposium on Inform. Theory (ISIT), pp. 665–669. Barcelona, Spain (2016) Wei, K.: Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study. Inverse Problems 31(12) (2015) Belinschi, S.T., Bercovici, H., Capitaine, M., Février, M.: Outliers in the spectrum of large deformed unitarily invariant models (2015). arXiv:1412.4916 Fienup, J.R., Dainty, J.C.: Phase retrieval and image reconstruction for astronomy. Image Recovery: Theory and Application pp. 231–275 (1987) KeshavanRHMontanariAOhSMatrix completion from a few entriesIEEE Trans. Inform. Theory201056629802998268345210.1109/TIT.2010.20462051366.62111 Deshpande, Y., Montanari, A.: Finding hidden cliques of size N/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{N/e}$$\end{document} in nearly linear time. Foundations of Computational Mathematics pp. 1–60 (2013) BaiZYaoJOn sample eigenvalues in a generalized spiked population modelJournal of Multivariate Analysis2012106167177288768610.1016/j.jmva.2011.10.0091301.62049 ConcaAEdidinDHeringMVinzantCAn algebraic characterization of injectivity in phase retrievalApplied and Computational Harmonic Analysis2015382346356330367910.1016/j.acha.2014.06.0051354.42003 Li, G., Gu, Y., Lu, Y.M.: Phase retrieval using iterative projections: Dynamics in the large systems limit. In: Proc. of the 53rd Annual Allerton Conf. on Commun., Control, and Computing (Allerton), pp. 1114–1118. Monticello, IL (2015) Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. In: Advances in Neural Information Processing Systems, pp. 2796–2804 (2013) DecelleAKrzakalaFMooreCZdeborováLAsymptotic analysis of the stochastic block model for modular networks and its algorithmic applicationsPhysical Review E2011846066,10610.1103/PhysRevE.84.066106 Barbier, J., Krzakala, F., Macris, N., Miolane, L., Zdeborová, L.: Phase transitions, optimal errors and optimality of message-passing in generalized linear models (2017). arXiv:1708.03395 Arora, S., Ge, R., Ma, T., Moitra, A.: Simple, efficient, and neural algorithms for sparse coding. In: Conference on Learning Theory (COLT), pp. 113–149. Paris, France (2015) Wang, G., Giannakis, G.B.: Solving random systems of quadratic equations via truncated generalized gradient flow. In: Advances in Neural Information Processing Systems, pp. 568–576 (2016) DavisCKahanWMThe rotation of eigenvectors by a perturbation. IIISIAM Journal on Numerical Analysis19707114626445010.1137/07070010198.47201 RanganSGoyalVKRecursive consistent estimation with bounded noiseIEEE Trans. Inform. Theory2001471457464182039610.1109/18.9045621002.94517 Chen, Y., Candès, E.J.: Solving random quadratic systems of equations is nearly as easy as solving linear systems. In: Advances in Neural Information Processing Systems, pp. 739–747 (2015) GerchbergRWA practical algorithm for the determination of the phase from image and diffraction plane picturesOptik197235237246 SpeicherRFree convolution and the random sum of matricesPubl. Res. Inst. Math. Sci.199329731744124501510.2977/prims/11951665730795.46048 Duchi, J.C., Ruan, F.: Solving (most) of a set of quadratic equalities: Composite optimization for robust phase retrieval (2017). arXiv:1705.02356 Li, X., Ling, S., Strohmer, T., Wei, K.: Rapid, robust, and reliable blind deconvolution via nonconvex optimization (2016). arXiv:1606.04933 MiaoJIshikawaTShenQEarnestTExtending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexesAnnu. Rev. Phys. Chem.20085938741010.1146/annurev.physchem.59.032607.093642 FienupJRPhase retrieval algorithms: A comparisonApplied M Bayati (9395_CR9) 2011; 57 P Schniter (9395_CR64) 2015; 63 M Unser (9395_CR72) 1988; 36 F Benaych-Georges (9395_CR12) 2011; 227 M Bayati (9395_CR10) 2012; 58 DL Donoho (9395_CR32) 2016; 166 A Conca (9395_CR21) 2015; 38 9395_CR54 D Voiculescu (9395_CR74) 1991; 104 TT Cai (9395_CR13) 2016; 44 9395_CR50 L Demanet (9395_CR25) 2017; 3 9395_CR18 JV Corbett (9395_CR22) 2006; 57 Y Shechtman (9395_CR65) 2015; 32 EJ Candès (9395_CR14) 2015; 57 9395_CR59 9395_CR58 9395_CR57 9395_CR56 M Bayati (9395_CR8) 2015; 25 9395_CR11 9395_CR55 S Rangan (9395_CR62) 2001; 47 A Walther (9395_CR76) 1963; 10 RW Gerchberg (9395_CR36) 1972; 35 C Davis (9395_CR23) 1970; 7 EJ Candès (9395_CR17) 2013; 66 F Yang (9395_CR81) 2012; 21 9395_CR43 9395_CR41 9395_CR40 R Balan (9395_CR4) 2006; 20 J Miao (9395_CR51) 2008; 59 9395_CR83 9395_CR80 EJ Candès (9395_CR16) 2015; 61 EJ Candès (9395_CR15) 2015; 39 9395_CR49 9395_CR48 9395_CR47 R Speicher (9395_CR69) 1993; 29 Y Chen (9395_CR20) 2017; 70 9395_CR45 L Zdeborová (9395_CR82) 2016; 65 AS Bandeira (9395_CR5) 2014; 37 9395_CR6 9395_CR7 9395_CR1 9395_CR2 DL Donoho (9395_CR29) 2013; 59 9395_CR73 9395_CR71 RP Millane (9395_CR52) 1990; 7 9395_CR39 9395_CR37 9395_CR35 9395_CR79 9395_CR78 9395_CR33 9395_CR77 Z Bai (9395_CR3) 2012; 106 JW Silverstein (9395_CR67) 1995; 54 RW Harrison (9395_CR38) 1993; 10 I Waldspurger (9395_CR75) 2015; 149 9395_CR19 A Decelle (9395_CR24) 2011; 84 DL Donoho (9395_CR30) 2009; 106 JR Fienup (9395_CR34) 1982; 21 DL Donoho (9395_CR31) 2011; 57 Y Plan (9395_CR60) 2016; 62 A Montanari (9395_CR53) 2016; 62 9395_CR63 9395_CR61 Y Kabashima (9395_CR42) 2016; 62 RH Keshavan (9395_CR44) 2010; 56 9395_CR28 9395_CR27 9395_CR26 W Su (9395_CR70) 2016; 44 9395_CR68 K Lee (9395_CR46) 2017; 63 9395_CR66 |
| References_xml | – reference: Arora, S., Ge, R., Ma, T., Moitra, A.: Simple, efficient, and neural algorithms for sparse coding. In: Conference on Learning Theory (COLT), pp. 113–149. Paris, France (2015) – reference: Dhifallah, O., Lu, Y.M.: Fundamental limits of PhaseMax for phase retrieval: A replica analysis (2017). arXiv:1708.03355 – reference: Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72, 457–483 (in Russian) (1967) – reference: SchniterPRanganSCompressive phase retrieval via generalized approximate message passingIEEE Transactions on Signal Processing201563410431055331163510.1109/TSP.2014.23862941394.94506 – reference: Soltanolkotabi, M.: Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization (2017). arXiv:1702.06175 – reference: Oymak, S., Thrampoulidis, C., Hassibi, B.: The squared-error of generalized LASSO: A precise analysis. In: Proc. of the 51st Annual Allerton Conf. on Commun., Control, and Computing (Allerton), pp. 1002–1009. Monticello, IL (2013) – reference: Belinschi, S.T., Bercovici, H., Capitaine, M., Février, M.: Outliers in the spectrum of large deformed unitarily invariant models (2015). arXiv:1412.4916 – reference: Li, G., Gu, Y., Lu, Y.M.: Phase retrieval using iterative projections: Dynamics in the large systems limit. In: Proc. of the 53rd Annual Allerton Conf. on Commun., Control, and Computing (Allerton), pp. 1114–1118. Monticello, IL (2015) – reference: MillaneRPPhase retrieval in crystallography and opticsJ. Optical Soc. America A19907339441110.1364/JOSAA.7.000394 – reference: RanganSGoyalVKRecursive consistent estimation with bounded noiseIEEE Trans. Inform. Theory2001471457464182039610.1109/18.9045621002.94517 – reference: VoiculescuDLimit laws for random matrices and free productsInventiones Mathematicae1991104201220109405210.1007/BF012450720736.60007 – reference: DonohoDLMalekiAMontanariAMessage Passing Algorithms for Compressed SensingProceedings of the National Academy of Sciences2009106189141891910.1073/pnas.0909892106 – reference: Karoui, N.E.: Asymptotic behavior of unregularized and ridge-regularized high-dimensional robust regression estimators: Rigorous results (2013). arXiv:1311.2445 – reference: Mossel, E., Xu, J.: Density evolution in the degree-correlated stochastic block model. In: Conference on Learning Theory (COLT), pp. 1319–1356. New York, NY (2016) – reference: Barbier, J., Macris, N., Dia, M., Krzakala, F.: Mutual information and optimality of approximate message-passing in random linear estimation (2017). arXiv:1311.2445 – reference: Mossel, E., Neeman, J., Sly, A.: Belief propagation, robust reconstruction and optimal recovery of block models. In: Conference on Learning Theory (COLT), pp. 356–370. Barcelona, Spain (2014) – reference: BayatiMMontanariAThe LASSO risk for Gaussian matricesIEEE Trans. Inform. Theory201258419972017295131210.1109/TIT.2011.21746121365.62196 – reference: Chen, Y., Candès, E.J.: The projected power method: An efficient algorithm for joint alignment from pairwise differences (2016). arXiv:1609.05820 – reference: DemanetLJugnonVConvex recovery from interferometric measurementsIEEE Trans. Computational Imaging201732282295365326310.1109/TCI.2017.2688923 – reference: DonohoDLJavanmardAMontanariAInformation-theoretically optimal compressed sensing via spatial coupling and approximate message passingIEEE Trans. Inform. Theory2013591174347464312465410.1109/TIT.2013.22745131364.94120 – reference: BayatiMMontanariAThe dynamics of message passing on dense graphs, with applications to compressed sensingIEEE Trans. Inform. Theory201157764785281028510.1109/TIT.2010.20948171366.94079 – reference: CorbettJVThe Pauli problem, state reconstruction and quantum-real numbersReports on Mathematical Physics20065715368220978110.1016/S0034-4877(06)80008-X1110.81007 – reference: Li, X., Ling, S., Strohmer, T., Wei, K.: Rapid, robust, and reliable blind deconvolution via nonconvex optimization (2016). arXiv:1606.04933 – reference: CandèsEJLiXSoltanolkotabiMPhase retrieval from coded diffraction patternsApplied and Computational Harmonic Analysis2015392277299335201610.1016/j.acha.2014.09.0041329.78056 – reference: Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. In: Advances in Neural Information Processing Systems, pp. 2796–2804 (2013) – reference: SilversteinJWChoiSIAnalysis of the limiting spectral distribution of large-dimensional random matricesJournal of Multivariate Analysis1995542295309134554110.1006/jmva.1995.10580872.60013 – reference: PlanYVershyninRThe generalized lasso with non-linear observationsIEEE Transactions on information theory201662315281537347226410.1109/TIT.2016.25170081359.94153 – reference: Reeves, G., Pfister, H.D.: The replica-symmetric prediction for compressed sensing with Gaussian matrices is exact. In: Proc. of the IEEE Int. Symposium on Inform. Theory (ISIT), pp. 665–669. Barcelona, Spain (2016) – reference: CandèsEJLiXSoltanolkotabiMPhase retrieval via Wirtinger flow: Theory and algorithmsIEEE Trans. Inform. Theory201561419852007333299310.1109/TIT.2015.23999241359.94069 – reference: DavisCKahanWMThe rotation of eigenvectors by a perturbation. IIISIAM Journal on Numerical Analysis19707114626445010.1137/07070010198.47201 – reference: KeshavanRHMontanariAOhSMatrix completion from a few entriesIEEE Trans. Inform. Theory201056629802998268345210.1109/TIT.2010.20462051366.62111 – reference: GerchbergRWA practical algorithm for the determination of the phase from image and diffraction plane picturesOptik197235237246 – reference: WaldspurgerId’AspremontAMallatSPhase recovery, maxcut and complex semidefinite programmingMathematical Programming20151491–24781330045610.1007/s10107-013-0738-91329.94018 – reference: Dhifallah, O., Thrampoulidis, C., Lu, Y.M.: Phase retrieval via linear programming: Fundamental limits and algorithmic improvements. In: 55th Annual Allerton Conference on Communication, Control, and Computing (2017). arXiv:1710.05234 – reference: Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press (2012) – reference: SuWCandèsEJSlope is adaptive to unknown sparsity and asymptotically minimaxAnnals of Statistics201644310381068348595310.1214/15-AOS13971338.62032 – reference: Duchi, J.C., Ruan, F.: Solving (most) of a set of quadratic equalities: Composite optimization for robust phase retrieval (2017). arXiv:1705.02356 – reference: BandeiraASCahillJMixonDGNelsonAASaving phase: Injectivity and stability for phase retrievalApplied and Computational Harmonic Analysis2014371106125320230410.1016/j.acha.2013.10.0021305.90330 – reference: Wang, G., Giannakis, G.B., Saad, Y., Chen, J.: Solving almost all systems of random quadratic equations (2017). arXiv:1705.10407 – reference: ZdeborováLKrzakalaFStatistical physics of inference: Thresholds and algorithmsAdvances in Physics201665545355210.1080/00018732.2016.1211393 – reference: Krzakala, F., Mézard, M., Zdeborová, L.: Phase diagram and approximate message passing for blind calibration and dictionary learning. In: Proc. of the IEEE Int. Symposium on Inform. Theory (ISIT), pp. 659–663. Istanbul, Turkey (2013) – reference: Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimization. In: Proc. of the 45th Ann. ACM Symp. on Theory of Computing (STOC), pp. 665–674. ACM, Palo Alto, CA (2013) – reference: Montanari, A., Venkataramanan, R.: Estimation of low-rank matrices via approximate message passing (2017). arXiv:1711.01682 – reference: WaltherAThe question of phase retrieval in opticsJournal of Modern Optics19631014149163589 – reference: Rangan, S.: Generalized Approximate Message Passing for Estimation with Random Linear Mixing. In: Proc. of the IEEE Int. Symposium on Inform. Theory (ISIT), pp. 2168–2172. St. Petersburg (2011) – reference: CandèsEJStrohmerTVoroninskiVPhaselift: Exact and stable signal recovery from magnitude measurements via convex programmingCommunications on Pure and Applied Mathematics201366812411274306995810.1002/cpa.214321335.94013 – reference: FienupJRPhase retrieval algorithms: A comparisonApplied Optics198221152758276910.1364/AO.21.002758 – reference: BaiZYaoJOn sample eigenvalues in a generalized spiked population modelJournal of Multivariate Analysis2012106167177288768610.1016/j.jmva.2011.10.0091301.62049 – reference: BayatiMLelargeMMontanariAUniversality in polytope phase transitions and message passing algorithmsAnnals of Applied Probability2015252753822331375510.1214/14-AAP10101322.60207 – reference: Goldstein, T., Studer, C.: Phasemax: Convex phase retrieval via basis pursuit (2016). arXiv:1610.07531 – reference: Barbier, J., Krzakala, F., Macris, N., Miolane, L., Zdeborová, L.: Phase transitions, optimal errors and optimality of message-passing in generalized linear models (2017). arXiv:1708.03395 – reference: Thrampoulidis, C., Abbasi, E., Hassibi, B.: Lasso with non-linear measurements is equivalent to one with linear measurements. In: Advances in Neural Information Processing Systems, pp. 3420–3428 (2015) – reference: Zhang, H., Liang, Y.: Reshaped Wirtinger Flow for solving quadratic system of equations. In: Advances in Neural Information Processing Systems, pp. 2622–2630 (2016) – reference: Silverstein, J.W., Bai, Z.: Spectral Analysis of Large Dimensional Random Matrices. (2nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{nd}$$\end{document} edition) Springer, (2010) – reference: DonohoDLMontanariAHigh dimensional robust M-estimation: Asymptotic variance via approximate message passingProbability Theory and Related Fields20161663–4935969356804310.1007/s00440-015-0675-z1357.62220 – reference: MontanariARichardENon-negative principal component analysis: Message passing algorithms and sharp asymptoticsIEEE Trans. Inform. Theory201662314581484347226010.1109/TIT.2015.24579421359.62224 – reference: Benaych-GeorgesFNadakuditiRRThe eigenvalues and eigenvectors of finite, low rank perturbations of large random matricesAdvances in Mathematics20112271494521278220110.1016/j.aim.2011.02.0071226.15023 – reference: Chen, Y., Candès, E.J.: Solving random quadratic systems of equations is nearly as easy as solving linear systems. In: Advances in Neural Information Processing Systems, pp. 739–747 (2015) – reference: Lu, Y.M., Li, G.: Phase transitions of spectral initialization for high-dimensional nonconvex estimation (2017). arXiv:1702.06435 – reference: ShechtmanYEldarYCCohenOChapmanHNMiaoJSegevMPhase retrieval with application to optical imaging: a contemporary overviewIEEE Signal Processing Magazine20153238710910.1109/MSP.2014.2352673 – reference: CandèsEJEldarYCStrohmerTVoroninskiVPhase retrieval via matrix completionSIAM Review2015572225251334534210.1137/1510050991344.49057 – reference: CaiTTLiXMaZOptimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flowThe Annals of Statistics201644522212251354644910.1214/16-AOS14431349.62019 – reference: UnserMEdenMMaximum likelihood estimation of linear signal parameters for Poisson processesIEEE Trans. Acoust., Speech, and Signal Process.198836694294510.1109/29.16130651.93063 – reference: DecelleAKrzakalaFMooreCZdeborováLAsymptotic analysis of the stochastic block model for modular networks and its algorithmic applicationsPhysical Review E2011846066,10610.1103/PhysRevE.84.066106 – reference: Venkataramanan, R., Johnson, O.: Strong converse bounds for high-dimensional estimation (2017). arXiv:1706.04410 – reference: Fienup, J.R., Dainty, J.C.: Phase retrieval and image reconstruction for astronomy. Image Recovery: Theory and Application pp. 231–275 (1987) – reference: LeeKLiYJungeMBreslerYBlind recovery of sparse signals from subsampled convolutionIEEE Trans. Inform. Theory2017632802821360464310.1109/TIT.2016.26362041364.94261 – reference: DonohoDLMalekiAMontanariAThe noise-sensitivity phase transition in compressed sensingIEEE Trans. Inform. Theory2011571069206941288227110.1109/TIT.2011.21658231365.94094 – reference: HarrisonRWPhase problem in crystallographyJ. Optical Soc. America A19931051046105510.1364/JOSAA.10.001046 – reference: ChenYCandèsEJSolving random quadratic systems of equations is nearly as easy as solving linear systemsCommunications on Pure and Applied Mathematics20177008220883362887710.1002/cpa.216381379.90024 – reference: ConcaAEdidinDHeringMVinzantCAn algebraic characterization of injectivity in phase retrievalApplied and Computational Harmonic Analysis2015382346356330367910.1016/j.acha.2014.06.0051354.42003 – reference: SpeicherRFree convolution and the random sum of matricesPubl. Res. Inst. Math. Sci.199329731744124501510.2977/prims/11951665730795.46048 – reference: YangFLuYMSbaizLVetterliMBits from photons: Oversampled image acquisition using binary Poisson statisticsIEEE Trans. Image Process.201221414211436295946010.1109/TIP.2011.21793061373.94849 – reference: KabashimaYKrzakalaFMézardMSakataAZdeborováLPhase transitions and sample complexity in bayes-optimal matrix factorizationIEEE Trans. Inform. Theory201662742284265351574810.1109/TIT.2016.25567021359.94109 – reference: MiaoJIshikawaTShenQEarnestTExtending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexesAnnu. Rev. Phys. Chem.20085938741010.1146/annurev.physchem.59.032607.093642 – reference: Javanmard, A., Montanari, A.: State evolution for general approximate message passing algorithms, with applications to spatial coupling. Information and Inference pp. 115–144 (2013) – reference: Neykov, M., Wang, Z., Liu, H.: Agnostic estimation for misspecified phase retrieval models. In: Advances in Neural Information Processing Systems, pp. 4089–4097 (2016) – reference: BalanRCasazzaPEdidinDOn signal reconstruction without phaseApplied and Computational Harmonic Analysis2006203345356222490210.1016/j.acha.2005.07.0011090.94006 – reference: Wei, K.: Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study. Inverse Problems 31(12) (2015) – reference: Bahmani, S., Romberg, J.: Phase retrieval meets statistical learning theory: A flexible convex relaxation. In: Proc. of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 252–260. Fort Lauderdale, FL (2017) – reference: Deshpande, Y., Montanari, A.: Finding hidden cliques of size N/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{N/e}$$\end{document} in nearly linear time. Foundations of Computational Mathematics pp. 1–60 (2013) – reference: Wang, G., Giannakis, G.B.: Solving random systems of quadratic equations via truncated generalized gradient flow. In: Advances in Neural Information Processing Systems, pp. 568–576 (2016) – reference: Wang, G., Giannakis, G.B., Eldar, Y.C.: Solving systems of random quadratic equations via truncated amplitude flow (2016). arXiv:1605.08285 – volume: 106 start-page: 18914 year: 2009 ident: 9395_CR30 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0909892106 – ident: 9395_CR48 – ident: 9395_CR73 – ident: 9395_CR19 – volume: 149 start-page: 47 issue: 1–2 year: 2015 ident: 9395_CR75 publication-title: Mathematical Programming doi: 10.1007/s10107-013-0738-9 – volume: 65 start-page: 453 issue: 5 year: 2016 ident: 9395_CR82 publication-title: Advances in Physics doi: 10.1080/00018732.2016.1211393 – volume: 38 start-page: 346 issue: 2 year: 2015 ident: 9395_CR21 publication-title: Applied and Computational Harmonic Analysis doi: 10.1016/j.acha.2014.06.005 – volume: 106 start-page: 167 year: 2012 ident: 9395_CR3 publication-title: Journal of Multivariate Analysis doi: 10.1016/j.jmva.2011.10.009 – ident: 9395_CR57 – ident: 9395_CR83 – ident: 9395_CR11 – volume: 7 start-page: 394 issue: 3 year: 1990 ident: 9395_CR52 publication-title: J. Optical Soc. America A doi: 10.1364/JOSAA.7.000394 – volume: 62 start-page: 4228 issue: 7 year: 2016 ident: 9395_CR42 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2016.2556702 – volume: 25 start-page: 753 issue: 2 year: 2015 ident: 9395_CR8 publication-title: Annals of Applied Probability doi: 10.1214/14-AAP1010 – ident: 9395_CR28 – ident: 9395_CR47 doi: 10.1109/ALLERTON.2015.7447133 – ident: 9395_CR61 doi: 10.1109/ISIT.2011.6033942 – volume: 57 start-page: 53 issue: 1 year: 2006 ident: 9395_CR22 publication-title: Reports on Mathematical Physics doi: 10.1016/S0034-4877(06)80008-X – ident: 9395_CR68 – volume: 29 start-page: 731 year: 1993 ident: 9395_CR69 publication-title: Publ. Res. Inst. Math. Sci. doi: 10.2977/prims/1195166573 – volume: 39 start-page: 277 issue: 2 year: 2015 ident: 9395_CR15 publication-title: Applied and Computational Harmonic Analysis doi: 10.1016/j.acha.2014.09.004 – ident: 9395_CR63 doi: 10.1109/ISIT.2016.7541382 – ident: 9395_CR43 – ident: 9395_CR26 – volume: 63 start-page: 802 issue: 2 year: 2017 ident: 9395_CR46 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2016.2636204 – volume: 44 start-page: 2221 issue: 5 year: 2016 ident: 9395_CR13 publication-title: The Annals of Statistics doi: 10.1214/16-AOS1443 – ident: 9395_CR33 – ident: 9395_CR58 – volume: 20 start-page: 345 issue: 3 year: 2006 ident: 9395_CR4 publication-title: Applied and Computational Harmonic Analysis doi: 10.1016/j.acha.2005.07.001 – volume: 32 start-page: 87 issue: 3 year: 2015 ident: 9395_CR65 publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2014.2352673 – ident: 9395_CR59 doi: 10.1109/Allerton.2013.6736635 – volume: 59 start-page: 7434 issue: 11 year: 2013 ident: 9395_CR29 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2013.2274513 – ident: 9395_CR37 – ident: 9395_CR54 – ident: 9395_CR27 – ident: 9395_CR39 doi: 10.1017/CBO9781139020411 – volume: 62 start-page: 1528 issue: 3 year: 2016 ident: 9395_CR60 publication-title: IEEE Transactions on information theory doi: 10.1109/TIT.2016.2517008 – ident: 9395_CR7 – volume: 37 start-page: 106 issue: 1 year: 2014 ident: 9395_CR5 publication-title: Applied and Computational Harmonic Analysis doi: 10.1016/j.acha.2013.10.002 – volume: 21 start-page: 2758 issue: 15 year: 1982 ident: 9395_CR34 publication-title: Applied Optics doi: 10.1364/AO.21.002758 – ident: 9395_CR79 – volume: 66 start-page: 1241 issue: 8 year: 2013 ident: 9395_CR17 publication-title: Communications on Pure and Applied Mathematics doi: 10.1002/cpa.21432 – ident: 9395_CR40 doi: 10.1145/2488608.2488693 – volume: 47 start-page: 457 issue: 1 year: 2001 ident: 9395_CR62 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/18.904562 – volume: 36 start-page: 942 issue: 6 year: 1988 ident: 9395_CR72 publication-title: IEEE Trans. Acoust., Speech, and Signal Process. doi: 10.1109/29.1613 – ident: 9395_CR2 – ident: 9395_CR80 doi: 10.1088/0266-5611/31/12/125008 – ident: 9395_CR71 – volume: 70 start-page: 0822 year: 2017 ident: 9395_CR20 publication-title: Communications on Pure and Applied Mathematics doi: 10.1002/cpa.21638 – volume: 62 start-page: 1458 issue: 3 year: 2016 ident: 9395_CR53 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2015.2457942 – volume: 3 start-page: 282 issue: 2 year: 2017 ident: 9395_CR25 publication-title: IEEE Trans. Computational Imaging doi: 10.1109/TCI.2017.2688923 – ident: 9395_CR55 – volume: 57 start-page: 6920 issue: 10 year: 2011 ident: 9395_CR31 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2011.2165823 – volume: 57 start-page: 764 year: 2011 ident: 9395_CR9 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2010.2094817 – volume: 61 start-page: 1985 issue: 4 year: 2015 ident: 9395_CR16 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2015.2399924 – volume: 10 start-page: 1046 issue: 5 year: 1993 ident: 9395_CR38 publication-title: J. Optical Soc. America A doi: 10.1364/JOSAA.10.001046 – ident: 9395_CR6 – ident: 9395_CR78 – volume: 84 start-page: 066,106 issue: 6 year: 2011 ident: 9395_CR24 publication-title: Physical Review E doi: 10.1103/PhysRevE.84.066106 – volume: 54 start-page: 295 issue: 2 year: 1995 ident: 9395_CR67 publication-title: Journal of Multivariate Analysis doi: 10.1006/jmva.1995.1058 – volume: 63 start-page: 1043 issue: 4 year: 2015 ident: 9395_CR64 publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2014.2386294 – volume: 227 start-page: 494 issue: 1 year: 2011 ident: 9395_CR12 publication-title: Advances in Mathematics doi: 10.1016/j.aim.2011.02.007 – ident: 9395_CR50 doi: 10.1070/SM1967v001n04ABEH001994 – ident: 9395_CR18 – ident: 9395_CR1 – ident: 9395_CR49 – ident: 9395_CR66 – volume: 10 start-page: 41 issue: 1 year: 1963 ident: 9395_CR76 publication-title: Journal of Modern Optics – volume: 44 start-page: 1038 issue: 3 year: 2016 ident: 9395_CR70 publication-title: Annals of Statistics doi: 10.1214/15-AOS1397 – volume: 59 start-page: 387 year: 2008 ident: 9395_CR51 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.59.032607.093642 – ident: 9395_CR45 doi: 10.1109/ISIT.2013.6620308 – volume: 35 start-page: 237 year: 1972 ident: 9395_CR36 publication-title: Optik – volume: 58 start-page: 1997 issue: 4 year: 2012 ident: 9395_CR10 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2011.2174612 – volume: 21 start-page: 1421 issue: 4 year: 2012 ident: 9395_CR81 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2011.2179306 – volume: 7 start-page: 1 issue: 1 year: 1970 ident: 9395_CR23 publication-title: SIAM Journal on Numerical Analysis doi: 10.1137/0707001 – volume: 57 start-page: 225 issue: 2 year: 2015 ident: 9395_CR14 publication-title: SIAM Review doi: 10.1137/151005099 – ident: 9395_CR35 – ident: 9395_CR41 doi: 10.1093/imaiai/iat004 – ident: 9395_CR56 – volume: 104 start-page: 201 year: 1991 ident: 9395_CR74 publication-title: Inventiones Mathematicae doi: 10.1007/BF01245072 – ident: 9395_CR77 – volume: 166 start-page: 935 issue: 3–4 year: 2016 ident: 9395_CR32 publication-title: Probability Theory and Related Fields doi: 10.1007/s00440-015-0675-z – volume: 56 start-page: 2980 issue: 6 year: 2010 ident: 9395_CR44 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2010.2046205 |
| SSID | ssj0015914 ssib031263371 |
| Score | 2.475998 |
| Snippet | In phase retrieval, we want to recover an unknown signal
x
∈
C
d
from
n
quadratic measurements of the form
y
i
=
|
⟨
a
i
,
x
⟩
|
2
+
w
i
, where
a
i
∈
C
d
are... In phase retrieval, we want to recover an unknown signal x∈Cd from n quadratic measurements of the form yi=|⟨ai,x⟩|2+wi, where ai∈Cd are known sensing vectors... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 703 |
| SubjectTerms | Algorithms Applications of Mathematics Computational geometry Computer Science Computer simulation Convexity Correlation Covariance matrix Economics Eigenvectors Empirical analysis Generalized linear models Information theory Linear and Multilinear Algebras Lower bounds Math Applications in Computer Science Mathematics Mathematics and Statistics Matrix Theory Message passing Noise measurement Numerical Analysis Optimization Phase retrieval Phase transitions Recovery Spectra Spectral methods Statistical models Upper bounds |
| Title | Fundamental Limits of Weak Recovery with Applications to Phase Retrieval |
| URI | https://link.springer.com/article/10.1007/s10208-018-9395-y https://www.proquest.com/docview/2234545544 |
| Volume | 19 |
| WOSCitedRecordID | wos000470144600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary Journals customDbUrl: eissn: 1615-3383 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015914 issn: 1615-3375 databaseCode: RSV dateStart: 20010101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBalWsVtmDJyUQ95HHsYilF0vx2VvIPoqitNJEof_e2STbVlFBb2F3MyyzO5lvMzvzAZykgUqjOOIetUSAnKrIkz4delHMfW0YOlAmC7KJsNeLBoO4X-VxZ-62uwtJFl_qhWQ3Wly8QgNlKHe6DCvo7SLL13B9cz8LHYi4KOhtkYzHWChcKPM7EZ-d0RxhfgmKFr6mU__XLLdgs4KWpF3uhW1YMqMG1CuYSSojzrDJMTm4tgasufxk7N64mlVyzXag27GpIiUDACmyoTIyHpIHkz4Te3RFS5gS-zOXtBdC4SQfk_4jOkgcYxm7cDvvwl3n8vai61XsC57iQuQepanUgYh9zYSv0PRDpUUqA2POjdBc0KGhMqAypFLw0GgEPr6izCihjJT4tAe10Xhk9oGEKipITfSQc65lLHWkOMezkuAmZVo0wXfLkKiqNLllyHhJ5kWVrVoTVGti1ZpMm3A6e-W1rMvx2-CWW9ukMtEsQVyEU0A0xZtw5tZy3v2jsIM_jT6EdYRYcXm5rAW1fPJmjmBVvedP2eS42Lkf0Q_oAA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CtMHp1NxOjUPPimFmiZr-zjEMXEbQ6furTQ_hqJsslZh_72XrtmmqKBvJUmPcMn1vvRy9wGcxDUZB2HAHGqIABmVgSNcOnCCkLlKe-hAPZGRTfidTtDvh908jzuxt91tSDL7Ui8ku9Hs4hUaqIdyJ8uwwtBhmYL5N7f3s9ABD7OC3gbJOJ7ncxvK_E7EZ2c0R5hfgqKZr2mU_jXLTdjIoSWpT_fCFizpYRlKOcwkuREn2GSZHGxbGYo2Pxm719uzSq7JNjQbJlVkygBAsmyohIwG5EHHz8QcXdESJsT8zCX1hVA4SUek-4gOEscYxi7czjtw17jsXTSdnH3BkYzz1KE0FqrGQ1d53JVo-r5UPBY1rc81V4zTgaaiRoVPBWe-Vgh8XEk9LbnUQuDTLhSGo6HeA-LLICM1UQPGmBKhUIFkDM9KnOnYU7wCrl2GSOalyQ1Dxks0L6ps1BqhWiOj1mhSgdPZK6_Tuhy_Da7atY1yE00ixEU4BURTrAJndi3n3T8K2__T6GMoNnvtVtS66lwfwBrCrXB60awKhXT8pg9hVb6nT8n4KNvFH7jp6uQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFC8PXqbidGoefFLKapqs7eNQx0QdA297K82lKMomtgr79560zaaigvhWkjQNSU7Pl5zLB7AfN2UchAFzqCECZFQGjnBp4gQhc5X2UIF6Iieb8LvdoN8PeyXPaWq93a1JsohpMFmaBlnjWSWND4FvNHfCQmH18BujaZhhxo_eHNevbsdmBB7myb0NqnE8z-fWrPldF58V0wRtfjGQ5nqnvfzvEa_AUgk5SavYI6swpQdVWC7hJymFO8Uiy_Bgy6owb-OWsXrxcpzhNV2DTtuEkBTMACSPkkrJMCF3On4k5kiLEjIi5pKXtD6YyEk2JL17VJzYxjB54TZfh5v26fVxxylZGRzJOM8cSmOhmjx0lcddib8EXyoei6bWR5orxmmiqWhS4VPBma8VAiJXUk9LLrUQ-LQBlcFwoDeB-DLIyU5UwhhTIhQqkIzhGYozHXuK18C1SxLJMmW5Yc54iibJls20RjitkZnWaFSDg_Erz0W-jt8a1-06R6XophHiJRwCoixWg0O7rpPqHzvb-lPrPZjrnbSji7Pu-TYsIAoLC_-zOlSyl1e9A7PyLXtIX3bzDf0OLK3zyA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+Limits+of+Weak+Recovery+with+Applications+to+Phase+Retrieval&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Mondelli%2C+Marco&rft.au=Montanari%2C+Andrea&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=19&rft.issue=3&rft.spage=703&rft.epage=773&rft_id=info:doi/10.1007%2Fs10208-018-9395-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon |