Spatio-temporal modeling of COVID-19 prevalence and mortality using artificial neural network algorithms

•The relative importance of influential variables on COVID-19 varies over time.•Unemployment and population density are highly correlated with COVID-19 prevalence.•Regarding COVID-19 mortality, diabetes is an influential variable worldwide.•Neural network algorithms can estimate the importance of va...

Full description

Saved in:
Bibliographic Details
Published in:Spatial and spatio-temporal epidemiology Vol. 40; p. 100471
Main Authors: Kianfar, Nima, Mesgari, Mohammad Saadi, Mollalo, Abolfazl, Kaveh, Mehrdad
Format: Journal Article
Language:English
Published: Netherlands Elsevier Ltd 01.02.2022
Subjects:
ISSN:1877-5845, 1877-5853, 1877-5853
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The relative importance of influential variables on COVID-19 varies over time.•Unemployment and population density are highly correlated with COVID-19 prevalence.•Regarding COVID-19 mortality, diabetes is an influential variable worldwide.•Neural network algorithms can estimate the importance of variables more accurately.•Dealing with complex interactions, variable importance analysis tools are effective. The outbreak of coronavirus disease (COVID-19) has become one of the most challenging global concerns in recent years. Due to inadequate worldwide studies on spatio-temporal modeling of COVID-19, this research aims to examine the relative significance of potential explanatory variables (n = 75) concerning COVID-19 prevalence and mortality using multilayer perceptron artificial neural network topology. We utilized ten variable importance analysis methods to identify the relative importance of the explanatory variables. The main findings indicated that several variables were persistently among the most influential variables in all periods. Regarding COVID-19 prevalence, unemployment and population density were among the most influential variables with the highest importance scores. While for COVID-19 mortality, health-related variables such as diabetes prevalence and number of hospital beds were among the most significant variables. The obtained findings from this study might provide general insights for public health policymakers to monitor the spread of disease and support decision-making.
AbstractList The outbreak of coronavirus disease (COVID-19) has become one of the most challenging global concerns in recent years. Due to inadequate worldwide studies on spatio-temporal modeling of COVID-19, this research aims to examine the relative significance of potential explanatory variables (n = 75) concerning COVID-19 prevalence and mortality using multilayer perceptron artificial neural network topology. We utilized ten variable importance analysis methods to identify the relative importance of the explanatory variables. The main findings indicated that several variables were persistently among the most influential variables in all periods. Regarding COVID-19 prevalence, unemployment and population density were among the most influential variables with the highest importance scores. While for COVID-19 mortality, health-related variables such as diabetes prevalence and number of hospital beds were among the most significant variables. The obtained findings from this study might provide general insights for public health policymakers to monitor the spread of disease and support decision-making.
•The relative importance of influential variables on COVID-19 varies over time.•Unemployment and population density are highly correlated with COVID-19 prevalence.•Regarding COVID-19 mortality, diabetes is an influential variable worldwide.•Neural network algorithms can estimate the importance of variables more accurately.•Dealing with complex interactions, variable importance analysis tools are effective. The outbreak of coronavirus disease (COVID-19) has become one of the most challenging global concerns in recent years. Due to inadequate worldwide studies on spatio-temporal modeling of COVID-19, this research aims to examine the relative significance of potential explanatory variables (n = 75) concerning COVID-19 prevalence and mortality using multilayer perceptron artificial neural network topology. We utilized ten variable importance analysis methods to identify the relative importance of the explanatory variables. The main findings indicated that several variables were persistently among the most influential variables in all periods. Regarding COVID-19 prevalence, unemployment and population density were among the most influential variables with the highest importance scores. While for COVID-19 mortality, health-related variables such as diabetes prevalence and number of hospital beds were among the most significant variables. The obtained findings from this study might provide general insights for public health policymakers to monitor the spread of disease and support decision-making.
The outbreak of coronavirus disease (COVID-19) has become one of the most challenging global concerns in recent years. Due to inadequate worldwide studies on spatio-temporal modeling of COVID-19, this research aims to examine the relative significance of potential explanatory variables (n = 75) concerning COVID-19 prevalence and mortality using multilayer perceptron artificial neural network topology. We utilized ten variable importance analysis methods to identify the relative importance of the explanatory variables. The main findings indicated that several variables were persistently among the most influential variables in all periods. Regarding COVID-19 prevalence, unemployment and population density were among the most influential variables with the highest importance scores. While for COVID-19 mortality, health-related variables such as diabetes prevalence and number of hospital beds were among the most significant variables. The obtained findings from this study might provide general insights for public health policymakers to monitor the spread of disease and support decision-making.The outbreak of coronavirus disease (COVID-19) has become one of the most challenging global concerns in recent years. Due to inadequate worldwide studies on spatio-temporal modeling of COVID-19, this research aims to examine the relative significance of potential explanatory variables (n = 75) concerning COVID-19 prevalence and mortality using multilayer perceptron artificial neural network topology. We utilized ten variable importance analysis methods to identify the relative importance of the explanatory variables. The main findings indicated that several variables were persistently among the most influential variables in all periods. Regarding COVID-19 prevalence, unemployment and population density were among the most influential variables with the highest importance scores. While for COVID-19 mortality, health-related variables such as diabetes prevalence and number of hospital beds were among the most significant variables. The obtained findings from this study might provide general insights for public health policymakers to monitor the spread of disease and support decision-making.
ArticleNumber 100471
Author Kianfar, Nima
Mollalo, Abolfazl
Mesgari, Mohammad Saadi
Kaveh, Mehrdad
Author_xml – sequence: 1
  givenname: Nima
  surname: Kianfar
  fullname: Kianfar, Nima
  email: Nimakianfar@email.kntu.ac.ir
  organization: Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
– sequence: 2
  givenname: Mohammad Saadi
  surname: Mesgari
  fullname: Mesgari, Mohammad Saadi
  organization: Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
– sequence: 3
  givenname: Abolfazl
  surname: Mollalo
  fullname: Mollalo, Abolfazl
  organization: Department of Public Health and Prevention Science, School of Health Sciences, Baldwin Wallace University, Berea, OH 44017, USA
– sequence: 4
  givenname: Mehrdad
  surname: Kaveh
  fullname: Kaveh, Mehrdad
  organization: Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35120681$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v0zAYttAQ2wp_gAPKkUuKndiOIyEkVNiYNGmHDa6Wa79pXZw42E7R_j3OOirYYafXH8-X3uccnQx-AITeErwkmPAPu2WMCZYVrkh-wLQhL9AZEU1TMsHqk-OZslN0HuMOYy5qwV6h05qRKl_IGdrejipZXyboRx-UK3pvwNlhU_iuWN38uPpSkrYYA-yVg0FDoQaTMSEpZ9N9McUZqkKyndU20weYwsNIv334WSi38cGmbR9fo5edchHePM4F-n7x9W71rby-ubxafb4uNWUslSQnbw1g3RkKhHMBlLYMGtY2phVkXZuOY1DQYK5Up3S9BtrQmuCmJuuuMvUCfTrojtO6B6NhSDmQHIPtVbiXXln5_89gt3Lj91IwgQWnWeD9o0DwvyaISfY2anBODeCnKCtecYxbnB0X6N2_XkeTv-vNgOoA0MHHGKA7QgiWc4dyJ-cO5dyhPHSYSeIJSds0lzTnte556scDFfKG9xaCjNrOtRkbQCdpvH2O_gdzw7mm
CitedBy_id crossref_primary_10_1016_j_scs_2022_104158
crossref_primary_10_1109_TSIPN_2025_3604659
crossref_primary_10_1186_s12889_025_23862_2
crossref_primary_10_32604_cmc_2023_031519
crossref_primary_10_1038_s41598_025_92753_8
crossref_primary_10_1186_s12874_025_02572_8
crossref_primary_10_1007_s00357_023_09448_w
crossref_primary_10_1134_S1064229322080051
crossref_primary_10_1038_s41598_024_80213_8
crossref_primary_10_1140_epjp_s13360_022_02525_w
crossref_primary_10_3390_life14070783
crossref_primary_10_1016_j_scs_2024_105503
crossref_primary_10_4081_gh_2025_1386
crossref_primary_10_3390_s23031180
crossref_primary_10_1016_j_dialog_2023_100102
crossref_primary_10_1007_s11227_023_05047_z
crossref_primary_10_1007_s00477_022_02266_3
crossref_primary_10_1016_j_envres_2023_117351
crossref_primary_10_3390_foods12010061
crossref_primary_10_1038_s41598_024_60964_0
crossref_primary_10_1038_s41598_024_55003_x
crossref_primary_10_1128_spectrum_00878_23
crossref_primary_10_3390_s22124459
crossref_primary_10_1186_s12879_023_08813_9
crossref_primary_10_1186_s12942_023_00329_4
crossref_primary_10_1007_s41651_024_00191_3
crossref_primary_10_1186_s12859_024_05791_w
crossref_primary_10_1186_s12889_024_20321_2
Cites_doi 10.1016/j.envint.2019.04.057
10.2337/dc18-0287
10.3390/ijerph17103730
10.1186/s12992-021-00707-2
10.12691/ajams-8-2-1
10.1016/B978-0-12-374711-2.00908-6
10.3390/ijerph17113856
10.1515/biol-2021-0034
10.1016/j.dsx.2020.04.044
10.1007/s00128-020-02877-y
10.14358/PERS.72.9.1081
10.1093/jtm/taaa038
10.1109/ACCESS.2020.3008416
10.1016/j.eclinm.2020.100495
10.1007/s40808-020-00984-7
10.1016/j.ress.2015.05.018
10.1016/j.resconrec.2020.104814
10.1038/s41586-020-2284-y
10.1016/j.tmaid.2020.101626
10.33182/ml.v17i2.935
10.1111/jrh.12476
10.1016/j.sste.2018.08.002
10.1016/j.scitotenv.2020.141663
10.1016/j.scitotenv.2020.138835
10.1016/j.engappai.2017.01.013
10.1016/j.scitotenv.2020.138705
10.1080/00401706.1962.10490022
10.1002/dmrr.3319
10.1016/S0304-3800(02)00257-0
10.1016/S0140-6736(20)30185-9
10.1016/j.actatropica.2018.09.004
10.1016/j.sste.2010.10.001
10.3390/ijerph18189488
10.1093/oxfordjournals.aje.a009409
10.1016/S0304-3800(02)00064-9
10.1016/S0957-4174(98)00041-4
10.1016/j.cscee.2020.100067
10.1007/s11869-020-00842-6
10.1016/j.scs.2020.102627
10.1016/j.scitotenv.2016.02.133
10.1111/zph.12109
10.1152/ajpendo.00124.2020
10.3390/ijerph16010157
10.1016/j.dsx.2020.04.018
10.1061/(ASCE)HE.1943-5584.0000188
10.1109/ACCESS.2020.3034032
10.1016/j.ecolmodel.2004.03.013
10.1080/02693799308901949
10.3390/ijerph17124204
10.1016/S0304-3800(98)00149-5
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Ltd.
2021 Elsevier Ltd. All rights reserved. 2021
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Ltd.
– notice: 2021 Elsevier Ltd. All rights reserved. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.sste.2021.100471
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1877-5853
EndPage 100471
ExternalDocumentID PMC8580864
35120681
10_1016_j_sste_2021_100471
S1877584521000691
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAAKF
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
ABBQC
ABJNI
ABLVK
ABMAC
ABMMH
ABMZM
ABRWV
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOMHK
APLSM
AVARZ
AXJTR
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EFLBG
EJD
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HAMUX
HVGLF
HZ~
J1W
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
QYZTP
RIG
ROL
SDF
SES
SNL
SPCBC
SSB
SSD
SSH
SSO
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c455t-18539de0cfd4e1668e4495e7597d981b3df60eae706aafac3be474310731bf2d3
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744236300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1877-5845
1877-5853
IngestDate Tue Nov 04 01:58:02 EST 2025
Fri Jul 11 01:53:09 EDT 2025
Thu Jan 02 22:35:42 EST 2025
Tue Nov 18 21:35:45 EST 2025
Sat Nov 29 06:58:56 EST 2025
Fri Feb 23 02:41:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
GIS
Spatio-temporal analysis
Artificial neural network
Variable importance analysis
Language English
License Copyright © 2021. Published by Elsevier Ltd.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c455t-18539de0cfd4e1668e4495e7597d981b3df60eae706aafac3be474310731bf2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8580864
PMID 35120681
PQID 2626009007
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8580864
proquest_miscellaneous_2626009007
pubmed_primary_35120681
crossref_primary_10_1016_j_sste_2021_100471
crossref_citationtrail_10_1016_j_sste_2021_100471
elsevier_sciencedirect_doi_10_1016_j_sste_2021_100471
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Spatial and spatio-temporal epidemiology
PublicationTitleAlternate Spat Spatiotemporal Epidemiol
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cordes, Castro (bib0062) 2020; 34
Giovanni, Greenbelt. NASA/GSFC, MD,USA
Gautam (bib0028) 2020; 104
Ojha, Abraham, Snášel (bib0039) 2017; 60
Wang (bib0030) 2020; 158
Bashir (bib0021) 2020; 728
2021b; Available from
Critchley (bib0063) 2018; 41
Wei, Lu, Song (bib0014) 2015; 142
Gautam (bib0029) 2020; 13
Helliwell, Layard, Sachs (bib0033) 2018
Coşkun, Yıldırım, Gündüz (bib0058) 2021; 751
Gevrey, Dimopoulos, Lek (bib0046) 2003; 160
Zhang, Schwartz (bib0022) 2020; 36
Available from
4 April. Available from
Ghayvat (bib0052) 2021; 69
Jia (bib0023) 2020; 582
Mollalo, Tatar (bib0055) 2021; 18
Accessed March 21, 2021.
Shaffiee Haghshenas (bib0018) 2020; 17
Ambade (bib0027) 2021
Mollalo, Rivera, Vahedi (bib0005) 2020; 17
Shrestha (bib0051) 2020
Augusta, Deardon, Taylor (bib0049) 2019; 29
.
Meliker, Sloan (bib0050) 2011; 2
Wang (bib0003) 2020; 395
Ferretti, Saltelli, Tarantola (bib0013) 2016; 568
Eğrioğlu, Aladağ, Günay (bib0041) 2008; 195
Mollalo (bib0020) 2018; 188
Li (bib0042) 2019; 128
Accessed March 1, 2021.
Malik (bib0054) 2020; 26
Ibrahim (bib0011) 2013; 9
Sigler (bib0056) 2021; 17
Sirkeci, Yucesahin (bib0057) 2020; 17
Ripley (bib0007) 2007
Casiraghi (bib0016) 2020; 8
Moonsammy (bib0026) 2021; 37
Yonaba, Anctil, Fortin (bib0038) 2010; 15
Rocklöv, Sjödin (bib0059) 2020; 27
Mollalo (bib0006) 2019; 16
Özesmi, Özesmi (bib0012) 1999; 116
World Bank
2011.
Pasha (bib0017) 2021; 3
Accessed February 1, 2021.
Welford (bib0048) 1962; 4
World Health Organization (WHO)
Mollalo (bib0019) 2015; 62
Wechsler, Kroll (bib0043) 2006; 72
Jin, Shah, Svoboda (bib0053) 1995; 153
Sung (bib0045) 1998; 15
do Nascimento, Tusset, Lopes (bib0047) 2019; 10
Pew Research Center. (2014) Washington, D.C.
Kayri (bib0040) 2016; 21
Ahmadi (bib0024) 2020; 729
Dfuf (bib0015) 2020; 8
Olden, Jackson (bib0009) 2002; 154
Guo (bib0068) 2020; 36
Muniyappa, Gubbi (bib0064) 2020; 318
Olden, Joy, Death (bib0010) 2004; 178
Duh, Walker, Ayanian (bib0008) 1998; 147
Garson (bib0044) 1991; 6
Gazzaz (bib0065) 2021; 16
Shrestha (bib0035) 2020; 8
Kang, H.-Y., R. Rule, and P. Noble
2020ab; Available from
Kumar (bib0066) 2020; 14
Civco (bib0036) 1993; 7
Bhadra, Mukherjee, Sarkar (bib0060) 2021; 7
Mansour (bib0004) 2021; 65
Huang, Lim, Pranata (bib0067) 2020; 14
Zheng (bib0061) 2020; 34
Ramírez, Lee (bib0025) 2020; 17
Olden (10.1016/j.sste.2021.100471_bib0010) 2004; 178
Mansour (10.1016/j.sste.2021.100471_bib0004) 2021; 65
Meliker (10.1016/j.sste.2021.100471_bib0050) 2011; 2
Olden (10.1016/j.sste.2021.100471_bib0009) 2002; 154
Mollalo (10.1016/j.sste.2021.100471_bib0019) 2015; 62
Wei (10.1016/j.sste.2021.100471_bib0014) 2015; 142
Helliwell (10.1016/j.sste.2021.100471_bib0033) 2018
10.1016/j.sste.2021.100471_bib0037
Sung (10.1016/j.sste.2021.100471_bib0045) 1998; 15
Dfuf (10.1016/j.sste.2021.100471_bib0015) 2020; 8
10.1016/j.sste.2021.100471_bib0032
Mollalo (10.1016/j.sste.2021.100471_bib0006) 2019; 16
Augusta (10.1016/j.sste.2021.100471_bib0049) 2019; 29
10.1016/j.sste.2021.100471_bib0034
Gevrey (10.1016/j.sste.2021.100471_bib0046) 2003; 160
Welford (10.1016/j.sste.2021.100471_bib0048) 1962; 4
Pasha (10.1016/j.sste.2021.100471_bib0017) 2021; 3
10.1016/j.sste.2021.100471_bib0031
Zheng (10.1016/j.sste.2021.100471_bib0061) 2020; 34
Muniyappa (10.1016/j.sste.2021.100471_bib0064) 2020; 318
Coşkun (10.1016/j.sste.2021.100471_bib0058) 2021; 751
Zhang (10.1016/j.sste.2021.100471_bib0022) 2020; 36
Bhadra (10.1016/j.sste.2021.100471_bib0060) 2021; 7
Jia (10.1016/j.sste.2021.100471_bib0023) 2020; 582
Eğrioğlu (10.1016/j.sste.2021.100471_bib0041) 2008; 195
do Nascimento (10.1016/j.sste.2021.100471_bib0047) 2019; 10
Ambade (10.1016/j.sste.2021.100471_bib0027) 2021
Civco (10.1016/j.sste.2021.100471_bib0036) 1993; 7
Ghayvat (10.1016/j.sste.2021.100471_bib0052) 2021; 69
Duh (10.1016/j.sste.2021.100471_bib0008) 1998; 147
Rocklöv (10.1016/j.sste.2021.100471_bib0059) 2020; 27
Ramírez (10.1016/j.sste.2021.100471_bib0025) 2020; 17
Kayri (10.1016/j.sste.2021.100471_bib0040) 2016; 21
Moonsammy (10.1016/j.sste.2021.100471_bib0026) 2021; 37
Cordes (10.1016/j.sste.2021.100471_bib0062) 2020; 34
Shrestha (10.1016/j.sste.2021.100471_bib0051) 2020
Gazzaz (10.1016/j.sste.2021.100471_bib0065) 2021; 16
Critchley (10.1016/j.sste.2021.100471_bib0063) 2018; 41
Sigler (10.1016/j.sste.2021.100471_bib0056) 2021; 17
Jin (10.1016/j.sste.2021.100471_bib0053) 1995; 153
Bashir (10.1016/j.sste.2021.100471_bib0021) 2020; 728
Wechsler (10.1016/j.sste.2021.100471_bib0043) 2006; 72
Huang (10.1016/j.sste.2021.100471_bib0067) 2020; 14
Yonaba (10.1016/j.sste.2021.100471_bib0038) 2010; 15
Kumar (10.1016/j.sste.2021.100471_bib0066) 2020; 14
Gautam (10.1016/j.sste.2021.100471_bib0028) 2020; 104
Ferretti (10.1016/j.sste.2021.100471_bib0013) 2016; 568
Wang (10.1016/j.sste.2021.100471_bib0030) 2020; 158
Mollalo (10.1016/j.sste.2021.100471_bib0055) 2021; 18
Casiraghi (10.1016/j.sste.2021.100471_bib0016) 2020; 8
Gautam (10.1016/j.sste.2021.100471_bib0029) 2020; 13
Guo (10.1016/j.sste.2021.100471_bib0068) 2020; 36
Ripley (10.1016/j.sste.2021.100471_bib0007) 2007
Shrestha (10.1016/j.sste.2021.100471_bib0035) 2020; 8
Mollalo (10.1016/j.sste.2021.100471_bib0020) 2018; 188
Sirkeci (10.1016/j.sste.2021.100471_bib0057) 2020; 17
Özesmi (10.1016/j.sste.2021.100471_bib0012) 1999; 116
Garson (10.1016/j.sste.2021.100471_bib0044) 1991; 6
Malik (10.1016/j.sste.2021.100471_bib0054) 2020; 26
Shaffiee Haghshenas (10.1016/j.sste.2021.100471_bib0018) 2020; 17
10.1016/j.sste.2021.100471_bib0001
10.1016/j.sste.2021.100471_bib0002
Wang (10.1016/j.sste.2021.100471_bib0003) 2020; 395
Ojha (10.1016/j.sste.2021.100471_bib0039) 2017; 60
Mollalo (10.1016/j.sste.2021.100471_bib0005) 2020; 17
Li (10.1016/j.sste.2021.100471_bib0042) 2019; 128
Ibrahim (10.1016/j.sste.2021.100471_bib0011) 2013; 9
Ahmadi (10.1016/j.sste.2021.100471_bib0024) 2020; 729
References_xml – volume: 395
  start-page: 470
  year: 2020
  end-page: 473
  ident: bib0003
  article-title: A novel coronavirus outbreak of global health concern
  publication-title: Lancet
– year: 2020
  ident: bib0051
  article-title: Spatial epidemiology: an empirical framework for syndemics research
  publication-title: Soc. Sci. Med.
– volume: 16
  start-page: 157
  year: 2019
  ident: bib0006
  article-title: A GIS-based artificial neural network model for spatial distribution of tuberculosis across the continental United States
  publication-title: Int. J. Environ. Res. Public Health
– volume: 2
  start-page: 1
  year: 2011
  end-page: 9
  ident: bib0050
  article-title: Spatio-temporal epidemiology: Principles and opportunities
  publication-title: Spat. Spatio Temp. Epidemiol.
– volume: 37
  year: 2021
  ident: bib0026
  article-title: COVID-19 modelling in the Caribbean: spatial and statistical assessments
  publication-title: Spatial Spatio Temp. Epidemiol.
– volume: 188
  start-page: 187
  year: 2018
  end-page: 194
  ident: bib0020
  article-title: Machine learning approaches in GIS-based ecological modeling of the sand fly Phlebotomus papatasi, a vector of zoonotic cutaneous leishmaniasis in Golestan province, Iran
  publication-title: Acta Trop.
– volume: 16
  start-page: 297
  year: 2021
  end-page: 302
  ident: bib0065
  article-title: Diabetes and COVID-19
  publication-title: Open Life Sci.
– volume: 15
  start-page: 275
  year: 2010
  end-page: 283
  ident: bib0038
  article-title: Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
  publication-title: J. Hydrol. Eng.
– volume: 582
  start-page: 389
  year: 2020
  end-page: 394
  ident: bib0023
  article-title: Population flow drives spatio-temporal distribution of COVID-19 in China
  publication-title: Nature
– reference: 4 April. Available from:
– reference: . Accessed March 1, 2021.
– reference: World Health Organization (WHO),
– reference: . Available from:
– volume: 60
  start-page: 97
  year: 2017
  end-page: 116
  ident: bib0039
  article-title: Metaheuristic design of feedforward neural networks: a review of two decades of research
  publication-title: Eng. Appl. Artif. Intell.
– volume: 29
  start-page: 187
  year: 2019
  end-page: 198
  ident: bib0049
  article-title: Deep learning for supervised classification of spatial epidemics
  publication-title: Spat. Spatio Temp. Epidemiol.
– volume: 153
  start-page: 529
  year: 1995
  ident: bib0053
  article-title: The impact of unemployment on health: a review of the evidence
  publication-title: CMAJ
– volume: 69
  year: 2021
  ident: bib0052
  article-title: Recognizing suspect and predicting the spread of contagion based on mobile phone location data (counteract): a system of identifying covid-19 infectious and hazardous sites, detecting disease outbreaks based on the internet of things, edge computing, and artificial intelligence
  publication-title: Sustain. CitiesSoc.
– volume: 568
  start-page: 666
  year: 2016
  end-page: 670
  ident: bib0013
  article-title: Trends in sensitivity analysis practice in the last decade
  publication-title: Sci. Total Environ.
– reference: . Accessed February 1, 2021.
– volume: 158
  year: 2020
  ident: bib0030
  article-title: Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak
  publication-title: Resour. Conserv. Recycl.
– volume: 17
  start-page: 1
  year: 2021
  end-page: 14
  ident: bib0056
  article-title: The socio-spatial determinants of COVID-19 diffusion: the impact of globalisation, settlement characteristics and population
  publication-title: Glob. Health
– volume: 17
  start-page: 4204
  year: 2020
  ident: bib0005
  article-title: Artificial neural network modeling of novel coronavirus (COVID-19) incidence rates across the continental United States
  publication-title: Int. J. Environ. Res. Public Health
– volume: 195
  start-page: 591
  year: 2008
  end-page: 597
  ident: bib0041
  article-title: A new model selection strategy in artificial neural networks
  publication-title: Appl. Math. Comput.
– volume: 751
  year: 2021
  ident: bib0058
  article-title: The spread of COVID-19 virus through population density and wind in Turkey cities
  publication-title: Sci. Total Environ.
– reference: World Bank,
– reference: 2011.
– reference: Available from:
– volume: 728
  year: 2020
  ident: bib0021
  article-title: Correlation between climate indicators and COVID-19 pandemic in New York, USA
  publication-title: Sci. Total Environ.
– reference: Pew Research Center. (2014) Washington, D.C.
– reference: . 2021b; Available from:
– volume: 62
  start-page: 18
  year: 2015
  end-page: 28
  ident: bib0019
  article-title: Geographic information system-based analysis of the spatial and spatio-temporal distribution of zoonotic cutaneous leishmaniasis in Golestan Province, north-east of Iran
  publication-title: Zoonoses Public Health
– volume: 178
  start-page: 389
  year: 2004
  end-page: 397
  ident: bib0010
  article-title: An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
  publication-title: Ecol. Modell.
– volume: 6
  start-page: 47
  year: 1991
  end-page: 51
  ident: bib0044
  article-title: Interpreting Neural Network Connection Weights
  publication-title: AI Expert
– volume: 18
  start-page: 9488
  year: 2021
  ident: bib0055
  article-title: Spatial Modeling of COVID-19 vaccine hesitancy in the United States
  publication-title: Int. J. Environ. Res. Public Health
– volume: 142
  start-page: 399
  year: 2015
  end-page: 432
  ident: bib0014
  article-title: Variable importance analysis: a comprehensive review
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 8
  start-page: 196299
  year: 2020
  end-page: 196325
  ident: bib0016
  article-title: Explainable machine learning for early assessment of COVID-19 risk prediction in emergency departments
  publication-title: IEEE Access
– volume: 160
  start-page: 249
  year: 2003
  end-page: 264
  ident: bib0046
  article-title: Review and comparison of methods to study the contribution of variables in artificial neural network models
  publication-title: Ecol. Modell.
– year: 2007
  ident: bib0007
  article-title: Pattern Recognition and Neural Networks
– volume: 72
  start-page: 1081
  year: 2006
  end-page: 1090
  ident: bib0043
  article-title: Quantifying DEM uncertainty and its effect on topographic parameters
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 27
  year: 2020
  ident: bib0059
  article-title: High population densities catalyse the spread of COVID-19
  publication-title: J. Travel Med.
– volume: 65
  year: 2021
  ident: bib0004
  article-title: Sociodemographic determinants of COVID-19 incidence rates in Oman: geospatial modelling using multiscale geographically weighted regression (MGWR)
  publication-title: Sustain. Cities Soc.
– volume: 154
  start-page: 135
  year: 2002
  end-page: 150
  ident: bib0009
  article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks
  publication-title: Ecol. Modell.
– volume: 14
  start-page: 535
  year: 2020
  end-page: 545
  ident: bib0066
  article-title: Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis
  publication-title: Diabetes Metab. Syndr. Clin. Res. Rev.
– volume: 36
  start-page: 433
  year: 2020
  end-page: 445
  ident: bib0022
  article-title: Spatial disparities in coronavirus incidence and mortality in the United States: an ecological analysis as of May 2020
  publication-title: J. Rural Health
– volume: 7
  start-page: 623
  year: 2021
  end-page: 629
  ident: bib0060
  article-title: Impact of population density on Covid-19 infected and mortality rate in India
  publication-title: Model. Earth Syst. Environ.
– reference: Kang, H.-Y., R. Rule, and P. Noble,
– volume: 8
  start-page: 39
  year: 2020
  end-page: 42
  ident: bib0035
  article-title: Detecting multicollinearity in regression analysis
  publication-title: Am. J. Appl. Math. Stat.
– volume: 21
  start-page: 20
  year: 2016
  ident: bib0040
  article-title: Predictive abilities of Bayesian regularization and levenberg–marquardt algorithms in artificial neural networks: a comparative empirical study on social data
  publication-title: Math. Comput. Appl.
– volume: 15
  start-page: 405
  year: 1998
  end-page: 411
  ident: bib0045
  article-title: Ranking importance of input parameters of neural networks
  publication-title: Expert Syst. Appl.
– volume: 10
  year: 2019
  ident: bib0047
  article-title: Sensitivity analysis of chaos in a nonlinear pendulum through artificial neural networks
  publication-title: Math. Eng. Sci. Aerospace (MESA)
– volume: 116
  start-page: 15
  year: 1999
  end-page: 31
  ident: bib0012
  article-title: An artificial neural network approach to spatial habitat modelling with interspecific interaction
  publication-title: Ecol. Modell.
– reference: Giovanni, Greenbelt. NASA/GSFC, MD,USA
– volume: 9
  start-page: 5692
  year: 2013
  end-page: 5700
  ident: bib0011
  article-title: A comparison of methods for assessing the relative importance of input variables in artificial neural networks
  publication-title: J. Appl. Sci. Res.
– volume: 34
  year: 2020
  ident: bib0061
  article-title: Spatial transmission of COVID-19 via public and private transportation in China
  publication-title: Travel Med. Infect. Dis.
– volume: 729
  year: 2020
  ident: bib0024
  article-title: Investigation of effective climatology parameters on COVID-19 outbreak in Iran
  publication-title: Sci. Total Environ.
– volume: 26
  year: 2020
  ident: bib0054
  article-title: Determinants of COVID-19 vaccine acceptance in the US
  publication-title: EClinicalMedicine
– reference: . 2020ab; Available from:
– start-page: 1
  year: 2021
  end-page: 20
  ident: bib0027
  article-title: COVID-19 lockdowns reduce the Black carbon and polycyclic aromatic hydrocarbons of the Asian atmosphere: source apportionment and health hazard evaluation
  publication-title: Environ. Develop. Sustain.
– volume: 128
  start-page: 310
  year: 2019
  end-page: 323
  ident: bib0042
  article-title: Cluster-based bagging of constrained mixed-effects models for high spatiotemporal resolution nitrogen oxides prediction over large regions
  publication-title: Environ. Int.
– volume: 17
  start-page: 3730
  year: 2020
  ident: bib0018
  article-title: Prioritizing and analyzing the role of climate and urban parameters in the confirmed cases of COVID-19 based on artificial intelligence applications
  publication-title: Int. J. Environ. Res. Public Health
– volume: 8
  start-page: 127404
  year: 2020
  end-page: 127430
  ident: bib0015
  article-title: Variable importance analysis in imbalanced datasets: A new approach
  publication-title: IEEE Access
– volume: 7
  start-page: 173
  year: 1993
  end-page: 186
  ident: bib0036
  article-title: Artificial neural networks for land-cover classification and mapping
  publication-title: Int. J. Geogr. Inform. Sci.
– volume: 34
  year: 2020
  ident: bib0062
  article-title: Spatial analysis of COVID-19 clusters and contextual factors in New York City
  publication-title: Spat. Spat.Tempor. Epidemiol.
– volume: 13
  start-page: 853
  year: 2020
  end-page: 857
  ident: bib0029
  article-title: COVID-19: air pollution remains low as people stay at home
  publication-title: Air Quality Atmos. Health
– volume: 36
  start-page: e3319
  year: 2020
  ident: bib0068
  article-title: Diabetes is a risk factor for the progression and prognosis of COVID-19
  publication-title: Diabetes Metab. Res. Rev.
– volume: 3
  year: 2021
  ident: bib0017
  article-title: An analysis to identify the important variables for the spread of COVID-19 using numerical techniques and data science
  publication-title: Case Stud. Chem. Environ. Eng.
– volume: 147
  start-page: 1112
  year: 1998
  end-page: 1122
  ident: bib0008
  article-title: Epidemiologic interpretation of artificial neural networks
  publication-title: Am. J. Epidemiol.
– volume: 17
  start-page: 3856
  year: 2020
  ident: bib0025
  article-title: COVID-19 emergence and social and health determinants in Colorado: a rapid spatial analysis
  publication-title: Int. J. Environ. Res. Public Health
– reference: .
– volume: 104
  start-page: 724
  year: 2020
  end-page: 726
  ident: bib0028
  article-title: The influence of COVID-19 on air quality in India: a boon or inutile
  publication-title: Bull. Environ. Contam. Toxicol.
– reference: . Accessed March 21, 2021.
– volume: 4
  start-page: 419
  year: 1962
  end-page: 420
  ident: bib0048
  article-title: Note on a method for calculating corrected sums of squares and products
  publication-title: Technometrics
– volume: 17
  start-page: 379
  year: 2020
  end-page: 398
  ident: bib0057
  article-title: Coronavirus and migration: analysis of human mobility and the spread of Covid-19
  publication-title: Migr. Lett.
– year: 2018
  ident: bib0033
  article-title: World Happiness Report
– volume: 318
  start-page: E736
  year: 2020
  end-page: E741
  ident: bib0064
  article-title: COVID-19 pandemic, coronaviruses, and diabetes mellitus
  publication-title: Am. J. Physiol.Endocrinol. Metab.
– volume: 41
  start-page: 2127
  year: 2018
  end-page: 2135
  ident: bib0063
  article-title: Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study
  publication-title: Diabetes Care.
– volume: 14
  start-page: 395
  year: 2020
  end-page: 403
  ident: bib0067
  article-title: Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia–a systematic review, meta-analysis, and meta-regression
  publication-title: Diabetes Metab. Syndr. Clin. Res. Rev.
– start-page: 1
  year: 2021
  ident: 10.1016/j.sste.2021.100471_bib0027
  article-title: COVID-19 lockdowns reduce the Black carbon and polycyclic aromatic hydrocarbons of the Asian atmosphere: source apportionment and health hazard evaluation
  publication-title: Environ. Develop. Sustain.
– volume: 34
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0062
  article-title: Spatial analysis of COVID-19 clusters and contextual factors in New York City
  publication-title: Spat. Spat.Tempor. Epidemiol.
– volume: 128
  start-page: 310
  year: 2019
  ident: 10.1016/j.sste.2021.100471_bib0042
  article-title: Cluster-based bagging of constrained mixed-effects models for high spatiotemporal resolution nitrogen oxides prediction over large regions
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.04.057
– volume: 41
  start-page: 2127
  issue: 10
  year: 2018
  ident: 10.1016/j.sste.2021.100471_bib0063
  article-title: Glycemic control and risk of infections among people with type 1 or type 2 diabetes in a large primary care cohort study
  publication-title: Diabetes Care.
  doi: 10.2337/dc18-0287
– volume: 17
  start-page: 3730
  issue: 10
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0018
  article-title: Prioritizing and analyzing the role of climate and urban parameters in the confirmed cases of COVID-19 based on artificial intelligence applications
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17103730
– volume: 17
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.sste.2021.100471_bib0056
  article-title: The socio-spatial determinants of COVID-19 diffusion: the impact of globalisation, settlement characteristics and population
  publication-title: Glob. Health
  doi: 10.1186/s12992-021-00707-2
– volume: 8
  start-page: 39
  issue: 2
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0035
  article-title: Detecting multicollinearity in regression analysis
  publication-title: Am. J. Appl. Math. Stat.
  doi: 10.12691/ajams-8-2-1
– ident: 10.1016/j.sste.2021.100471_bib0032
– ident: 10.1016/j.sste.2021.100471_bib0037
  doi: 10.1016/B978-0-12-374711-2.00908-6
– volume: 69
  year: 2021
  ident: 10.1016/j.sste.2021.100471_bib0052
  publication-title: Sustain. CitiesSoc.
– volume: 17
  start-page: 3856
  issue: 11
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0025
  article-title: COVID-19 emergence and social and health determinants in Colorado: a rapid spatial analysis
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17113856
– volume: 16
  start-page: 297
  issue: 1
  year: 2021
  ident: 10.1016/j.sste.2021.100471_bib0065
  article-title: Diabetes and COVID-19
  publication-title: Open Life Sci.
  doi: 10.1515/biol-2021-0034
– volume: 14
  start-page: 535
  issue: 4
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0066
  article-title: Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis
  publication-title: Diabetes Metab. Syndr. Clin. Res. Rev.
  doi: 10.1016/j.dsx.2020.04.044
– volume: 104
  start-page: 724
  issue: 6
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0028
  article-title: The influence of COVID-19 on air quality in India: a boon or inutile
  publication-title: Bull. Environ. Contam. Toxicol.
  doi: 10.1007/s00128-020-02877-y
– volume: 72
  start-page: 1081
  issue: 9
  year: 2006
  ident: 10.1016/j.sste.2021.100471_bib0043
  article-title: Quantifying DEM uncertainty and its effect on topographic parameters
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.72.9.1081
– ident: 10.1016/j.sste.2021.100471_bib0002
– volume: 6
  start-page: 47
  year: 1991
  ident: 10.1016/j.sste.2021.100471_bib0044
  article-title: Interpreting Neural Network Connection Weights
  publication-title: AI Expert
– volume: 9
  start-page: 5692
  issue: 11
  year: 2013
  ident: 10.1016/j.sste.2021.100471_bib0011
  article-title: A comparison of methods for assessing the relative importance of input variables in artificial neural networks
  publication-title: J. Appl. Sci. Res.
– volume: 27
  issue: 3
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0059
  article-title: High population densities catalyse the spread of COVID-19
  publication-title: J. Travel Med.
  doi: 10.1093/jtm/taaa038
– volume: 8
  start-page: 127404
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0015
  article-title: Variable importance analysis in imbalanced datasets: A new approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008416
– volume: 26
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0054
  article-title: Determinants of COVID-19 vaccine acceptance in the US
  publication-title: EClinicalMedicine
  doi: 10.1016/j.eclinm.2020.100495
– volume: 7
  start-page: 623
  issue: 1
  year: 2021
  ident: 10.1016/j.sste.2021.100471_bib0060
  article-title: Impact of population density on Covid-19 infected and mortality rate in India
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-020-00984-7
– ident: 10.1016/j.sste.2021.100471_bib0031
– volume: 142
  start-page: 399
  year: 2015
  ident: 10.1016/j.sste.2021.100471_bib0014
  article-title: Variable importance analysis: a comprehensive review
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.05.018
– volume: 153
  start-page: 529
  issue: 5
  year: 1995
  ident: 10.1016/j.sste.2021.100471_bib0053
  article-title: The impact of unemployment on health: a review of the evidence
  publication-title: CMAJ
– ident: 10.1016/j.sste.2021.100471_bib0034
– volume: 158
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0030
  article-title: Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2020.104814
– volume: 582
  start-page: 389
  issue: 7812
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0023
  article-title: Population flow drives spatio-temporal distribution of COVID-19 in China
  publication-title: Nature
  doi: 10.1038/s41586-020-2284-y
– year: 2007
  ident: 10.1016/j.sste.2021.100471_bib0007
– volume: 34
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0061
  article-title: Spatial transmission of COVID-19 via public and private transportation in China
  publication-title: Travel Med. Infect. Dis.
  doi: 10.1016/j.tmaid.2020.101626
– year: 2018
  ident: 10.1016/j.sste.2021.100471_bib0033
– volume: 17
  start-page: 379
  issue: 2
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0057
  article-title: Coronavirus and migration: analysis of human mobility and the spread of Covid-19
  publication-title: Migr. Lett.
  doi: 10.33182/ml.v17i2.935
– volume: 36
  start-page: 433
  issue: 3
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0022
  article-title: Spatial disparities in coronavirus incidence and mortality in the United States: an ecological analysis as of May 2020
  publication-title: J. Rural Health
  doi: 10.1111/jrh.12476
– volume: 29
  start-page: 187
  year: 2019
  ident: 10.1016/j.sste.2021.100471_bib0049
  article-title: Deep learning for supervised classification of spatial epidemics
  publication-title: Spat. Spatio Temp. Epidemiol.
  doi: 10.1016/j.sste.2018.08.002
– volume: 751
  year: 2021
  ident: 10.1016/j.sste.2021.100471_bib0058
  article-title: The spread of COVID-19 virus through population density and wind in Turkey cities
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141663
– volume: 728
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0021
  article-title: Correlation between climate indicators and COVID-19 pandemic in New York, USA
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138835
– volume: 60
  start-page: 97
  year: 2017
  ident: 10.1016/j.sste.2021.100471_bib0039
  article-title: Metaheuristic design of feedforward neural networks: a review of two decades of research
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.01.013
– volume: 729
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0024
  article-title: Investigation of effective climatology parameters on COVID-19 outbreak in Iran
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.138705
– volume: 4
  start-page: 419
  issue: 3
  year: 1962
  ident: 10.1016/j.sste.2021.100471_bib0048
  article-title: Note on a method for calculating corrected sums of squares and products
  publication-title: Technometrics
  doi: 10.1080/00401706.1962.10490022
– volume: 36
  start-page: e3319
  issue: 7
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0068
  article-title: Diabetes is a risk factor for the progression and prognosis of COVID-19
  publication-title: Diabetes Metab. Res. Rev.
  doi: 10.1002/dmrr.3319
– volume: 160
  start-page: 249
  issue: 3
  year: 2003
  ident: 10.1016/j.sste.2021.100471_bib0046
  article-title: Review and comparison of methods to study the contribution of variables in artificial neural network models
  publication-title: Ecol. Modell.
  doi: 10.1016/S0304-3800(02)00257-0
– volume: 395
  start-page: 470
  issue: 10223
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0003
  article-title: A novel coronavirus outbreak of global health concern
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30185-9
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.sste.2021.100471_bib0047
  article-title: Sensitivity analysis of chaos in a nonlinear pendulum through artificial neural networks
  publication-title: Math. Eng. Sci. Aerospace (MESA)
– volume: 188
  start-page: 187
  year: 2018
  ident: 10.1016/j.sste.2021.100471_bib0020
  article-title: Machine learning approaches in GIS-based ecological modeling of the sand fly Phlebotomus papatasi, a vector of zoonotic cutaneous leishmaniasis in Golestan province, Iran
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2018.09.004
– volume: 2
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.sste.2021.100471_bib0050
  article-title: Spatio-temporal epidemiology: Principles and opportunities
  publication-title: Spat. Spatio Temp. Epidemiol.
  doi: 10.1016/j.sste.2010.10.001
– volume: 18
  start-page: 9488
  issue: 18
  year: 2021
  ident: 10.1016/j.sste.2021.100471_bib0055
  article-title: Spatial Modeling of COVID-19 vaccine hesitancy in the United States
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph18189488
– volume: 147
  start-page: 1112
  issue: 12
  year: 1998
  ident: 10.1016/j.sste.2021.100471_bib0008
  article-title: Epidemiologic interpretation of artificial neural networks
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/oxfordjournals.aje.a009409
– volume: 154
  start-page: 135
  issue: 1-2
  year: 2002
  ident: 10.1016/j.sste.2021.100471_bib0009
  article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks
  publication-title: Ecol. Modell.
  doi: 10.1016/S0304-3800(02)00064-9
– volume: 15
  start-page: 405
  issue: 3-4
  year: 1998
  ident: 10.1016/j.sste.2021.100471_bib0045
  article-title: Ranking importance of input parameters of neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(98)00041-4
– volume: 3
  year: 2021
  ident: 10.1016/j.sste.2021.100471_bib0017
  article-title: An analysis to identify the important variables for the spread of COVID-19 using numerical techniques and data science
  publication-title: Case Stud. Chem. Environ. Eng.
  doi: 10.1016/j.cscee.2020.100067
– volume: 13
  start-page: 853
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0029
  article-title: COVID-19: air pollution remains low as people stay at home
  publication-title: Air Quality Atmos. Health
  doi: 10.1007/s11869-020-00842-6
– volume: 21
  start-page: 20
  issue: 2
  year: 2016
  ident: 10.1016/j.sste.2021.100471_bib0040
  article-title: Predictive abilities of Bayesian regularization and levenberg–marquardt algorithms in artificial neural networks: a comparative empirical study on social data
  publication-title: Math. Comput. Appl.
– volume: 65
  year: 2021
  ident: 10.1016/j.sste.2021.100471_bib0004
  article-title: Sociodemographic determinants of COVID-19 incidence rates in Oman: geospatial modelling using multiscale geographically weighted regression (MGWR)
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102627
– volume: 568
  start-page: 666
  year: 2016
  ident: 10.1016/j.sste.2021.100471_bib0013
  article-title: Trends in sensitivity analysis practice in the last decade
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.02.133
– volume: 62
  start-page: 18
  issue: 1
  year: 2015
  ident: 10.1016/j.sste.2021.100471_bib0019
  article-title: Geographic information system-based analysis of the spatial and spatio-temporal distribution of zoonotic cutaneous leishmaniasis in Golestan Province, north-east of Iran
  publication-title: Zoonoses Public Health
  doi: 10.1111/zph.12109
– volume: 195
  start-page: 591
  issue: 2
  year: 2008
  ident: 10.1016/j.sste.2021.100471_bib0041
  article-title: A new model selection strategy in artificial neural networks
  publication-title: Appl. Math. Comput.
– volume: 318
  start-page: E736
  issue: 5
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0064
  article-title: COVID-19 pandemic, coronaviruses, and diabetes mellitus
  publication-title: Am. J. Physiol.Endocrinol. Metab.
  doi: 10.1152/ajpendo.00124.2020
– volume: 16
  start-page: 157
  issue: 1
  year: 2019
  ident: 10.1016/j.sste.2021.100471_bib0006
  article-title: A GIS-based artificial neural network model for spatial distribution of tuberculosis across the continental United States
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph16010157
– volume: 14
  start-page: 395
  issue: 4
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0067
  article-title: Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia–a systematic review, meta-analysis, and meta-regression
  publication-title: Diabetes Metab. Syndr. Clin. Res. Rev.
  doi: 10.1016/j.dsx.2020.04.018
– volume: 15
  start-page: 275
  issue: 4
  year: 2010
  ident: 10.1016/j.sste.2021.100471_bib0038
  article-title: Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000188
– year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0051
  article-title: Spatial epidemiology: an empirical framework for syndemics research
  publication-title: Soc. Sci. Med.
– volume: 8
  start-page: 196299
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0016
  article-title: Explainable machine learning for early assessment of COVID-19 risk prediction in emergency departments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3034032
– volume: 178
  start-page: 389
  issue: 3-4
  year: 2004
  ident: 10.1016/j.sste.2021.100471_bib0010
  article-title: An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
  publication-title: Ecol. Modell.
  doi: 10.1016/j.ecolmodel.2004.03.013
– volume: 37
  year: 2021
  ident: 10.1016/j.sste.2021.100471_bib0026
  article-title: COVID-19 modelling in the Caribbean: spatial and statistical assessments
  publication-title: Spatial Spatio Temp. Epidemiol.
– volume: 7
  start-page: 173
  issue: 2
  year: 1993
  ident: 10.1016/j.sste.2021.100471_bib0036
  article-title: Artificial neural networks for land-cover classification and mapping
  publication-title: Int. J. Geogr. Inform. Sci.
  doi: 10.1080/02693799308901949
– volume: 17
  start-page: 4204
  issue: 12
  year: 2020
  ident: 10.1016/j.sste.2021.100471_bib0005
  article-title: Artificial neural network modeling of novel coronavirus (COVID-19) incidence rates across the continental United States
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17124204
– volume: 116
  start-page: 15
  issue: 1
  year: 1999
  ident: 10.1016/j.sste.2021.100471_bib0012
  article-title: An artificial neural network approach to spatial habitat modelling with interspecific interaction
  publication-title: Ecol. Modell.
  doi: 10.1016/S0304-3800(98)00149-5
– ident: 10.1016/j.sste.2021.100471_bib0001
SSID ssj0068385
Score 2.4356284
Snippet •The relative importance of influential variables on COVID-19 varies over time.•Unemployment and population density are highly correlated with COVID-19...
The outbreak of coronavirus disease (COVID-19) has become one of the most challenging global concerns in recent years. Due to inadequate worldwide studies on...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100471
SubjectTerms Algorithms
Artificial neural network
COVID-19
GIS
Humans
Neural Networks, Computer
Prevalence
SARS-CoV-2
Spatio-temporal analysis
Variable importance analysis
Title Spatio-temporal modeling of COVID-19 prevalence and mortality using artificial neural network algorithms
URI https://dx.doi.org/10.1016/j.sste.2021.100471
https://www.ncbi.nlm.nih.gov/pubmed/35120681
https://www.proquest.com/docview/2626009007
https://pubmed.ncbi.nlm.nih.gov/PMC8580864
Volume 40
WOSCitedRecordID wos000744236300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1877-5853
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068385
  issn: 1877-5845
  databaseCode: AIEXJ
  dateStart: 20091001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpOkZhjN2XXYoGeysuvlt-DFnHui5ZYF3Jm5FtqUlI7BAnoexv7g_t6GanCSvbYC9OrEiW4_NJOjo-5zsIvWfcD9PcZwDeQKYwC6008jKLcRK4UU4okbFVV1-iwYCMRvGw1fppYmE2s6goyM1NvPivooYyELYInf0LcdcXhQL4DkKHI4gdjn8k-G_SR9rSnFMzletG-zb3vl6df7CcWFADQJ_MhAvMpRIuFPK1tB2Iy2pqCUF4KT-ku_gJnV2Xy8lqrEnOp1t9ataBaqd_1uSgrc33FwBKrly7B5NmZeiz6pqq0Pd-OabzOQVtmNJ8UlcQqFUvi7ppOeP0R-0gckE3TJqI-my8zGm-bc6AnbB9yzWkjrNpnJrEtEyiyAJVSb3_ZttlimrYzOWK-klPxoIMT-V30Ut7U7C3cCgbxvS0qiR5quuc7lcGOS_mEjUeqEl2SJxmEa1dG4f9HgkIbBT9A3TowgAgbXTYPT8bfTYKQkg8mSm2_lM6lku5He7ewBG6b3r7neq0vzXa9fDdUpkuH6GHeq-Duwqjj1GLFU_QA2Uoxir-7Ska7-AVG7zikmODV9zgFQPGcI1XLPGKG7xihVes8YobvD5D3z-eXfY-WTr9h5X5QbCyhCYZ58zOOMwlThgS5sNunsEjjfIYdltezkObURbZIaWcZl7KfKEPw6LlpNzNveeoXZQFe4lw4PospJ7Lcsp9zin1pLsBd3jqZy73O8gxTzbJNDe-SNEyS4wT5DQRgkmEYBIlmA46qdssFDPMnbUDI7BE67ZKZ00AgXe2e2ekm8DEL97m0YKV6ypxhSnCjkHH76AXStr1fRjEdFB0Cwd1BUEqf_uXYjKW5PIavK_-ueVrdNSM6zeovVqu2Vt0L9usJtXyGB1EI3KsRwScDYb9X0eH-Rc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-temporal+modeling+of+COVID-19+prevalence+and+mortality+using+artificial+neural+network+algorithms&rft.jtitle=Spatial+and+spatio-temporal+epidemiology&rft.au=Kianfar%2C+Nima&rft.au=Mesgari%2C+Mohammad+Saadi&rft.au=Mollalo%2C+Abolfazl&rft.au=Kaveh%2C+Mehrdad&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=1877-5845&rft.eissn=1877-5853&rft.volume=40&rft.spage=100471&rft.epage=100471&rft_id=info:doi/10.1016%2Fj.sste.2021.100471&rft_id=info%3Apmid%2F35120681&rft.externalDocID=PMC8580864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-5845&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-5845&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-5845&client=summon