Fundamental Limits of Weak Recovery with Applications to Phase Retrieval

In phase retrieval, we want to recover an unknown signal x ∈ C d from n quadratic measurements of the form y i = | ⟨ a i , x ⟩ | 2 + w i , where a i ∈ C d are known sensing vectors and w i is measurement noise. We ask the following weak recovery question: What is the minimum number of measurements n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics Jg. 19; H. 3; S. 703 - 773
Hauptverfasser: Mondelli, Marco, Montanari, Andrea
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2019
Springer Nature B.V
Schlagworte:
ISSN:1615-3375, 1615-3383
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In phase retrieval, we want to recover an unknown signal x ∈ C d from n quadratic measurements of the form y i = | ⟨ a i , x ⟩ | 2 + w i , where a i ∈ C d are known sensing vectors and w i is measurement noise. We ask the following weak recovery question: What is the minimum number of measurements n needed to produce an estimator x ^ ( y ) that is positively correlated with the signal x ? We consider the case of Gaussian vectors a i . We prove that—in the high-dimensional limit—a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For n ≤ d - o ( d ) , no estimator can do significantly better than random and achieve a strictly positive correlation. For n ≥ d + o ( d ) , a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theoretic arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper bound and lower bound generalize beyond phase retrieval to measurements y i produced according to a generalized linear model. As a by-product of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm.
AbstractList In phase retrieval, we want to recover an unknown signal x∈Cd from n quadratic measurements of the form yi=|⟨ai,x⟩|2+wi, where ai∈Cd are known sensing vectors and wi is measurement noise. We ask the following weak recovery question: What is the minimum number of measurements n needed to produce an estimator x^(y) that is positively correlated with the signal x? We consider the case of Gaussian vectors ai. We prove that—in the high-dimensional limit—a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For n≤d-o(d), no estimator can do significantly better than random and achieve a strictly positive correlation. For n≥d+o(d), a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theoretic arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper bound and lower bound generalize beyond phase retrieval to measurements yi produced according to a generalized linear model. As a by-product of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm.
In phase retrieval, we want to recover an unknown signal x ∈ C d from n quadratic measurements of the form y i = | ⟨ a i , x ⟩ | 2 + w i , where a i ∈ C d are known sensing vectors and w i is measurement noise. We ask the following weak recovery question: What is the minimum number of measurements n needed to produce an estimator x ^ ( y ) that is positively correlated with the signal x ? We consider the case of Gaussian vectors a i . We prove that—in the high-dimensional limit—a sharp phase transition takes place, and we locate the threshold in the regime of vanishingly small noise. For n ≤ d - o ( d ) , no estimator can do significantly better than random and achieve a strictly positive correlation. For n ≥ d + o ( d ) , a simple spectral estimator achieves a positive correlation. Surprisingly, numerical simulations with the same spectral estimator demonstrate promising performance with realistic sensing matrices. Spectral methods are used to initialize non-convex optimization algorithms in phase retrieval, and our approach can boost the performance in this setting as well. Our impossibility result is based on classical information-theoretic arguments. The spectral algorithm computes the leading eigenvector of a weighted empirical covariance matrix. We obtain a sharp characterization of the spectral properties of this random matrix using tools from free probability and generalizing a recent result by Lu and Li. Both the upper bound and lower bound generalize beyond phase retrieval to measurements y i produced according to a generalized linear model. As a by-product of our analysis, we compare the threshold of the proposed spectral method with that of a message passing algorithm.
Author Mondelli, Marco
Montanari, Andrea
Author_xml – sequence: 1
  givenname: Marco
  surname: Mondelli
  fullname: Mondelli, Marco
  email: mondelli@stanford.edu
  organization: Department of Electrical Engineering, Stanford University
– sequence: 2
  givenname: Andrea
  surname: Montanari
  fullname: Montanari, Andrea
  organization: Department of Electrical Engineering, Stanford University, Department of Statistics, Stanford University
BookMark eNp9kN1LwzAUxYNMcJv-Ab4FfK7mo-nH4xjOCQNFFB9Dmt66zK6tSTbpf29mRUHQp3sezu-ee88EjZq2AYTOKbmkhKRXjhJGsojQLMp5LqL-CI1pQkXEecZH3zoVJ2ji3IYQKnIaj9FysWtKtYXGqxqvzNZ4h9sKP4N6xQ-g2z3YHr8bv8azrquNVt60jcO-xfdr5SB4vDWwV_UpOq5U7eDsa07R0-L6cb6MVnc3t_PZKtKxED5iTBVlInJSckE0p1mqS6GKBICCKGPBKmBFwoqUFSJOocxyTjTjoIWGoghqii6GvZ1t33bgvNy0O9uESMkYj0VIiePgooNL29Y5C5XsrNkq20tK5KEwORQmQ2HyUJjsA5P-YrTxn_96q0z9L8kG0oWU5gXsz01_Qx_B4IJw
CitedBy_id crossref_primary_10_1109_TSP_2019_2937282
crossref_primary_10_1109_TCI_2025_3527140
crossref_primary_10_1109_TIT_2020_2981910
crossref_primary_10_1109_TSP_2020_2975914
crossref_primary_10_1007_s10208_021_09531_x
crossref_primary_10_1109_ACCESS_2019_2914278
crossref_primary_10_1137_20M1388061
crossref_primary_10_1038_s41467_023_36657_z
crossref_primary_10_1088_1742_5468_adf4bc
crossref_primary_10_1017_S0962492920000069
crossref_primary_10_1088_1361_6420_ac37fa
crossref_primary_10_1088_1742_5468_ac9828
crossref_primary_10_1109_TIT_2022_3182018
crossref_primary_10_1109_TCI_2023_3236155
crossref_primary_10_1088_1742_5468_abc62c
crossref_primary_10_1109_TIT_2021_3049172
crossref_primary_10_1109_MSP_2022_3219240
crossref_primary_10_1109_TIT_2020_3015173
crossref_primary_10_1088_1361_6420_acd8b8
crossref_primary_10_1088_1742_5468_adfa75
crossref_primary_10_1137_21M1450537
crossref_primary_10_1109_TIT_2023_3307553
crossref_primary_10_1109_TIT_2024_3455228
crossref_primary_10_1109_LAWP_2024_3489715
crossref_primary_10_1108_JBIM_02_2021_0119
crossref_primary_10_1109_TAP_2022_3145383
crossref_primary_10_1109_TSP_2020_3007967
crossref_primary_10_1038_s41467_020_19696_8
crossref_primary_10_1109_TSP_2020_2971192
crossref_primary_10_1007_s00041_020_09797_9
Cites_doi 10.1073/pnas.0909892106
10.1007/s10107-013-0738-9
10.1080/00018732.2016.1211393
10.1016/j.acha.2014.06.005
10.1016/j.jmva.2011.10.009
10.1364/JOSAA.7.000394
10.1109/TIT.2016.2556702
10.1214/14-AAP1010
10.1109/ALLERTON.2015.7447133
10.1109/ISIT.2011.6033942
10.1016/S0034-4877(06)80008-X
10.2977/prims/1195166573
10.1016/j.acha.2014.09.004
10.1109/ISIT.2016.7541382
10.1109/TIT.2016.2636204
10.1214/16-AOS1443
10.1016/j.acha.2005.07.001
10.1109/MSP.2014.2352673
10.1109/Allerton.2013.6736635
10.1109/TIT.2013.2274513
10.1017/CBO9781139020411
10.1109/TIT.2016.2517008
10.1016/j.acha.2013.10.002
10.1364/AO.21.002758
10.1002/cpa.21432
10.1145/2488608.2488693
10.1109/18.904562
10.1109/29.1613
10.1088/0266-5611/31/12/125008
10.1002/cpa.21638
10.1109/TIT.2015.2457942
10.1109/TCI.2017.2688923
10.1109/TIT.2011.2165823
10.1109/TIT.2010.2094817
10.1109/TIT.2015.2399924
10.1364/JOSAA.10.001046
10.1103/PhysRevE.84.066106
10.1006/jmva.1995.1058
10.1109/TSP.2014.2386294
10.1016/j.aim.2011.02.007
10.1070/SM1967v001n04ABEH001994
10.1214/15-AOS1397
10.1146/annurev.physchem.59.032607.093642
10.1109/ISIT.2013.6620308
10.1109/TIT.2011.2174612
10.1109/TIP.2011.2179306
10.1137/0707001
10.1137/151005099
10.1093/imaiai/iat004
10.1007/BF01245072
10.1007/s00440-015-0675-z
10.1109/TIT.2010.2046205
ContentType Journal Article
Copyright SFoCM 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: SFoCM 2018
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10208-018-9395-y
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Mathematics
Applied Sciences
Computer Science
EISSN 1615-3383
EndPage 773
ExternalDocumentID 10_1007_s10208_018_9395_y
GroupedDBID -5D
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29H
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
I-F
IAO
IEA
IJ-
IKXTQ
IOF
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MK~
N9A
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9R
PF0
PQQKQ
PT4
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~8M
-Y2
1SB
2P1
2VQ
5VS
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
CAG
CITATION
COF
H13
HZ~
ICD
IHE
N2Q
O9-
S1Z
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c455t-22abd6590d350c3187cd5ab6ee1e5d452fe2b62b72b547ed8930c23ec5cebbc23
IEDL.DBID RSV
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470144600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1615-3375
IngestDate Fri Jul 25 19:30:49 EDT 2025
Tue Nov 18 22:53:25 EST 2025
Sat Nov 29 06:41:14 EST 2025
Fri Feb 21 02:36:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Spectral initialization
Second-moment method
91E40
68T05
Phase retrieval
68Q32
Mutual information
Phase transition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c455t-22abd6590d350c3187cd5ab6ee1e5d452fe2b62b72b547ed8930c23ec5cebbc23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2234545544
PQPubID 43692
PageCount 71
ParticipantIDs proquest_journals_2234545544
crossref_primary_10_1007_s10208_018_9395_y
crossref_citationtrail_10_1007_s10208_018_9395_y
springer_journals_10_1007_s10208_018_9395_y
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle The Journal of the Society for the Foundations of Computational Mathematics
PublicationTitle Foundations of computational mathematics
PublicationTitleAbbrev Found Comput Math
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References BayatiMLelargeMMontanariAUniversality in polytope phase transitions and message passing algorithmsAnnals of Applied Probability2015252753822331375510.1214/14-AAP10101322.60207
MontanariARichardENon-negative principal component analysis: Message passing algorithms and sharp asymptoticsIEEE Trans. Inform. Theory201662314581484347226010.1109/TIT.2015.24579421359.62224
CaiTTLiXMaZOptimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flowThe Annals of Statistics201644522212251354644910.1214/16-AOS14431349.62019
WaltherAThe question of phase retrieval in opticsJournal of Modern Optics19631014149163589
Wang, G., Giannakis, G.B., Eldar, Y.C.: Solving systems of random quadratic equations via truncated amplitude flow (2016). arXiv:1605.08285
Dhifallah, O., Thrampoulidis, C., Lu, Y.M.: Phase retrieval via linear programming: Fundamental limits and algorithmic improvements. In: 55th Annual Allerton Conference on Communication, Control, and Computing (2017). arXiv:1710.05234
CorbettJVThe Pauli problem, state reconstruction and quantum-real numbersReports on Mathematical Physics20065715368220978110.1016/S0034-4877(06)80008-X1110.81007
YangFLuYMSbaizLVetterliMBits from photons: Oversampled image acquisition using binary Poisson statisticsIEEE Trans. Image Process.201221414211436295946010.1109/TIP.2011.21793061373.94849
KabashimaYKrzakalaFMézardMSakataAZdeborováLPhase transitions and sample complexity in bayes-optimal matrix factorizationIEEE Trans. Inform. Theory201662742284265351574810.1109/TIT.2016.25567021359.94109
Zhang, H., Liang, Y.: Reshaped Wirtinger Flow for solving quadratic system of equations. In: Advances in Neural Information Processing Systems, pp. 2622–2630 (2016)
Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72, 457–483 (in Russian) (1967)
Venkataramanan, R., Johnson, O.: Strong converse bounds for high-dimensional estimation (2017). arXiv:1706.04410
VoiculescuDLimit laws for random matrices and free productsInventiones Mathematicae1991104201220109405210.1007/BF012450720736.60007
Javanmard, A., Montanari, A.: State evolution for general approximate message passing algorithms, with applications to spatial coupling. Information and Inference pp. 115–144 (2013)
Barbier, J., Macris, N., Dia, M., Krzakala, F.: Mutual information and optimality of approximate message-passing in random linear estimation (2017). arXiv:1311.2445
Neykov, M., Wang, Z., Liu, H.: Agnostic estimation for misspecified phase retrieval models. In: Advances in Neural Information Processing Systems, pp. 4089–4097 (2016)
BayatiMMontanariAThe dynamics of message passing on dense graphs, with applications to compressed sensingIEEE Trans. Inform. Theory201157764785281028510.1109/TIT.2010.20948171366.94079
Mossel, E., Neeman, J., Sly, A.: Belief propagation, robust reconstruction and optimal recovery of block models. In: Conference on Learning Theory (COLT), pp. 356–370. Barcelona, Spain (2014)
DonohoDLMontanariAHigh dimensional robust M-estimation: Asymptotic variance via approximate message passingProbability Theory and Related Fields20161663–4935969356804310.1007/s00440-015-0675-z1357.62220
UnserMEdenMMaximum likelihood estimation of linear signal parameters for Poisson processesIEEE Trans. Acoust., Speech, and Signal Process.198836694294510.1109/29.16130651.93063
Dhifallah, O., Lu, Y.M.: Fundamental limits of PhaseMax for phase retrieval: A replica analysis (2017). arXiv:1708.03355
Oymak, S., Thrampoulidis, C., Hassibi, B.: The squared-error of generalized LASSO: A precise analysis. In: Proc. of the 51st Annual Allerton Conf. on Commun., Control, and Computing (Allerton), pp. 1002–1009. Monticello, IL (2013)
ShechtmanYEldarYCCohenOChapmanHNMiaoJSegevMPhase retrieval with application to optical imaging: a contemporary overviewIEEE Signal Processing Magazine20153238710910.1109/MSP.2014.2352673
CandèsEJLiXSoltanolkotabiMPhase retrieval from coded diffraction patternsApplied and Computational Harmonic Analysis2015392277299335201610.1016/j.acha.2014.09.0041329.78056
SilversteinJWChoiSIAnalysis of the limiting spectral distribution of large-dimensional random matricesJournal of Multivariate Analysis1995542295309134554110.1006/jmva.1995.10580872.60013
CandèsEJStrohmerTVoroninskiVPhaselift: Exact and stable signal recovery from magnitude measurements via convex programmingCommunications on Pure and Applied Mathematics201366812411274306995810.1002/cpa.214321335.94013
Silverstein, J.W., Bai, Z.: Spectral Analysis of Large Dimensional Random Matrices. (2nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{nd}$$\end{document} edition) Springer, (2010)
DonohoDLMalekiAMontanariAMessage Passing Algorithms for Compressed SensingProceedings of the National Academy of Sciences2009106189141891910.1073/pnas.0909892106
SuWCandèsEJSlope is adaptive to unknown sparsity and asymptotically minimaxAnnals of Statistics201644310381068348595310.1214/15-AOS13971338.62032
Soltanolkotabi, M.: Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization (2017). arXiv:1702.06175
Chen, Y., Candès, E.J.: The projected power method: An efficient algorithm for joint alignment from pairwise differences (2016). arXiv:1609.05820
Lu, Y.M., Li, G.: Phase transitions of spectral initialization for high-dimensional nonconvex estimation (2017). arXiv:1702.06435
CandèsEJLiXSoltanolkotabiMPhase retrieval via Wirtinger flow: Theory and algorithmsIEEE Trans. Inform. Theory201561419852007333299310.1109/TIT.2015.23999241359.94069
ZdeborováLKrzakalaFStatistical physics of inference: Thresholds and algorithmsAdvances in Physics201665545355210.1080/00018732.2016.1211393
BalanRCasazzaPEdidinDOn signal reconstruction without phaseApplied and Computational Harmonic Analysis2006203345356222490210.1016/j.acha.2005.07.0011090.94006
Reeves, G., Pfister, H.D.: The replica-symmetric prediction for compressed sensing with Gaussian matrices is exact. In: Proc. of the IEEE Int. Symposium on Inform. Theory (ISIT), pp. 665–669. Barcelona, Spain (2016)
Wei, K.: Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study. Inverse Problems 31(12) (2015)
Belinschi, S.T., Bercovici, H., Capitaine, M., Février, M.: Outliers in the spectrum of large deformed unitarily invariant models (2015). arXiv:1412.4916
Fienup, J.R., Dainty, J.C.: Phase retrieval and image reconstruction for astronomy. Image Recovery: Theory and Application pp. 231–275 (1987)
KeshavanRHMontanariAOhSMatrix completion from a few entriesIEEE Trans. Inform. Theory201056629802998268345210.1109/TIT.2010.20462051366.62111
Deshpande, Y., Montanari, A.: Finding hidden cliques of size N/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{N/e}$$\end{document} in nearly linear time. Foundations of Computational Mathematics pp. 1–60 (2013)
BaiZYaoJOn sample eigenvalues in a generalized spiked population modelJournal of Multivariate Analysis2012106167177288768610.1016/j.jmva.2011.10.0091301.62049
ConcaAEdidinDHeringMVinzantCAn algebraic characterization of injectivity in phase retrievalApplied and Computational Harmonic Analysis2015382346356330367910.1016/j.acha.2014.06.0051354.42003
Li, G., Gu, Y., Lu, Y.M.: Phase retrieval using iterative projections: Dynamics in the large systems limit. In: Proc. of the 53rd Annual Allerton Conf. on Commun., Control, and Computing (Allerton), pp. 1114–1118. Monticello, IL (2015)
Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. In: Advances in Neural Information Processing Systems, pp. 2796–2804 (2013)
DecelleAKrzakalaFMooreCZdeborováLAsymptotic analysis of the stochastic block model for modular networks and its algorithmic applicationsPhysical Review E2011846066,10610.1103/PhysRevE.84.066106
Barbier, J., Krzakala, F., Macris, N., Miolane, L., Zdeborová, L.: Phase transitions, optimal errors and optimality of message-passing in generalized linear models (2017). arXiv:1708.03395
Arora, S., Ge, R., Ma, T., Moitra, A.: Simple, efficient, and neural algorithms for sparse coding. In: Conference on Learning Theory (COLT), pp. 113–149. Paris, France (2015)
Wang, G., Giannakis, G.B.: Solving random systems of quadratic equations via truncated generalized gradient flow. In: Advances in Neural Information Processing Systems, pp. 568–576 (2016)
DavisCKahanWMThe rotation of eigenvectors by a perturbation. IIISIAM Journal on Numerical Analysis19707114626445010.1137/07070010198.47201
RanganSGoyalVKRecursive consistent estimation with bounded noiseIEEE Trans. Inform. Theory2001471457464182039610.1109/18.9045621002.94517
Chen, Y., Candès, E.J.: Solving random quadratic systems of equations is nearly as easy as solving linear systems. In: Advances in Neural Information Processing Systems, pp. 739–747 (2015)
GerchbergRWA practical algorithm for the determination of the phase from image and diffraction plane picturesOptik197235237246
SpeicherRFree convolution and the random sum of matricesPubl. Res. Inst. Math. Sci.199329731744124501510.2977/prims/11951665730795.46048
Duchi, J.C., Ruan, F.: Solving (most) of a set of quadratic equalities: Composite optimization for robust phase retrieval (2017). arXiv:1705.02356
Li, X., Ling, S., Strohmer, T., Wei, K.: Rapid, robust, and reliable blind deconvolution via nonconvex optimization (2016). arXiv:1606.04933
MiaoJIshikawaTShenQEarnestTExtending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexesAnnu. Rev. Phys. Chem.20085938741010.1146/annurev.physchem.59.032607.093642
FienupJRPhase retrieval algorithms: A comparisonApplied
M Bayati (9395_CR9) 2011; 57
P Schniter (9395_CR64) 2015; 63
M Unser (9395_CR72) 1988; 36
F Benaych-Georges (9395_CR12) 2011; 227
M Bayati (9395_CR10) 2012; 58
DL Donoho (9395_CR32) 2016; 166
A Conca (9395_CR21) 2015; 38
9395_CR54
D Voiculescu (9395_CR74) 1991; 104
TT Cai (9395_CR13) 2016; 44
9395_CR50
L Demanet (9395_CR25) 2017; 3
9395_CR18
JV Corbett (9395_CR22) 2006; 57
Y Shechtman (9395_CR65) 2015; 32
EJ Candès (9395_CR14) 2015; 57
9395_CR59
9395_CR58
9395_CR57
9395_CR56
M Bayati (9395_CR8) 2015; 25
9395_CR11
9395_CR55
S Rangan (9395_CR62) 2001; 47
A Walther (9395_CR76) 1963; 10
RW Gerchberg (9395_CR36) 1972; 35
C Davis (9395_CR23) 1970; 7
EJ Candès (9395_CR17) 2013; 66
F Yang (9395_CR81) 2012; 21
9395_CR43
9395_CR41
9395_CR40
R Balan (9395_CR4) 2006; 20
J Miao (9395_CR51) 2008; 59
9395_CR83
9395_CR80
EJ Candès (9395_CR16) 2015; 61
EJ Candès (9395_CR15) 2015; 39
9395_CR49
9395_CR48
9395_CR47
R Speicher (9395_CR69) 1993; 29
Y Chen (9395_CR20) 2017; 70
9395_CR45
L Zdeborová (9395_CR82) 2016; 65
AS Bandeira (9395_CR5) 2014; 37
9395_CR6
9395_CR7
9395_CR1
9395_CR2
DL Donoho (9395_CR29) 2013; 59
9395_CR73
9395_CR71
RP Millane (9395_CR52) 1990; 7
9395_CR39
9395_CR37
9395_CR35
9395_CR79
9395_CR78
9395_CR33
9395_CR77
Z Bai (9395_CR3) 2012; 106
JW Silverstein (9395_CR67) 1995; 54
RW Harrison (9395_CR38) 1993; 10
I Waldspurger (9395_CR75) 2015; 149
9395_CR19
A Decelle (9395_CR24) 2011; 84
DL Donoho (9395_CR30) 2009; 106
JR Fienup (9395_CR34) 1982; 21
DL Donoho (9395_CR31) 2011; 57
Y Plan (9395_CR60) 2016; 62
A Montanari (9395_CR53) 2016; 62
9395_CR63
9395_CR61
Y Kabashima (9395_CR42) 2016; 62
RH Keshavan (9395_CR44) 2010; 56
9395_CR28
9395_CR27
9395_CR26
W Su (9395_CR70) 2016; 44
9395_CR68
K Lee (9395_CR46) 2017; 63
9395_CR66
References_xml – reference: Arora, S., Ge, R., Ma, T., Moitra, A.: Simple, efficient, and neural algorithms for sparse coding. In: Conference on Learning Theory (COLT), pp. 113–149. Paris, France (2015)
– reference: Dhifallah, O., Lu, Y.M.: Fundamental limits of PhaseMax for phase retrieval: A replica analysis (2017). arXiv:1708.03355
– reference: Marčenko, V.A., Pastur, L.A.: Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.) 72, 457–483 (in Russian) (1967)
– reference: SchniterPRanganSCompressive phase retrieval via generalized approximate message passingIEEE Transactions on Signal Processing201563410431055331163510.1109/TSP.2014.23862941394.94506
– reference: Soltanolkotabi, M.: Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization (2017). arXiv:1702.06175
– reference: Oymak, S., Thrampoulidis, C., Hassibi, B.: The squared-error of generalized LASSO: A precise analysis. In: Proc. of the 51st Annual Allerton Conf. on Commun., Control, and Computing (Allerton), pp. 1002–1009. Monticello, IL (2013)
– reference: Belinschi, S.T., Bercovici, H., Capitaine, M., Février, M.: Outliers in the spectrum of large deformed unitarily invariant models (2015). arXiv:1412.4916
– reference: Li, G., Gu, Y., Lu, Y.M.: Phase retrieval using iterative projections: Dynamics in the large systems limit. In: Proc. of the 53rd Annual Allerton Conf. on Commun., Control, and Computing (Allerton), pp. 1114–1118. Monticello, IL (2015)
– reference: MillaneRPPhase retrieval in crystallography and opticsJ. Optical Soc. America A19907339441110.1364/JOSAA.7.000394
– reference: RanganSGoyalVKRecursive consistent estimation with bounded noiseIEEE Trans. Inform. Theory2001471457464182039610.1109/18.9045621002.94517
– reference: VoiculescuDLimit laws for random matrices and free productsInventiones Mathematicae1991104201220109405210.1007/BF012450720736.60007
– reference: DonohoDLMalekiAMontanariAMessage Passing Algorithms for Compressed SensingProceedings of the National Academy of Sciences2009106189141891910.1073/pnas.0909892106
– reference: Karoui, N.E.: Asymptotic behavior of unregularized and ridge-regularized high-dimensional robust regression estimators: Rigorous results (2013). arXiv:1311.2445
– reference: Mossel, E., Xu, J.: Density evolution in the degree-correlated stochastic block model. In: Conference on Learning Theory (COLT), pp. 1319–1356. New York, NY (2016)
– reference: Barbier, J., Macris, N., Dia, M., Krzakala, F.: Mutual information and optimality of approximate message-passing in random linear estimation (2017). arXiv:1311.2445
– reference: Mossel, E., Neeman, J., Sly, A.: Belief propagation, robust reconstruction and optimal recovery of block models. In: Conference on Learning Theory (COLT), pp. 356–370. Barcelona, Spain (2014)
– reference: BayatiMMontanariAThe LASSO risk for Gaussian matricesIEEE Trans. Inform. Theory201258419972017295131210.1109/TIT.2011.21746121365.62196
– reference: Chen, Y., Candès, E.J.: The projected power method: An efficient algorithm for joint alignment from pairwise differences (2016). arXiv:1609.05820
– reference: DemanetLJugnonVConvex recovery from interferometric measurementsIEEE Trans. Computational Imaging201732282295365326310.1109/TCI.2017.2688923
– reference: DonohoDLJavanmardAMontanariAInformation-theoretically optimal compressed sensing via spatial coupling and approximate message passingIEEE Trans. Inform. Theory2013591174347464312465410.1109/TIT.2013.22745131364.94120
– reference: BayatiMMontanariAThe dynamics of message passing on dense graphs, with applications to compressed sensingIEEE Trans. Inform. Theory201157764785281028510.1109/TIT.2010.20948171366.94079
– reference: CorbettJVThe Pauli problem, state reconstruction and quantum-real numbersReports on Mathematical Physics20065715368220978110.1016/S0034-4877(06)80008-X1110.81007
– reference: Li, X., Ling, S., Strohmer, T., Wei, K.: Rapid, robust, and reliable blind deconvolution via nonconvex optimization (2016). arXiv:1606.04933
– reference: CandèsEJLiXSoltanolkotabiMPhase retrieval from coded diffraction patternsApplied and Computational Harmonic Analysis2015392277299335201610.1016/j.acha.2014.09.0041329.78056
– reference: Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. In: Advances in Neural Information Processing Systems, pp. 2796–2804 (2013)
– reference: SilversteinJWChoiSIAnalysis of the limiting spectral distribution of large-dimensional random matricesJournal of Multivariate Analysis1995542295309134554110.1006/jmva.1995.10580872.60013
– reference: PlanYVershyninRThe generalized lasso with non-linear observationsIEEE Transactions on information theory201662315281537347226410.1109/TIT.2016.25170081359.94153
– reference: Reeves, G., Pfister, H.D.: The replica-symmetric prediction for compressed sensing with Gaussian matrices is exact. In: Proc. of the IEEE Int. Symposium on Inform. Theory (ISIT), pp. 665–669. Barcelona, Spain (2016)
– reference: CandèsEJLiXSoltanolkotabiMPhase retrieval via Wirtinger flow: Theory and algorithmsIEEE Trans. Inform. Theory201561419852007333299310.1109/TIT.2015.23999241359.94069
– reference: DavisCKahanWMThe rotation of eigenvectors by a perturbation. IIISIAM Journal on Numerical Analysis19707114626445010.1137/07070010198.47201
– reference: KeshavanRHMontanariAOhSMatrix completion from a few entriesIEEE Trans. Inform. Theory201056629802998268345210.1109/TIT.2010.20462051366.62111
– reference: GerchbergRWA practical algorithm for the determination of the phase from image and diffraction plane picturesOptik197235237246
– reference: WaldspurgerId’AspremontAMallatSPhase recovery, maxcut and complex semidefinite programmingMathematical Programming20151491–24781330045610.1007/s10107-013-0738-91329.94018
– reference: Dhifallah, O., Thrampoulidis, C., Lu, Y.M.: Phase retrieval via linear programming: Fundamental limits and algorithmic improvements. In: 55th Annual Allerton Conference on Communication, Control, and Computing (2017). arXiv:1710.05234
– reference: Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press (2012)
– reference: SuWCandèsEJSlope is adaptive to unknown sparsity and asymptotically minimaxAnnals of Statistics201644310381068348595310.1214/15-AOS13971338.62032
– reference: Duchi, J.C., Ruan, F.: Solving (most) of a set of quadratic equalities: Composite optimization for robust phase retrieval (2017). arXiv:1705.02356
– reference: BandeiraASCahillJMixonDGNelsonAASaving phase: Injectivity and stability for phase retrievalApplied and Computational Harmonic Analysis2014371106125320230410.1016/j.acha.2013.10.0021305.90330
– reference: Wang, G., Giannakis, G.B., Saad, Y., Chen, J.: Solving almost all systems of random quadratic equations (2017). arXiv:1705.10407
– reference: ZdeborováLKrzakalaFStatistical physics of inference: Thresholds and algorithmsAdvances in Physics201665545355210.1080/00018732.2016.1211393
– reference: Krzakala, F., Mézard, M., Zdeborová, L.: Phase diagram and approximate message passing for blind calibration and dictionary learning. In: Proc. of the IEEE Int. Symposium on Inform. Theory (ISIT), pp. 659–663. Istanbul, Turkey (2013)
– reference: Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimization. In: Proc. of the 45th Ann. ACM Symp. on Theory of Computing (STOC), pp. 665–674. ACM, Palo Alto, CA (2013)
– reference: Montanari, A., Venkataramanan, R.: Estimation of low-rank matrices via approximate message passing (2017). arXiv:1711.01682
– reference: WaltherAThe question of phase retrieval in opticsJournal of Modern Optics19631014149163589
– reference: Rangan, S.: Generalized Approximate Message Passing for Estimation with Random Linear Mixing. In: Proc. of the IEEE Int. Symposium on Inform. Theory (ISIT), pp. 2168–2172. St. Petersburg (2011)
– reference: CandèsEJStrohmerTVoroninskiVPhaselift: Exact and stable signal recovery from magnitude measurements via convex programmingCommunications on Pure and Applied Mathematics201366812411274306995810.1002/cpa.214321335.94013
– reference: FienupJRPhase retrieval algorithms: A comparisonApplied Optics198221152758276910.1364/AO.21.002758
– reference: BaiZYaoJOn sample eigenvalues in a generalized spiked population modelJournal of Multivariate Analysis2012106167177288768610.1016/j.jmva.2011.10.0091301.62049
– reference: BayatiMLelargeMMontanariAUniversality in polytope phase transitions and message passing algorithmsAnnals of Applied Probability2015252753822331375510.1214/14-AAP10101322.60207
– reference: Goldstein, T., Studer, C.: Phasemax: Convex phase retrieval via basis pursuit (2016). arXiv:1610.07531
– reference: Barbier, J., Krzakala, F., Macris, N., Miolane, L., Zdeborová, L.: Phase transitions, optimal errors and optimality of message-passing in generalized linear models (2017). arXiv:1708.03395
– reference: Thrampoulidis, C., Abbasi, E., Hassibi, B.: Lasso with non-linear measurements is equivalent to one with linear measurements. In: Advances in Neural Information Processing Systems, pp. 3420–3428 (2015)
– reference: Zhang, H., Liang, Y.: Reshaped Wirtinger Flow for solving quadratic system of equations. In: Advances in Neural Information Processing Systems, pp. 2622–2630 (2016)
– reference: Silverstein, J.W., Bai, Z.: Spectral Analysis of Large Dimensional Random Matrices. (2nd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{nd}$$\end{document} edition) Springer, (2010)
– reference: DonohoDLMontanariAHigh dimensional robust M-estimation: Asymptotic variance via approximate message passingProbability Theory and Related Fields20161663–4935969356804310.1007/s00440-015-0675-z1357.62220
– reference: MontanariARichardENon-negative principal component analysis: Message passing algorithms and sharp asymptoticsIEEE Trans. Inform. Theory201662314581484347226010.1109/TIT.2015.24579421359.62224
– reference: Benaych-GeorgesFNadakuditiRRThe eigenvalues and eigenvectors of finite, low rank perturbations of large random matricesAdvances in Mathematics20112271494521278220110.1016/j.aim.2011.02.0071226.15023
– reference: Chen, Y., Candès, E.J.: Solving random quadratic systems of equations is nearly as easy as solving linear systems. In: Advances in Neural Information Processing Systems, pp. 739–747 (2015)
– reference: Lu, Y.M., Li, G.: Phase transitions of spectral initialization for high-dimensional nonconvex estimation (2017). arXiv:1702.06435
– reference: ShechtmanYEldarYCCohenOChapmanHNMiaoJSegevMPhase retrieval with application to optical imaging: a contemporary overviewIEEE Signal Processing Magazine20153238710910.1109/MSP.2014.2352673
– reference: CandèsEJEldarYCStrohmerTVoroninskiVPhase retrieval via matrix completionSIAM Review2015572225251334534210.1137/1510050991344.49057
– reference: CaiTTLiXMaZOptimal rates of convergence for noisy sparse phase retrieval via thresholded Wirtinger flowThe Annals of Statistics201644522212251354644910.1214/16-AOS14431349.62019
– reference: UnserMEdenMMaximum likelihood estimation of linear signal parameters for Poisson processesIEEE Trans. Acoust., Speech, and Signal Process.198836694294510.1109/29.16130651.93063
– reference: DecelleAKrzakalaFMooreCZdeborováLAsymptotic analysis of the stochastic block model for modular networks and its algorithmic applicationsPhysical Review E2011846066,10610.1103/PhysRevE.84.066106
– reference: Venkataramanan, R., Johnson, O.: Strong converse bounds for high-dimensional estimation (2017). arXiv:1706.04410
– reference: Fienup, J.R., Dainty, J.C.: Phase retrieval and image reconstruction for astronomy. Image Recovery: Theory and Application pp. 231–275 (1987)
– reference: LeeKLiYJungeMBreslerYBlind recovery of sparse signals from subsampled convolutionIEEE Trans. Inform. Theory2017632802821360464310.1109/TIT.2016.26362041364.94261
– reference: DonohoDLMalekiAMontanariAThe noise-sensitivity phase transition in compressed sensingIEEE Trans. Inform. Theory2011571069206941288227110.1109/TIT.2011.21658231365.94094
– reference: HarrisonRWPhase problem in crystallographyJ. Optical Soc. America A19931051046105510.1364/JOSAA.10.001046
– reference: ChenYCandèsEJSolving random quadratic systems of equations is nearly as easy as solving linear systemsCommunications on Pure and Applied Mathematics20177008220883362887710.1002/cpa.216381379.90024
– reference: ConcaAEdidinDHeringMVinzantCAn algebraic characterization of injectivity in phase retrievalApplied and Computational Harmonic Analysis2015382346356330367910.1016/j.acha.2014.06.0051354.42003
– reference: SpeicherRFree convolution and the random sum of matricesPubl. Res. Inst. Math. Sci.199329731744124501510.2977/prims/11951665730795.46048
– reference: YangFLuYMSbaizLVetterliMBits from photons: Oversampled image acquisition using binary Poisson statisticsIEEE Trans. Image Process.201221414211436295946010.1109/TIP.2011.21793061373.94849
– reference: KabashimaYKrzakalaFMézardMSakataAZdeborováLPhase transitions and sample complexity in bayes-optimal matrix factorizationIEEE Trans. Inform. Theory201662742284265351574810.1109/TIT.2016.25567021359.94109
– reference: MiaoJIshikawaTShenQEarnestTExtending X-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexesAnnu. Rev. Phys. Chem.20085938741010.1146/annurev.physchem.59.032607.093642
– reference: Javanmard, A., Montanari, A.: State evolution for general approximate message passing algorithms, with applications to spatial coupling. Information and Inference pp. 115–144 (2013)
– reference: Neykov, M., Wang, Z., Liu, H.: Agnostic estimation for misspecified phase retrieval models. In: Advances in Neural Information Processing Systems, pp. 4089–4097 (2016)
– reference: BalanRCasazzaPEdidinDOn signal reconstruction without phaseApplied and Computational Harmonic Analysis2006203345356222490210.1016/j.acha.2005.07.0011090.94006
– reference: Wei, K.: Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study. Inverse Problems 31(12) (2015)
– reference: Bahmani, S., Romberg, J.: Phase retrieval meets statistical learning theory: A flexible convex relaxation. In: Proc. of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 252–260. Fort Lauderdale, FL (2017)
– reference: Deshpande, Y., Montanari, A.: Finding hidden cliques of size N/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{N/e}$$\end{document} in nearly linear time. Foundations of Computational Mathematics pp. 1–60 (2013)
– reference: Wang, G., Giannakis, G.B.: Solving random systems of quadratic equations via truncated generalized gradient flow. In: Advances in Neural Information Processing Systems, pp. 568–576 (2016)
– reference: Wang, G., Giannakis, G.B., Eldar, Y.C.: Solving systems of random quadratic equations via truncated amplitude flow (2016). arXiv:1605.08285
– volume: 106
  start-page: 18914
  year: 2009
  ident: 9395_CR30
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0909892106
– ident: 9395_CR48
– ident: 9395_CR73
– ident: 9395_CR19
– volume: 149
  start-page: 47
  issue: 1–2
  year: 2015
  ident: 9395_CR75
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-013-0738-9
– volume: 65
  start-page: 453
  issue: 5
  year: 2016
  ident: 9395_CR82
  publication-title: Advances in Physics
  doi: 10.1080/00018732.2016.1211393
– volume: 38
  start-page: 346
  issue: 2
  year: 2015
  ident: 9395_CR21
  publication-title: Applied and Computational Harmonic Analysis
  doi: 10.1016/j.acha.2014.06.005
– volume: 106
  start-page: 167
  year: 2012
  ident: 9395_CR3
  publication-title: Journal of Multivariate Analysis
  doi: 10.1016/j.jmva.2011.10.009
– ident: 9395_CR57
– ident: 9395_CR83
– ident: 9395_CR11
– volume: 7
  start-page: 394
  issue: 3
  year: 1990
  ident: 9395_CR52
  publication-title: J. Optical Soc. America A
  doi: 10.1364/JOSAA.7.000394
– volume: 62
  start-page: 4228
  issue: 7
  year: 2016
  ident: 9395_CR42
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2016.2556702
– volume: 25
  start-page: 753
  issue: 2
  year: 2015
  ident: 9395_CR8
  publication-title: Annals of Applied Probability
  doi: 10.1214/14-AAP1010
– ident: 9395_CR28
– ident: 9395_CR47
  doi: 10.1109/ALLERTON.2015.7447133
– ident: 9395_CR61
  doi: 10.1109/ISIT.2011.6033942
– volume: 57
  start-page: 53
  issue: 1
  year: 2006
  ident: 9395_CR22
  publication-title: Reports on Mathematical Physics
  doi: 10.1016/S0034-4877(06)80008-X
– ident: 9395_CR68
– volume: 29
  start-page: 731
  year: 1993
  ident: 9395_CR69
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/1195166573
– volume: 39
  start-page: 277
  issue: 2
  year: 2015
  ident: 9395_CR15
  publication-title: Applied and Computational Harmonic Analysis
  doi: 10.1016/j.acha.2014.09.004
– ident: 9395_CR63
  doi: 10.1109/ISIT.2016.7541382
– ident: 9395_CR43
– ident: 9395_CR26
– volume: 63
  start-page: 802
  issue: 2
  year: 2017
  ident: 9395_CR46
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2016.2636204
– volume: 44
  start-page: 2221
  issue: 5
  year: 2016
  ident: 9395_CR13
  publication-title: The Annals of Statistics
  doi: 10.1214/16-AOS1443
– ident: 9395_CR33
– ident: 9395_CR58
– volume: 20
  start-page: 345
  issue: 3
  year: 2006
  ident: 9395_CR4
  publication-title: Applied and Computational Harmonic Analysis
  doi: 10.1016/j.acha.2005.07.001
– volume: 32
  start-page: 87
  issue: 3
  year: 2015
  ident: 9395_CR65
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2014.2352673
– ident: 9395_CR59
  doi: 10.1109/Allerton.2013.6736635
– volume: 59
  start-page: 7434
  issue: 11
  year: 2013
  ident: 9395_CR29
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2013.2274513
– ident: 9395_CR37
– ident: 9395_CR54
– ident: 9395_CR27
– ident: 9395_CR39
  doi: 10.1017/CBO9781139020411
– volume: 62
  start-page: 1528
  issue: 3
  year: 2016
  ident: 9395_CR60
  publication-title: IEEE Transactions on information theory
  doi: 10.1109/TIT.2016.2517008
– ident: 9395_CR7
– volume: 37
  start-page: 106
  issue: 1
  year: 2014
  ident: 9395_CR5
  publication-title: Applied and Computational Harmonic Analysis
  doi: 10.1016/j.acha.2013.10.002
– volume: 21
  start-page: 2758
  issue: 15
  year: 1982
  ident: 9395_CR34
  publication-title: Applied Optics
  doi: 10.1364/AO.21.002758
– ident: 9395_CR79
– volume: 66
  start-page: 1241
  issue: 8
  year: 2013
  ident: 9395_CR17
  publication-title: Communications on Pure and Applied Mathematics
  doi: 10.1002/cpa.21432
– ident: 9395_CR40
  doi: 10.1145/2488608.2488693
– volume: 47
  start-page: 457
  issue: 1
  year: 2001
  ident: 9395_CR62
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.904562
– volume: 36
  start-page: 942
  issue: 6
  year: 1988
  ident: 9395_CR72
  publication-title: IEEE Trans. Acoust., Speech, and Signal Process.
  doi: 10.1109/29.1613
– ident: 9395_CR2
– ident: 9395_CR80
  doi: 10.1088/0266-5611/31/12/125008
– ident: 9395_CR71
– volume: 70
  start-page: 0822
  year: 2017
  ident: 9395_CR20
  publication-title: Communications on Pure and Applied Mathematics
  doi: 10.1002/cpa.21638
– volume: 62
  start-page: 1458
  issue: 3
  year: 2016
  ident: 9395_CR53
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2015.2457942
– volume: 3
  start-page: 282
  issue: 2
  year: 2017
  ident: 9395_CR25
  publication-title: IEEE Trans. Computational Imaging
  doi: 10.1109/TCI.2017.2688923
– ident: 9395_CR55
– volume: 57
  start-page: 6920
  issue: 10
  year: 2011
  ident: 9395_CR31
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2011.2165823
– volume: 57
  start-page: 764
  year: 2011
  ident: 9395_CR9
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2010.2094817
– volume: 61
  start-page: 1985
  issue: 4
  year: 2015
  ident: 9395_CR16
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2015.2399924
– volume: 10
  start-page: 1046
  issue: 5
  year: 1993
  ident: 9395_CR38
  publication-title: J. Optical Soc. America A
  doi: 10.1364/JOSAA.10.001046
– ident: 9395_CR6
– ident: 9395_CR78
– volume: 84
  start-page: 066,106
  issue: 6
  year: 2011
  ident: 9395_CR24
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.84.066106
– volume: 54
  start-page: 295
  issue: 2
  year: 1995
  ident: 9395_CR67
  publication-title: Journal of Multivariate Analysis
  doi: 10.1006/jmva.1995.1058
– volume: 63
  start-page: 1043
  issue: 4
  year: 2015
  ident: 9395_CR64
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2014.2386294
– volume: 227
  start-page: 494
  issue: 1
  year: 2011
  ident: 9395_CR12
  publication-title: Advances in Mathematics
  doi: 10.1016/j.aim.2011.02.007
– ident: 9395_CR50
  doi: 10.1070/SM1967v001n04ABEH001994
– ident: 9395_CR18
– ident: 9395_CR1
– ident: 9395_CR49
– ident: 9395_CR66
– volume: 10
  start-page: 41
  issue: 1
  year: 1963
  ident: 9395_CR76
  publication-title: Journal of Modern Optics
– volume: 44
  start-page: 1038
  issue: 3
  year: 2016
  ident: 9395_CR70
  publication-title: Annals of Statistics
  doi: 10.1214/15-AOS1397
– volume: 59
  start-page: 387
  year: 2008
  ident: 9395_CR51
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.59.032607.093642
– ident: 9395_CR45
  doi: 10.1109/ISIT.2013.6620308
– volume: 35
  start-page: 237
  year: 1972
  ident: 9395_CR36
  publication-title: Optik
– volume: 58
  start-page: 1997
  issue: 4
  year: 2012
  ident: 9395_CR10
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2011.2174612
– volume: 21
  start-page: 1421
  issue: 4
  year: 2012
  ident: 9395_CR81
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2179306
– volume: 7
  start-page: 1
  issue: 1
  year: 1970
  ident: 9395_CR23
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/0707001
– volume: 57
  start-page: 225
  issue: 2
  year: 2015
  ident: 9395_CR14
  publication-title: SIAM Review
  doi: 10.1137/151005099
– ident: 9395_CR35
– ident: 9395_CR41
  doi: 10.1093/imaiai/iat004
– ident: 9395_CR56
– volume: 104
  start-page: 201
  year: 1991
  ident: 9395_CR74
  publication-title: Inventiones Mathematicae
  doi: 10.1007/BF01245072
– ident: 9395_CR77
– volume: 166
  start-page: 935
  issue: 3–4
  year: 2016
  ident: 9395_CR32
  publication-title: Probability Theory and Related Fields
  doi: 10.1007/s00440-015-0675-z
– volume: 56
  start-page: 2980
  issue: 6
  year: 2010
  ident: 9395_CR44
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2010.2046205
SSID ssj0015914
ssib031263371
Score 2.475998
Snippet In phase retrieval, we want to recover an unknown signal x ∈ C d from n quadratic measurements of the form y i = | ⟨ a i , x ⟩ | 2 + w i , where a i ∈ C d are...
In phase retrieval, we want to recover an unknown signal x∈Cd from n quadratic measurements of the form yi=|⟨ai,x⟩|2+wi, where ai∈Cd are known sensing vectors...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 703
SubjectTerms Algorithms
Applications of Mathematics
Computational geometry
Computer Science
Computer simulation
Convexity
Correlation
Covariance matrix
Economics
Eigenvectors
Empirical analysis
Generalized linear models
Information theory
Linear and Multilinear Algebras
Lower bounds
Math Applications in Computer Science
Mathematics
Mathematics and Statistics
Matrix Theory
Message passing
Noise measurement
Numerical Analysis
Optimization
Phase retrieval
Phase transitions
Recovery
Spectra
Spectral methods
Statistical models
Upper bounds
Title Fundamental Limits of Weak Recovery with Applications to Phase Retrieval
URI https://link.springer.com/article/10.1007/s10208-018-9395-y
https://www.proquest.com/docview/2234545544
Volume 19
WOSCitedRecordID wos000470144600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary Journals
  customDbUrl:
  eissn: 1615-3383
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015914
  issn: 1615-3375
  databaseCode: RSV
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBalWsVtmDJyUQ95HHsYilF0vx2VvIPoqitNJEof_e2STbVlFBb2F3MyyzO5lvMzvzAZykgUqjOOIetUSAnKrIkz4delHMfW0YOlAmC7KJsNeLBoO4X-VxZ-62uwtJFl_qhWQ3Wly8QgNlKHe6DCvo7SLL13B9cz8LHYi4KOhtkYzHWChcKPM7EZ-d0RxhfgmKFr6mU__XLLdgs4KWpF3uhW1YMqMG1CuYSSojzrDJMTm4tgasufxk7N64mlVyzXag27GpIiUDACmyoTIyHpIHkz4Te3RFS5gS-zOXtBdC4SQfk_4jOkgcYxm7cDvvwl3n8vai61XsC57iQuQepanUgYh9zYSv0PRDpUUqA2POjdBc0KGhMqAypFLw0GgEPr6izCihjJT4tAe10Xhk9oGEKipITfSQc65lLHWkOMezkuAmZVo0wXfLkKiqNLllyHhJ5kWVrVoTVGti1ZpMm3A6e-W1rMvx2-CWW9ukMtEsQVyEU0A0xZtw5tZy3v2jsIM_jT6EdYRYcXm5rAW1fPJmjmBVvedP2eS42Lkf0Q_oAA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED50CtMHp1NxOjUPPimFmiZr-zjEMXEbQ6furTQ_hqJsslZh_72XrtmmqKBvJUmPcMn1vvRy9wGcxDUZB2HAHGqIABmVgSNcOnCCkLlKe-hAPZGRTfidTtDvh908jzuxt91tSDL7Ui8ku9Hs4hUaqIdyJ8uwwtBhmYL5N7f3s9ABD7OC3gbJOJ7ncxvK_E7EZ2c0R5hfgqKZr2mU_jXLTdjIoSWpT_fCFizpYRlKOcwkuREn2GSZHGxbGYo2Pxm719uzSq7JNjQbJlVkygBAsmyohIwG5EHHz8QcXdESJsT8zCX1hVA4SUek-4gOEscYxi7czjtw17jsXTSdnH3BkYzz1KE0FqrGQ1d53JVo-r5UPBY1rc81V4zTgaaiRoVPBWe-Vgh8XEk9LbnUQuDTLhSGo6HeA-LLICM1UQPGmBKhUIFkDM9KnOnYU7wCrl2GSOalyQ1Dxks0L6ps1BqhWiOj1mhSgdPZK6_Tuhy_Da7atY1yE00ixEU4BURTrAJndi3n3T8K2__T6GMoNnvtVtS66lwfwBrCrXB60awKhXT8pg9hVb6nT8n4KNvFH7jp6uQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFC8PXqbidGoefFLKapqs7eNQx0QdA297K82lKMomtgr79560zaaigvhWkjQNSU7Pl5zLB7AfN2UchAFzqCECZFQGjnBp4gQhc5X2UIF6Iieb8LvdoN8PeyXPaWq93a1JsohpMFmaBlnjWSWND4FvNHfCQmH18BujaZhhxo_eHNevbsdmBB7myb0NqnE8z-fWrPldF58V0wRtfjGQ5nqnvfzvEa_AUgk5SavYI6swpQdVWC7hJymFO8Uiy_Bgy6owb-OWsXrxcpzhNV2DTtuEkBTMACSPkkrJMCF3On4k5kiLEjIi5pKXtD6YyEk2JL17VJzYxjB54TZfh5v26fVxxylZGRzJOM8cSmOhmjx0lcddib8EXyoei6bWR5orxmmiqWhS4VPBma8VAiJXUk9LLrUQ-LQBlcFwoDeB-DLIyU5UwhhTIhQqkIzhGYozHXuK18C1SxLJMmW5Yc54iibJls20RjitkZnWaFSDg_Erz0W-jt8a1-06R6XophHiJRwCoixWg0O7rpPqHzvb-lPrPZjrnbSji7Pu-TYsIAoLC_-zOlSyl1e9A7PyLXtIX3bzDf0OLK3zyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamental+Limits+of+Weak+Recovery+with+Applications+to+Phase+Retrieval&rft.jtitle=Foundations+of+computational+mathematics&rft.au=Mondelli%2C+Marco&rft.au=Montanari%2C+Andrea&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1615-3375&rft.eissn=1615-3383&rft.volume=19&rft.issue=3&rft.spage=703&rft.epage=773&rft_id=info:doi/10.1007%2Fs10208-018-9395-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-3375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-3375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-3375&client=summon