Approximate residual balancing debiased inference of average treatment effects in high dimensions

There are many settings where researchers are interested in estimating average treatment effects and are willing to rely on the unconfoundedness assumption, which requires that the treatment assignment be as good as random conditional on pretreatment variables. The unconfoundedness assumption is oft...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Royal Statistical Society. Series B, Statistical methodology Ročník 80; číslo 4; s. 597 - 623
Hlavní autoři: Athey, Susan, Imbens, Guido W., Wager, Stefan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Wiley 01.09.2018
Oxford University Press
Témata:
ISSN:1369-7412, 1467-9868
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract There are many settings where researchers are interested in estimating average treatment effects and are willing to rely on the unconfoundedness assumption, which requires that the treatment assignment be as good as random conditional on pretreatment variables. The unconfoundedness assumption is often more plausible if a large number of pretreatment variables are included in the analysis, but this can worsen the performance of standard approaches to treatment effect estimation. We develop a method for debiasing penalized regression adjustments to allow sparse regression methods like the lasso to be used for √n-consistent inference of average treatment effects in high dimensional linear models. Given linearity, we do not need to assume that the treatment propensities are estimable, or that the average treatment effect is a sparse contrast of the outcome model parameters. Rather, in addition to standard assumptions used to make lasso regression on the outcome model consistent under 1-norm error, we require only overlap, i.e. that the propensity score be uniformly bounded away from 0 and 1. Procedurally, our method combines balancing weights with a regularized regression adjustment.
AbstractList There are many settings where researchers are interested in estimating average treatment effects and are willing to rely on the unconfoundedness assumption, which requires that the treatment assignment be as good as random conditional on pretreatment variables. The unconfoundedness assumption is often more plausible if a large number of pretreatment variables are included in the analysis, but this can worsen the performance of standard approaches to treatment effect estimation. We develop a method for debiasing penalized regression adjustments to allow sparse regression methods like the lasso to be used for √n-consistent inference of average treatment effects in high dimensional linear models. Given linearity, we do not need to assume that the treatment propensities are estimable, or that the average treatment effect is a sparse contrast of the outcome model parameters. Rather, in addition to standard assumptions used to make lasso regression on the outcome model consistent under 1-norm error, we require only overlap, i.e. that the propensity score be uniformly bounded away from 0 and 1. Procedurally, our method combines balancing weights with a regularized regression adjustment.
Summary There are many settings where researchers are interested in estimating average treatment effects and are willing to rely on the unconfoundedness assumption, which requires that the treatment assignment be as good as random conditional on pretreatment variables. The unconfoundedness assumption is often more plausible if a large number of pretreatment variables are included in the analysis, but this can worsen the performance of standard approaches to treatment effect estimation. We develop a method for debiasing penalized regression adjustments to allow sparse regression methods like the lasso to be used for √n‐consistent inference of average treatment effects in high dimensional linear models. Given linearity, we do not need to assume that the treatment propensities are estimable, or that the average treatment effect is a sparse contrast of the outcome model parameters. Rather, in addition to standard assumptions used to make lasso regression on the outcome model consistent under 1‐norm error, we require only overlap, i.e. that the propensity score be uniformly bounded away from 0 and 1. Procedurally, our method combines balancing weights with a regularized regression adjustment.
Author Wager, Stefan
Athey, Susan
Imbens, Guido W.
Author_xml – sequence: 1
  givenname: Susan
  surname: Athey
  fullname: Athey, Susan
– sequence: 2
  givenname: Guido W.
  surname: Imbens
  fullname: Imbens, Guido W.
– sequence: 3
  givenname: Stefan
  surname: Wager
  fullname: Wager, Stefan
BookMark eNp9kEtLAzEURoNUsK1u3CsFNyJMzWvyWNbiCwqC1XVIMhlJmc7UZAbtvzd11IWId5MEzrl8-UZgUDe1A-AYwSlKcxliNFOEMRN7YIgo45kUTAzSnTCZcYrwARjFuIJpGCdDcDrbbELz7te6dZPgoi86XU2MrnRtff1yCPZLXUV39HWOwfPN9dP8Lls83N7PZ4vM0jwXGdZOSkR5aXheYiOZcJia9NKFIawgNmcW4wJJxiw0XOZOCC6MNIyWGOeIjMF5vzeFee1cbNXaR-uqFMM1XVQYESQYRTlJ6NkvdNV0oU7pFIYSQi4w4Ym66CkbmhiDK9UmpE-GrUJQ7apSu6rUZ1UJhr9g61vd-qZug_bV3wrqlTdfue0_y9Xjcnn17Zz0ziq2TfhxMOOcII7JB8i9hU4
CitedBy_id crossref_primary_10_1080_07350015_2021_1981915
crossref_primary_10_1002_sim_10054
crossref_primary_10_1111_rssb_12327
crossref_primary_10_1257_aer_20190159
crossref_primary_10_1093_ectj_utad019
crossref_primary_10_1002_sim_9826
crossref_primary_10_1080_19345747_2025_2483775
crossref_primary_10_1017_pan_2022_12
crossref_primary_10_1145_3636423
crossref_primary_10_1016_j_ijar_2024_109311
crossref_primary_10_1111_sjos_12542
crossref_primary_10_1080_01621459_2019_1660173
crossref_primary_10_3982_QE1494
crossref_primary_10_1016_j_ejor_2022_01_046
crossref_primary_10_1093_biostatistics_kxad002
crossref_primary_10_1093_biostatistics_kxaf023
crossref_primary_10_1093_jrsssb_qkaf019
crossref_primary_10_1093_biomet_asz059
crossref_primary_10_1162_rest_a_00793
crossref_primary_10_1093_biomet_asab042
crossref_primary_10_1093_biomet_asaa071
crossref_primary_10_1111_rssa_12623
crossref_primary_10_1080_07350015_2021_1946067
crossref_primary_10_1093_jrsssb_qkad075
crossref_primary_10_1016_j_csda_2021_107371
crossref_primary_10_1080_07350015_2020_1847122
crossref_primary_10_1214_18_AOS1698
crossref_primary_10_1002_sim_8741
crossref_primary_10_3982_ECTA16294
crossref_primary_10_1145_3735969
crossref_primary_10_1002_sim_70006
crossref_primary_10_1145_3665494
crossref_primary_10_1214_23_AOS2302
crossref_primary_10_1016_j_patcog_2024_111195
crossref_primary_10_2139_ssrn_2993326
crossref_primary_10_3982_ECTA18515
crossref_primary_10_1146_annurev_statistics_033121_114601
crossref_primary_10_1111_rssb_12426
crossref_primary_10_1214_18_BA1131
crossref_primary_10_1080_07350015_2019_1681278
crossref_primary_10_1257_aer_20201237
crossref_primary_10_1080_07350015_2019_1681277
crossref_primary_10_1162_rest_a_01017
crossref_primary_10_1109_TBDATA_2024_3489413
crossref_primary_10_1214_21_AOS2080
crossref_primary_10_1145_3477052
crossref_primary_10_1080_10705511_2021_1971527
crossref_primary_10_3982_ECTA21204
crossref_primary_10_1109_TKDE_2022_3169333
crossref_primary_10_1017_S0022109023000133
crossref_primary_10_1038_s42256_022_00445_z
crossref_primary_10_1109_TPAMI_2023_3321097
crossref_primary_10_1080_01621459_2022_2147841
crossref_primary_10_1080_10485252_2022_2061483
crossref_primary_10_1093_jrsssa_qnad032
crossref_primary_10_1111_insr_12518
crossref_primary_10_1145_3365677
crossref_primary_10_1016_j_jue_2024_103689
crossref_primary_10_1111_biom_13609
crossref_primary_10_1002_cjs_70001
crossref_primary_10_1146_annurev_soc_030420_015345
crossref_primary_10_1016_j_neucom_2023_126406
crossref_primary_10_1111_rssa_12561
crossref_primary_10_1360_SSM_2023_0325
crossref_primary_10_1016_j_ijindorg_2021_102736
crossref_primary_10_2139_ssrn_4546996
crossref_primary_10_1007_s10618_021_00797_x
crossref_primary_10_1093_bib_bbac227
crossref_primary_10_1257_jel_20191597
crossref_primary_10_1016_j_jeconom_2023_105545
crossref_primary_10_1016_j_jeconom_2020_09_013
crossref_primary_10_1002_bimj_70063
crossref_primary_10_1017_pan_2020_2
crossref_primary_10_1109_TLT_2023_3264772
crossref_primary_10_3102_10769986231155427
crossref_primary_10_1080_01621459_2020_1796393
crossref_primary_10_1016_j_scitotenv_2022_155311
crossref_primary_10_1017_pan_2020_31
crossref_primary_10_1093_jrsssb_qkae097
crossref_primary_10_1002_bimj_202200122
crossref_primary_10_1002_sim_8659
crossref_primary_10_1093_bib_bbab331
crossref_primary_10_1111_anzs_70004
crossref_primary_10_1177_0049124118782542
crossref_primary_10_1214_24_AOS2476
crossref_primary_10_1109_LSP_2025_3543742
crossref_primary_10_1109_TKDE_2022_3150807
crossref_primary_10_1093_biomet_asaa016
crossref_primary_10_1145_3714430
crossref_primary_10_1016_j_rie_2020_10_009
crossref_primary_10_1007_s11749_023_00870_1
crossref_primary_10_1093_ectj_utac019
crossref_primary_10_1080_01621459_2025_2537452
crossref_primary_10_1093_ectj_utac018
crossref_primary_10_1016_j_jeconom_2019_10_014
crossref_primary_10_1093_ectj_utac015
crossref_primary_10_1214_24_AOS2409
crossref_primary_10_1145_3397269
crossref_primary_10_1002_smj_3604
crossref_primary_10_1016_j_econlet_2024_111761
crossref_primary_10_1214_21_STS843
crossref_primary_10_1109_TNSM_2022_3193099
crossref_primary_10_1007_s11766_022_4489_3
crossref_primary_10_1093_biomet_asad016
crossref_primary_10_1002_sim_9352
crossref_primary_10_1016_j_trc_2023_104371
crossref_primary_10_1093_jrsssb_qkae117
crossref_primary_10_1093_biomet_asaa020
crossref_primary_10_1016_j_patcog_2023_110033
crossref_primary_10_1093_jrsssb_qkaf006
crossref_primary_10_1111_sjos_12721
crossref_primary_10_1109_TGRS_2024_3432397
crossref_primary_10_1111_biom_13417
crossref_primary_10_1016_j_jeconom_2020_01_018
crossref_primary_10_3390_math11040932
crossref_primary_10_1080_00031305_2024_2303419
crossref_primary_10_1093_ectj_utae004
crossref_primary_10_1007_s13042_021_01486_3
crossref_primary_10_1109_ACCESS_2024_3524261
crossref_primary_10_1214_19_AOS1824
crossref_primary_10_1080_01621459_2021_1929245
crossref_primary_10_1080_08853908_2021_1992320
crossref_primary_10_1109_ACCESS_2025_3547688
crossref_primary_10_1111_rssc_12511
crossref_primary_10_1093_biomet_asz050
crossref_primary_10_1080_01621459_2023_2233162
crossref_primary_10_1016_j_ecosta_2022_01_007
crossref_primary_10_1093_ectj_utab027
crossref_primary_10_3982_ECTA16901
crossref_primary_10_1016_j_jdeveco_2023_103165
crossref_primary_10_1093_ectj_utae014
crossref_primary_10_1177_0962280220983512
crossref_primary_10_1145_3379500
crossref_primary_10_1016_j_ject_2025_06_001
crossref_primary_10_1287_mksc_2018_1135
crossref_primary_10_5937_EKOPRE2502097V
crossref_primary_10_1016_j_rcim_2022_102356
crossref_primary_10_1093_restud_rdad089
crossref_primary_10_1111_biom_13370
Cites_doi 10.1214/16-AOS1515
10.1214/009053607000000947
10.1093/biomet/asr043
10.1093/biomet/70.1.41
10.1080/01621459.1994.10476818
10.1080/07350015.2015.1038544
10.1109/TIT.2013.2243201
10.1016/j.jclinepi.2009.11.020
10.1214/08-AOAS187
10.1080/01621459.1992.10475217
10.1111/rssb.12027
10.1214/15-AOS1397
10.1073/pnas.1614732113
10.3982/ECTA12723
10.1111/rssb.12026
10.1080/02331888.2016.1265969
10.2307/2998561
10.1093/biomet/asq035
10.1016/j.jeconom.2015.06.017
10.1002/(SICI)1097-0258(19970215)16:3<285::AID-SIM535>3.0.CO;2-#
10.1111/j.1468-0262.2004.00482.x
10.1080/01621459.1999.10473862
10.1093/restud/rdt044
10.1111/j.1467-9868.2005.00503.x
10.1017/CBO9781139025751
10.1093/pan/mpr025
10.1080/01621459.1995.10476494
10.1080/01621459.1995.10476493
10.1086/505050
10.1007/978-1-4419-9782-1
10.1093/biomet/63.3.615
10.2202/1544-6115.1309
10.1214/15-AOAS842
10.1162/003465399557860
10.1007/978-1-4757-3692-2
10.1214/08-AOS620
10.1111/1468-0262.00442
10.1111/rssb.12129
10.1037/h0037350
10.1111/1467-937X.00044
10.1137/S1064827596304010
10.2202/1557-4679.1043
10.1037/1082-989X.9.4.403
10.1201/b18401
10.1214/16-AOS1448
10.1111/j.1468-0262.2006.00655.x
10.1111/1468-0262.00260
10.1093/biomet/asn055
10.1111/j.2517-6161.1996.tb02080.x
10.1214/14-AOS1221
10.2307/2998560
10.1214/07-STS227D
10.1093/restud/rdr047
10.1080/01621459.2015.1023805
ContentType Journal Article
Copyright 2018 Royal Statistical Society
Copyright © 2018 The Royal Statistical Society and Blackwell Publishing Ltd
Copyright_xml – notice: 2018 Royal Statistical Society
– notice: Copyright © 2018 The Royal Statistical Society and Blackwell Publishing Ltd
DBID AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
DOI 10.1111/rssb.12268
DatabaseName CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef

International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1467-9868
EndPage 623
ExternalDocumentID 10_1111_rssb_12268
RSSB12268
26773172
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
10A
1OC
29L
2AX
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AAONW
AAPXW
AASGY
AAUAY
AAWIL
AAXRX
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABDFA
ABEHJ
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQH
ABPQP
ABPTD
ABPVW
ABWST
ABXSQ
ABYWD
ABZEH
ACAHQ
ACCZN
ACGFS
ACHJO
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADRDM
ADVEK
ADZMN
AEGXH
AEIMD
AEMOZ
AEUPB
AFBPY
AFEBI
AFGKR
AFVYC
AFXHP
AFZJQ
AGLNM
AHQJS
AIHAF
AIURR
AJAOE
AJNCP
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMVHM
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CJ0
CO8
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
G-S
G.N
GODZA
H.T
H.X
HQ6
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NU-
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZL0
ZZTAW
~02
~IA
~KM
~WT
.Y3
3-9
31~
AANHP
AARHZ
ACBWZ
ACFRR
ACRPL
ACYXJ
ADNMO
ADQBN
ADULT
AGQPQ
ANFBD
AS~
ATGXG
AZFZN
COF
FEDTE
FVMVE
H13
HF~
HGD
HVGLF
H~9
NHB
RJQFR
ZGI
AAYXX
ABEJV
CITATION
O8X
OJZSN
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c4558-2ae99147fb75f2b968e24bfb7adb36d3c56c22d1966c0b795e8878b9b64f22513
IEDL.DBID DRFUL
ISICitedReferencesCount 188
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000442217900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1369-7412
IngestDate Fri Oct 03 00:14:52 EDT 2025
Mon Nov 10 12:10:47 EST 2025
Sat Nov 29 05:52:03 EST 2025
Tue Nov 18 21:06:50 EST 2025
Sun Sep 21 06:22:30 EDT 2025
Thu Jul 03 22:07:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4558-2ae99147fb75f2b968e24bfb7adb36d3c56c22d1966c0b795e8878b9b64f22513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2090078237
PQPubID 39359
PageCount 27
ParticipantIDs proquest_miscellaneous_2131864153
proquest_journals_2090078237
crossref_primary_10_1111_rssb_12268
crossref_citationtrail_10_1111_rssb_12268
wiley_primary_10_1111_rssb_12268_RSSB12268
jstor_primary_26773172
PublicationCentury 2000
PublicationDate September 2018
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationYear 2018
Publisher Wiley
Oxford University Press
Publisher_xml – name: Wiley
– name: Oxford University Press
References 2017; 5
1976; 63
2017; 85
2010; 97
2006; 74
1986; 76
2015; 189
2017; 45
2004; 9
2008; 36
2011; 98
1999; 81
2008; 2
2010; 63
2005; 67
2016; 78
2016; 34
2013; 18
2009; 96
2004; 72
2013; 59
2006; 24
2016; 113
2014; 15
2007; 6
1997; 16
1999; 94
1992; 87
2007; 22
2012; 20
2016; 44
2010; 33
1995; 90
2011
1994; 89
2007
2002
1983; 70
2006; 2
2003; 71
1996; 58
2015; 9
2012; 79
1998; 65
1998; 20
2001; 69
1998; 66
2014; 42
2014; 81
1974; 66
2015; 110
2017
2016
2015
2009; 37
2014; 76
Scharfstein (2023022002492088100_) 1999; 94
Hellerstein (2023022002492088100_) 1999; 81
Ning (2023022002492088100_) 2017; 45
Rubin (2023022002492088100_) 2008; 2
Rudelson (2023022002492088100_) 2013; 18
Rudelson (2023022002492088100_) 2013; 59
Abadie (2023022002492088100_) 2006; 74
Hainmueller (2023022002492088100_) 2012; 20
Bogdan (2023022002492088100_) 2015; 9
Imai (2023022002492088100_) 2014; 76
Van der Laan (2023022002492088100_) 2011
Chernozhukov (2023022002492088100_) 2017
Graham (2023022002492088100_) 2012; 79
Robins (2023022002492088100_) 2007; 22
Chen (2023022002492088100_) 1998; 20
Zhang (2023022002492088100_) 2014; 76
Friedman (2023022002492088100_) 2010; 33
Hahn (2023022002492088100_) 1998; 66
Hastie (2023022002492088100_) 2015
Wang (2023022002492088100_) 2017
Van der Laan (2023022002492088100_) 2006; 2
Zhao (2023022002492088100_) 2016
McCaffrey (2023022002492088100_) 2004; 9
Imbens (2023022002492088100_) 1998; 66
Newey (2023022002492088100_) 2004; 72
Chen (2023022002492088100_) 2008; 36
Su (2023022002492088100_) 2016; 44
Bickel (2023022002492088100_) 2009; 37
Crump (2023022002492088100_) 2009; 96
Deville (2023022002492088100_) 1992; 87
MOSEK (2023022002492088100_) 2015
Robins (2023022002492088100_) 1997; 16
Tsiatis (2023022002492088100_) 2007
Zhao (2023022002492088100_) 2017; 5
Robins (2023022002492088100_) 1994; 89
Hirano (2023022002492088100_) 2001; 69
Hirano (2023022002492088100_) 2003; 71
Kang (2023022002492088100_) 2007; 22
Belloni (2023022002492088100_) 2017; 85
Cassel (2023022002492088100_) 1976; 63
Van der Laan (2023022002492088100_) 2007; 6
Cai (2023022002492088100_) 2017; 45
Javanmard (2023022002492088100_) 2015
Rubin (2023022002492088100_) 1974; 66
Hotz (2023022002492088100_) 2006; 24
Robins (2023022002492088100_) 1995; 90
Westreich (2023022002492088100_) 2010; 63
Zhu (2023022002492088100_) 2016
Heckman (2023022002492088100_) 1998; 65
Tibshirani (2023022002492088100_) 1996; 58
Graham (2023022002492088100_) 2016; 34
Hirshberg (2023022002492088100_) 2017
Wager (2023022002492088100_) 2016; 113
Farrell (2023022002492088100_) 2015; 189
Rosenbaum (2023022002492088100_) 2002
Zubizarreta (2023022002492088100_) 2015; 110
Robins (2023022002492088100_) 2017; 45
LaLonde (2023022002492088100_) 1986; 76
Imbens (2023022002492088100_) 2015
Zou (2023022002492088100_) 2005; 67
Rosenbaum (2023022002492088100_) 1983; 70
Tan (2023022002492088100_) 2010; 97
Belloni (2023022002492088100_) 2011; 98
Belloni (2023022002492088100_) 2014; 81
Javanmard (2023022002492088100_) 2014; 15
Chan (2023022002492088100_) 2016; 78
Van de Geer (2023022002492088100_) 2014; 42
References_xml – year: 2011
– volume: 98
  start-page: 791
  year: 2011
  end-page: 806
  article-title: Square‐root lasso: pivotal recovery of sparse signals via conic programming
  publication-title: Biometrika
– volume: 69
  start-page: 1645
  year: 2001
  end-page: 1659
  article-title: Combining panels with attrition and refreshment samples
  publication-title: Econometrica
– volume: 76
  start-page: 604
  year: 1986
  end-page: 620
  article-title: Evaluating the econometric evaluations of training programs with experimental data
  publication-title: Am. Econ. Rev.
– volume: 2
  start-page: 808
  year: 2008
  end-page: 840
  article-title: For objective causal inference, design trumps analysis
  publication-title: Ann. Appl. Statist.
– volume: 71
  start-page: 1161
  year: 2003
  end-page: 1189
  article-title: Efficient estimation of average treatment effects using the estimated propensity score
  publication-title: Econometrica
– volume: 85
  start-page: 233
  year: 2017
  end-page: 298
  article-title: Program evaluation and causal inference with high‐dimensional data
  publication-title: Econometrica
– volume: 90
  start-page: 106
  year: 1995
  end-page: 121
  article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
  publication-title: J. Am. Statist. Ass.
– volume: 94
  start-page: 1096
  year: 1999
  end-page: 1120
  article-title: Adjusting for nonignorable drop‐out using semiparametric nonresponse models
  publication-title: J. Am. Statist. Ass.
– volume: 42
  start-page: 1166
  year: 2014
  end-page: 1202
  article-title: On asymptotically optimal confidence regions and tests for high‐dimensional models
  publication-title: Ann. Statist.
– volume: 15
  start-page: 2869
  year: 2014
  end-page: 2909
  article-title: Confidence intervals and hypothesis testing for high‐dimensional regression
  publication-title: J. Mach. Learn. Res.
– year: 2016
  article-title: Linear hypothesis testing in dense high‐dimensional linear models
  publication-title: J. Am. Statist. Ass.
– volume: 9
  start-page: 1103
  year: 2015
  end-page: 1140
  article-title: SLOPE: adaptive variable selection via convex optimization
  publication-title: Ann. Appl. Statist.
– volume: 76
  start-page: 243
  year: 2014
  end-page: 263
  article-title: Covariate balancing propensity score
  publication-title: J. R. Statist. Soc. B
– volume: 78
  start-page: 673
  year: 2016
  end-page: 700
  article-title: Globally efficient non‐parametric inference of average treatment effects by empirical balancing calibration weighting
  publication-title: J. R. Statist. Soc. B
– volume: 90
  start-page: 122
  year: 1995
  end-page: 129
  article-title: Semiparametric efficiency in multivariate regression models with missing data
  publication-title: J. Am. Statist. Ass.
– volume: 36
  start-page: 808
  year: 2008
  end-page: 843
  article-title: Semiparametric efficiency in GMM models with auxiliary data
  publication-title: Ann. Statist.
– volume: 76
  start-page: 217
  year: 2014
  end-page: 242
  article-title: Confidence intervals for low dimensional parameters in high dimensional linear models
  publication-title: J. R. Statist. Soc. B
– volume: 5
  year: 2017
  article-title: Entropy balancing is doubly robust
  publication-title: J. Causl Inf.
– volume: 87
  start-page: 376
  year: 1992
  end-page: 382
  article-title: Calibration estimators in survey sampling
  publication-title: J. Am. Statist. Ass.
– volume: 63
  start-page: 826
  year: 2010
  end-page: 833
  article-title: Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta‐classifiers as alternatives to logistic regression
  publication-title: J. Clin. Epidem.
– volume: 65
  start-page: 261
  year: 1998
  end-page: 294
  article-title: Matching as an econometric evaluation estimator
  publication-title: Rev. Econ. Stud.
– volume: 45
  start-page: 1951
  year: 2017
  end-page: 1987
  article-title: Minimax estimation of a functional on a structured high dimensional model
  publication-title: Ann. Statist.
– volume: 16
  start-page: 285
  year: 1997
  end-page: 319
  article-title: Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi‐parametric models
  publication-title: Statist. Med.
– volume: 20
  start-page: 33
  year: 1998
  end-page: 61
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM J. Scient. Comput.
– volume: 81
  start-page: 1
  year: 1999
  end-page: 14
  article-title: Imposing moment restrictions by weighting
  publication-title: Rev. Econ. Statist.
– volume: 66
  start-page: 333
  year: 1998
  end-page: 357
  article-title: Information theoretic approaches to inference in moment condition models
  publication-title: Econometrica
– volume: 63
  start-page: 615
  year: 1976
  end-page: 620
  article-title: Some results on generalized difference estimation and generalized regression estimation for finite populations
  publication-title: Biometrika
– volume: 79
  start-page: 1053
  year: 2012
  end-page: 1079
  article-title: Inverse probability tilting for moment condition models with missing data
  publication-title: Rev. Econ. Stud.
– year: 2015
– volume: 9
  start-page: 403
  year: 2004
  end-page: 425
  article-title: Propensity score estimation with boosted regression for evaluating causal effects in observational studies
  publication-title: Psychol. Meth.
– volume: 66
  start-page: 688
  year: 1974
  end-page: 701
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J. Educ. Psychol.
– volume: 189
  start-page: 1
  year: 2015
  end-page: 23
  article-title: Robust inference on average treatment effects with possibly more covariates than observations
  publication-title: J. Econmetr.
– volume: 72
  start-page: 219
  year: 2004
  end-page: 255
  article-title: Higher order properties of GMM and generalized empirical likelihood estimators
  publication-title: Econometrica
– volume: 2
  year: 2006
  article-title: Targeted maximum likelihood learning
  publication-title: Int. J. Biostatist.
– volume: 74
  start-page: 235
  year: 2006
  end-page: 267
  article-title: Large sample properties of matching estimators for average treatment effects
  publication-title: Econometrica
– volume: 22
  start-page: 523
  year: 2007
  end-page: 529
  article-title: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data
  publication-title: Statist. Sci.
– volume: 59
  start-page: 3434
  year: 2013
  end-page: 3447
  article-title: Reconstruction from anisotropic random measurements
  publication-title: IEEE Trans. Inform. Theory
– volume: 20
  start-page: 25
  year: 2012
  end-page: 46
  article-title: Entropy balancing for causal effects: a multivariate reweighting method to produce balanced samples in observational studies
  publication-title: Polit. Anal.
– volume: 45
  start-page: 158
  year: 2017
  end-page: 195
  article-title: A general theory of hypothesis tests and confidence regions for sparse high dimensional models
  publication-title: Ann. Statist.
– volume: 18
  start-page: 1
  year: 2013
  end-page: 9
  article-title: Hanson‐Wright inequality and sub‐Gaussian concentration
  publication-title: Electron. Communs Probab.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Statist. Soc.
– volume: 81
  start-page: 608
  year: 2014
  end-page: 650
  article-title: Inference on treatment effects after selection among high‐dimensional controls
  publication-title: Rev. Econ. Stud.
– year: 2007
– volume: 66
  start-page: 315
  year: 1998
  end-page: 331
  article-title: On the role of the propensity score in efficient semiparametric estimation of average treatment effects
  publication-title: Econometrica
– volume: 70
  start-page: 41
  year: 1983
  end-page: 55
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– volume: 97
  start-page: 661
  year: 2010
  end-page: 682
  article-title: Bounded, efficient and doubly robust estimation with inverse weighting
  publication-title: Biometrika
– volume: 96
  start-page: 187
  year: 2009
  end-page: 199
  article-title: Dealing with limited overlap in estimation of average treatment effects
  publication-title: Biometrika
– year: 2016
– volume: 45
  start-page: 615
  year: 2017
  end-page: 646
  article-title: Confidence intervals for high‐dimensional linear regression: minimax rates and adaptivity
  publication-title: Ann. Statist.
– volume: 6
  start-page: article 25
  year: 2007
  article-title: Super learner
  publication-title: Statist. Appl. Genet., Molec. Biol.
– volume: 22
  start-page: 544
  year: 2007
  end-page: 559
  article-title: Comment: Performance of double‐robust estimators when inverse probability weights are highly variable
  publication-title: Statist. Sci.
– volume: 110
  start-page: 910
  year: 2015
  end-page: 922
  article-title: Stable weights that balance covariates for estimation with incomplete outcome data
  publication-title: J. Am. Statist. Ass.
– volume: 37
  start-page: 1705
  year: 2009
  end-page: 1732
  article-title: Simultaneous analysis of lasso and Dantzig selector
  publication-title: Ann. Statist.
– volume: 44
  start-page: 1038
  year: 2016
  end-page: 1068
  article-title: SLOPE is adaptive to unknown sparsity and asymptotically minimax
  publication-title: Ann. Statist.
– year: 2017
  article-title: Double/debiased machine learning for treatment and structural parameters
  publication-title: Econmetr. J.
– year: 2002
– volume: 24
  start-page: 521
  year: 2006
  end-page: 566
  article-title: Evaluating the differential effects of alternative welfare‐to‐work training components: a reanalysis of the California GAIN program
  publication-title: J. Lab. Econ.
– volume: 113
  start-page: 12673
  year: 2016
  end-page: 12678
  article-title: High‐dimensional regression adjustments in randomized experiments
  publication-title: Proc. Natn. Acad. Sci. USA
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Statist. Softwr.
– year: 2017
– volume: 89
  start-page: 846
  year: 1994
  end-page: 866
  article-title: Estimation of regression coefficients when some regressors are not always observed
  publication-title: J. Am. Statist. Ass.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Statist. Soc. B
– volume: 34
  start-page: 288
  year: 2016
  end-page: 301
  article-title: Efficient estimation of data combination models by the method of auxiliary‐to‐study tilting (AST)
  publication-title: J. Bus. Econ. Statist.
– volume: 45
  start-page: 1951
  year: 2017
  ident: 2023022002492088100_
  article-title: Minimax estimation of a functional on a structured high dimensional model
  publication-title: Ann. Statist.
  doi: 10.1214/16-AOS1515
– volume: 36
  start-page: 808
  year: 2008
  ident: 2023022002492088100_
  article-title: Semiparametric efficiency in GMM models with auxiliary data
  publication-title: Ann. Statist.
  doi: 10.1214/009053607000000947
– volume: 98
  start-page: 791
  year: 2011
  ident: 2023022002492088100_
  article-title: Square-root lasso: pivotal recovery of sparse signals via conic programming
  publication-title: Biometrika
  doi: 10.1093/biomet/asr043
– volume: 70
  start-page: 41
  year: 1983
  ident: 2023022002492088100_
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– volume: 89
  start-page: 846
  year: 1994
  ident: 2023022002492088100_
  article-title: Estimation of regression coefficients when some regressors are not always observed
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1994.10476818
– volume: 34
  start-page: 288
  year: 2016
  ident: 2023022002492088100_
  article-title: Efficient estimation of data combination models by the method of auxiliary-to-study tilting (AST)
  publication-title: J. Bus. Econ. Statist.
  doi: 10.1080/07350015.2015.1038544
– volume: 59
  start-page: 3434
  year: 2013
  ident: 2023022002492088100_
  article-title: Reconstruction from anisotropic random measurements
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2013.2243201
– volume: 5
  issue: 1
  year: 2017
  ident: 2023022002492088100_
  article-title: Entropy balancing is doubly robust
  publication-title: J. Causl Inf.
– volume-title: Preprint arXiv:1705.00998
  year: 2017
  ident: 2023022002492088100_
  article-title: Approximate balancing weights: characterizations from a shrinkage estimation perspective
– volume: 63
  start-page: 826
  year: 2010
  ident: 2023022002492088100_
  article-title: Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
  publication-title: J. Clin. Epidem.
  doi: 10.1016/j.jclinepi.2009.11.020
– volume: 2
  start-page: 808
  year: 2008
  ident: 2023022002492088100_
  article-title: For objective causal inference, design trumps analysis
  publication-title: Ann. Appl. Statist.
  doi: 10.1214/08-AOAS187
– volume: 87
  start-page: 376
  year: 1992
  ident: 2023022002492088100_
  article-title: Calibration estimators in survey sampling
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1992.10475217
– volume: 76
  start-page: 243
  year: 2014
  ident: 2023022002492088100_
  article-title: Covariate balancing propensity score
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/rssb.12027
– volume: 15
  start-page: 2869
  year: 2014
  ident: 2023022002492088100_
  article-title: Confidence intervals and hypothesis testing for high-dimensional regression
  publication-title: J. Mach. Learn. Res.
– volume: 33
  start-page: 1
  year: 2010
  ident: 2023022002492088100_
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Statist. Softwr.
– volume: 44
  start-page: 1038
  year: 2016
  ident: 2023022002492088100_
  article-title: SLOPE is adaptive to unknown sparsity and asymptotically minimax
  publication-title: Ann. Statist.
  doi: 10.1214/15-AOS1397
– volume: 113
  start-page: 12673
  year: 2016
  ident: 2023022002492088100_
  article-title: High-dimensional regression adjustments in randomized experiments
  publication-title: Proc. Natn. Acad. Sci. USA
  doi: 10.1073/pnas.1614732113
– volume: 85
  start-page: 233
  year: 2017
  ident: 2023022002492088100_
  article-title: Program evaluation and causal inference with high-dimensional data
  publication-title: Econometrica
  doi: 10.3982/ECTA12723
– volume-title: Preprint arXiv:1712.00038
  year: 2017
  ident: 2023022002492088100_
  article-title: Balancing out regression error: efficient treatment effect estimation without smooth propensities
– volume-title: Preprint arXiv:1508.02757
  year: 2015
  ident: 2023022002492088100_
  article-title: De-biasing the lasso: optimal sample size for Gaussian designs
– volume: 76
  start-page: 604
  year: 1986
  ident: 2023022002492088100_
  article-title: Evaluating the econometric evaluations of training programs with experimental data
  publication-title: Am. Econ. Rev.
– volume: 76
  start-page: 217
  year: 2014
  ident: 2023022002492088100_
  article-title: Confidence intervals for low dimensional parameters in high dimensional linear models
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/rssb.12026
– volume: 45
  start-page: 615
  year: 2017
  ident: 2023022002492088100_
  article-title: Confidence intervals for high-dimensional linear regression: minimax rates and adaptivity
  publication-title: Ann. Statist.
  doi: 10.1080/02331888.2016.1265969
– volume: 66
  start-page: 333
  year: 1998
  ident: 2023022002492088100_
  article-title: Information theoretic approaches to inference in moment condition models
  publication-title: Econometrica
  doi: 10.2307/2998561
– volume: 97
  start-page: 661
  year: 2010
  ident: 2023022002492088100_
  article-title: Bounded, efficient and doubly robust estimation with inverse weighting
  publication-title: Biometrika
  doi: 10.1093/biomet/asq035
– volume: 189
  start-page: 1
  year: 2015
  ident: 2023022002492088100_
  article-title: Robust inference on average treatment effects with possibly more covariates than observations
  publication-title: J. Econmetr.
  doi: 10.1016/j.jeconom.2015.06.017
– volume: 16
  start-page: 285
  year: 1997
  ident: 2023022002492088100_
  article-title: Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19970215)16:3<285::AID-SIM535>3.0.CO;2-#
– volume: 72
  start-page: 219
  year: 2004
  ident: 2023022002492088100_
  article-title: Higher order properties of GMM and generalized empirical likelihood estimators
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2004.00482.x
– volume: 94
  start-page: 1096
  year: 1999
  ident: 2023022002492088100_
  article-title: Adjusting for nonignorable drop-out using semiparametric nonresponse models
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1999.10473862
– volume: 81
  start-page: 608
  year: 2014
  ident: 2023022002492088100_
  article-title: Inference on treatment effects after selection among high-dimensional controls
  publication-title: Rev. Econ. Stud.
  doi: 10.1093/restud/rdt044
– volume: 67
  start-page: 301
  year: 2005
  ident: 2023022002492088100_
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Statist. Soc.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 22
  start-page: 523
  year: 2007
  ident: 2023022002492088100_
  article-title: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data
  publication-title: Statist. Sci.
– volume-title: Causal Inference in Statistics, Social, and Biomedical Sciences
  year: 2015
  ident: 2023022002492088100_
  doi: 10.1017/CBO9781139025751
– volume: 20
  start-page: 25
  year: 2012
  ident: 2023022002492088100_
  article-title: Entropy balancing for causal effects: a multivariate reweighting method to produce balanced samples in observational studies
  publication-title: Polit. Anal.
  doi: 10.1093/pan/mpr025
– volume: 90
  start-page: 122
  year: 1995
  ident: 2023022002492088100_
  article-title: Semiparametric efficiency in multivariate regression models with missing data
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1995.10476494
– volume: 90
  start-page: 106
  year: 1995
  ident: 2023022002492088100_
  article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1995.10476493
– volume: 18
  start-page: 1
  year: 2013
  ident: 2023022002492088100_
  article-title: Hanson-Wright inequality and sub-Gaussian concentration
  publication-title: Electron. Communs Probab.
– volume: 24
  start-page: 521
  year: 2006
  ident: 2023022002492088100_
  article-title: Evaluating the differential effects of alternative welfare-to-work training components: a reanalysis of the California GAIN program
  publication-title: J. Lab. Econ.
  doi: 10.1086/505050
– volume-title: Targeted Learning: Causal Inference for Observational and Experimental Data
  year: 2011
  ident: 2023022002492088100_
  doi: 10.1007/978-1-4419-9782-1
– volume: 63
  start-page: 615
  year: 1976
  ident: 2023022002492088100_
  article-title: Some results on generalized difference estimation and generalized regression estimation for finite populations
  publication-title: Biometrika
  doi: 10.1093/biomet/63.3.615
– volume: 6
  start-page: article 25
  year: 2007
  ident: 2023022002492088100_
  article-title: Super learner
  publication-title: Statist. Appl. Genet., Molec. Biol.
  doi: 10.2202/1544-6115.1309
– volume: 9
  start-page: 1103
  year: 2015
  ident: 2023022002492088100_
  article-title: SLOPE: adaptive variable selection via convex optimization
  publication-title: Ann. Appl. Statist.
  doi: 10.1214/15-AOAS842
– volume: 81
  start-page: 1
  year: 1999
  ident: 2023022002492088100_
  article-title: Imposing moment restrictions by weighting
  publication-title: Rev. Econ. Statist.
  doi: 10.1162/003465399557860
– volume-title: Observational Studies
  year: 2002
  ident: 2023022002492088100_
  doi: 10.1007/978-1-4757-3692-2
– volume: 37
  start-page: 1705
  year: 2009
  ident: 2023022002492088100_
  article-title: Simultaneous analysis of lasso and Dantzig selector
  publication-title: Ann. Statist.
  doi: 10.1214/08-AOS620
– volume: 71
  start-page: 1161
  year: 2003
  ident: 2023022002492088100_
  article-title: Efficient estimation of average treatment effects using the estimated propensity score
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00442
– volume: 78
  start-page: 673
  year: 2016
  ident: 2023022002492088100_
  article-title: Globally efficient non-parametric inference of average treatment effects by empirical balancing calibration weighting
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/rssb.12129
– volume: 66
  start-page: 688
  year: 1974
  ident: 2023022002492088100_
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J. Educ. Psychol.
  doi: 10.1037/h0037350
– volume: 65
  start-page: 261
  year: 1998
  ident: 2023022002492088100_
  article-title: Matching as an econometric evaluation estimator
  publication-title: Rev. Econ. Stud.
  doi: 10.1111/1467-937X.00044
– volume: 20
  start-page: 33
  year: 1998
  ident: 2023022002492088100_
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM J. Scient. Comput.
  doi: 10.1137/S1064827596304010
– volume: 2
  issue: 1
  year: 2006
  ident: 2023022002492088100_
  article-title: Targeted maximum likelihood learning
  publication-title: Int. J. Biostatist.
  doi: 10.2202/1557-4679.1043
– volume-title: Semiparametric Theory and Missing Data
  year: 2007
  ident: 2023022002492088100_
– volume: 9
  start-page: 403
  year: 2004
  ident: 2023022002492088100_
  article-title: Propensity score estimation with boosted regression for evaluating causal effects in observational studies
  publication-title: Psychol. Meth.
  doi: 10.1037/1082-989X.9.4.403
– volume-title: Statistical Learning with Sparsity: the Lasso and Generalizations
  year: 2015
  ident: 2023022002492088100_
  doi: 10.1201/b18401
– volume: 45
  start-page: 158
  year: 2017
  ident: 2023022002492088100_
  article-title: A general theory of hypothesis tests and confidence regions for sparse high dimensional models
  publication-title: Ann. Statist.
  doi: 10.1214/16-AOS1448
– volume-title: Preprint arXiv:1601.05890
  year: 2016
  ident: 2023022002492088100_
  article-title: Covariate balancing propensity score by tailored loss functions
– year: 2016
  ident: 2023022002492088100_
  article-title: Linear hypothesis testing in dense high-dimensional linear models
  publication-title: J. Am. Statist. Ass.
– volume: 74
  start-page: 235
  year: 2006
  ident: 2023022002492088100_
  article-title: Large sample properties of matching estimators for average treatment effects
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2006.00655.x
– volume: 69
  start-page: 1645
  year: 2001
  ident: 2023022002492088100_
  article-title: Combining panels with attrition and refreshment samples
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00260
– volume: 96
  start-page: 187
  year: 2009
  ident: 2023022002492088100_
  article-title: Dealing with limited overlap in estimation of average treatment effects
  publication-title: Biometrika
  doi: 10.1093/biomet/asn055
– volume: 58
  start-page: 267
  year: 1996
  ident: 2023022002492088100_
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 42
  start-page: 1166
  year: 2014
  ident: 2023022002492088100_
  article-title: On asymptotically optimal confidence regions and tests for high-dimensional models
  publication-title: Ann. Statist.
  doi: 10.1214/14-AOS1221
– volume-title: MOSEK Rmosek Package
  year: 2015
  ident: 2023022002492088100_
– year: 2017
  ident: 2023022002492088100_
  article-title: Double/debiased machine learning for treatment and structural parameters
  publication-title: Econmetr. J.
– volume: 66
  start-page: 315
  year: 1998
  ident: 2023022002492088100_
  article-title: On the role of the propensity score in efficient semiparametric estimation of average treatment effects
  publication-title: Econometrica
  doi: 10.2307/2998560
– volume: 22
  start-page: 544
  year: 2007
  ident: 2023022002492088100_
  article-title: Comment: Performance of double-robust estimators when inverse probability weights are highly variable
  publication-title: Statist. Sci.
  doi: 10.1214/07-STS227D
– volume: 79
  start-page: 1053
  year: 2012
  ident: 2023022002492088100_
  article-title: Inverse probability tilting for moment condition models with missing data
  publication-title: Rev. Econ. Stud.
  doi: 10.1093/restud/rdr047
– volume: 110
  start-page: 910
  year: 2015
  ident: 2023022002492088100_
  article-title: Stable weights that balance covariates for estimation with incomplete outcome data
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.2015.1023805
SSID ssj0000673
Score 2.659794
Snippet There are many settings where researchers are interested in estimating average treatment effects and are willing to rely on the unconfoundedness assumption,...
Summary There are many settings where researchers are interested in estimating average treatment effects and are willing to rely on the unconfoundedness...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 597
SubjectTerms Adjustment
Assumptions
Averages
Causal inference
equations
Inference
Linear analysis
linear models
Linearity
Potential outcomes
Pretreatment
Propensity
Propensity score
Random variables
Regression analysis
Regression models
Sparse estimation
Statistical methods
Statistics
Variables
Subtitle debiased inference of average treatment effects in high dimensions
Title Approximate residual balancing
URI https://www.jstor.org/stable/26773172
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssb.12268
https://www.proquest.com/docview/2090078237
https://www.proquest.com/docview/2131864153
Volume 80
WOSCitedRecordID wos000442217900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1467-9868
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000673
  issn: 1369-7412
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS91AEB7ssQ--eGkrjTdW2pcWIsles-KLt4MPIkUr-BZ2Nxs4IOeUExV_vrObS48gBelbQiYk7M43800yF4DvuZeaM8bT3DgMUKRQqda1TjPmqC-sc5k3cdiEuroq7u70ryU46mth2v4Qwwe3gIxorwPAjW0WQD5vGnuQI3soPsAyRcUVI1g-ux7fXi5aYtbWXekUPSft2pOGTJ6_d79ySG1O4iu2uchZo9MZr_3f667Dakc2yXGrHRuw5KefYCXwy7Y982ewx6Gn-PMEeasnGHnH0ixiQ76jQ6d2SCpvJ-joKjLpKwPJrCYGAYCGiAxp6qTLC0ExEjogkypMDQhf4povcDs-_316kXZjF1LHhUDcGI-kkavaKlFTq2XhKbd4ZirLZMWckI7SCqErXWaVFh4NVWG1lbxG65CzTRhNZ1P_FYgyRrnCc04zx1lmtFEYcgvnHKoHEzKBH_3al67rSR5GY9yXfWwSlq2My5bAt0H2T9uJ402pzbiFgwiVSiFHogns9HtadjBtSprpyJGYSmB_uIwAC39NzNTPHlEmR7MnkeewBH7GHf7H48vrm5uTeLT1HuFtWEEiVrS5azswepg_-l346J5QHeZ7nVq_APld-7Y
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB-sFuqL2g8xau1K-9JCJNnd7GZ9s9XD0vMoege-hd3NBg4kVy619M93dvPRE0qh-HbhJiTszm_mN5v5APiQOqE4YzxOtcUARWQyVqpSccIsdbmxNnE6DJuQk0l-e6u-d7k5vham7Q8xHLh5ZAR77QHuD6RXUL5sGnOSIn3In8EGRz1CBd84vx7NxqummLWFVypG10m7_qQ-lefP3Y88UpuU-IhurpLW4HVG20983x3Y6ugmOWv14yWsufoVbHqG2TZofg3mzHcV_z1H5uoIxt6hOIsYn_Fo0a2dktKZObq6ksz72kCyqIhGCKApIkOiOukyQ1CM-B7IpPRzA_xZXPMGZqOL6ZfLuBu8EFueZYgc7ZA2clkZmVXUKJE7yg1e6dIwUTKbCUtpieAVNjFSZQ5NVW6UEbxC-5CyXVivF7XbAyK1ljZ3nNPEcpZopSUG3Zm1FhWEZSKCj_3iF7brSu6HY9wVfXTil60IyxbB-0H2R9uL469Su2EPBxEqpESWRCM47De16IDaFDRRgSUxGcHx8DdCzH830bVb3KNMioZPINNhEXwKW_yPxxfXNzefw6_9_xF-By8up1fjYvx18u0ANpGW5W0m2yGs_1zeu7fw3P5C1VgedTr-AAbW_6Y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WtJS-dOsXc5uuKu3LBi62JEvW3vqx0NIQQrpC34wkyxAYSUnWsT9_J9lxUyiD0jcbn7GR7nf3O_s-AE5TJxRnjMepthigiEzGSlUqTpilLjfWJk6HYRNyMMgfHtSwyc3xtTB1f4j2g5tHRrDXHuDusayWUD6bz81ZivQhX4FV7qfIdGD1atS77y-bYlYXXqkYXSdt-pP6VJ7nu194pDop8QXdXCatwev0Pr7zfT_BZkM3yXmtH1vwwU22YcMzzLpB8w6Yc99V_O8YmasjGHuH4ixifMajRbf2nZTOjNHVlWS8qA0k04pohACaItImqpMmMwTFiO-BTEo_N8B_i5vvwn3vx8_L67gZvBBbnmWIHO2QNnJZGZlV1CiRO8oNnunSMFEymwlLaYngFTYxUmUOTVVulBG8QvuQsj3oTKYT9xmI1Fra3HFOE8tZopWWGHRn1lpUEJaJCL4uFr-wTVdyPxzjV7GITvyyFWHZIjhpZR_rXhyvSu2FPWxFqJASWRKNoLvY1KIB6rygiQosickIjtvLCDH_30RP3PQJZVI0fAKZDovgW9ji_zy-GN3dXYSj_bcIH8H68KpX9G8GtwewgawsrxPZutD5PXtyh7Bm_6BmzL40Kv4Pkw__IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+residual+balancing&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Athey%2C+Susan&rft.au=Imbens%2C+Guido+W.&rft.au=Wager%2C+Stefan&rft.date=2018-09-01&rft.pub=Wiley&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=80&rft.issue=4&rft.spage=597&rft.epage=623&rft_id=info:doi/10.1111%2Frssb.12268&rft.externalDocID=26773172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon