Understanding the Effect of Crystalline Structural Transformation for Lead‐Free Inorganic Halide Perovskites

Lead‐free inorganic halide perovskites have triggered appealing interests in various energy‐related applications including solar cells and photocatalysis. However, why perovskite‐structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the char...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced materials (Weinheim) Ročník 32; číslo 31; s. e2002137 - n/a
Hlavní autoři: Shi, Ming, Li, Guanna, Tian, Wenming, Jin, Shengye, Tao, Xiaoping, Jiang, Yiming, Pidko, Evgeny A., Li, Rengui, Li, Can
Médium: Journal Article
Jazyk:angličtina
Vydáno: Weinheim Wiley Subscription Services, Inc 01.08.2020
Témata:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Lead‐free inorganic halide perovskites have triggered appealing interests in various energy‐related applications including solar cells and photocatalysis. However, why perovskite‐structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs3Bi2Br9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs3Bi2Br9 to Cs2AgBiBr6, which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co‐operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs2AgBiBr6 more dispersible, eliminating the strong localization of electron–hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100‐fold enhancement in photocatalytic performances compared with pristine Cs3Bi2Br9, verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion. Incorporating silver atoms into the inorganic halide perovskite Cs3Bi2Br9 to form Cs2AgBiBr6 eliminates the strong localization of electron–hole pairs, makes the electronic band distribution more dispersible, and further changes the photoelectric properties including band structure, exciton binding energy, charge carrier mobility, and carrier relaxation lifetime, leading to a remarkable enhancement in photocatalytic hydrogen evolution under visible light.
AbstractList Lead-free inorganic halide perovskites have triggered appealing interests in various energy-related applications including solar cells and photocatalysis. However, why perovskite-structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs3 Bi2 Br9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs3 Bi2 Br9 to Cs2 AgBiBr6 , which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co-operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs2 AgBiBr6 more dispersible, eliminating the strong localization of electron-hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100-fold enhancement in photocatalytic performances compared with pristine Cs3 Bi2 Br9 , verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion.Lead-free inorganic halide perovskites have triggered appealing interests in various energy-related applications including solar cells and photocatalysis. However, why perovskite-structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs3 Bi2 Br9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs3 Bi2 Br9 to Cs2 AgBiBr6 , which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co-operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs2 AgBiBr6 more dispersible, eliminating the strong localization of electron-hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100-fold enhancement in photocatalytic performances compared with pristine Cs3 Bi2 Br9 , verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion.
Lead‐free inorganic halide perovskites have triggered appealing interests in various energy‐related applications including solar cells and photocatalysis. However, why perovskite‐structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs 3 Bi 2 Br 9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs 3 Bi 2 Br 9 to Cs 2 AgBiBr 6 , which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co‐operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs 2 AgBiBr 6 more dispersible, eliminating the strong localization of electron–hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100‐fold enhancement in photocatalytic performances compared with pristine Cs 3 Bi 2 Br 9 , verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion.
Lead‐free inorganic halide perovskites have triggered appealing interests in various energy‐related applications including solar cells and photocatalysis. However, why perovskite‐structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs3Bi2Br9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs3Bi2Br9 to Cs2AgBiBr6, which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co‐operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs2AgBiBr6 more dispersible, eliminating the strong localization of electron–hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100‐fold enhancement in photocatalytic performances compared with pristine Cs3Bi2Br9, verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion. Incorporating silver atoms into the inorganic halide perovskite Cs3Bi2Br9 to form Cs2AgBiBr6 eliminates the strong localization of electron–hole pairs, makes the electronic band distribution more dispersible, and further changes the photoelectric properties including band structure, exciton binding energy, charge carrier mobility, and carrier relaxation lifetime, leading to a remarkable enhancement in photocatalytic hydrogen evolution under visible light.
Lead‐free inorganic halide perovskites have triggered appealing interests in various energy‐related applications including solar cells and photocatalysis. However, why perovskite‐structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs3Bi2Br9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs3Bi2Br9 to Cs2AgBiBr6, which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co‐operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs2AgBiBr6 more dispersible, eliminating the strong localization of electron–hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100‐fold enhancement in photocatalytic performances compared with pristine Cs3Bi2Br9, verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion.
Author Jiang, Yiming
Tao, Xiaoping
Shi, Ming
Pidko, Evgeny A.
Li, Rengui
Jin, Shengye
Tian, Wenming
Li, Can
Li, Guanna
Author_xml – sequence: 1
  givenname: Ming
  surname: Shi
  fullname: Shi, Ming
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Guanna
  surname: Li
  fullname: Li, Guanna
  organization: Delft University of Technology
– sequence: 3
  givenname: Wenming
  surname: Tian
  fullname: Tian, Wenming
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Shengye
  surname: Jin
  fullname: Jin, Shengye
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Xiaoping
  surname: Tao
  fullname: Tao, Xiaoping
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Yiming
  surname: Jiang
  fullname: Jiang, Yiming
  organization: University of Chinese Academy of Sciences
– sequence: 7
  givenname: Evgeny A.
  surname: Pidko
  fullname: Pidko, Evgeny A.
  organization: Delft University of Technology
– sequence: 8
  givenname: Rengui
  orcidid: 0000-0002-8099-0934
  surname: Li
  fullname: Li, Rengui
  email: rgli@dicp.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Can
  orcidid: 0000-0002-9301-7850
  surname: Li
  fullname: Li, Can
  email: canli@dicp.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkc9qGzEQh0VJoE7Sa8-CXHpZVyvtrlZH4-YfuCQQ57xMtaNUiSylkjbBtz5CnzFPkrVdGgiUnGZgvm-Y4XdA9nzwSMjnkk1LxvhX6Fcw5YyPfSnkBzIpa14WFVP1HpkwJepCNVX7kRykdMcYUw1rJsTf-B5jyuB7629p_on0xBjUmQZD53E9TpyzHul1joPOQwRHlxF8MiGuINvg6djRBUL__PvPaUSkFz7EW_BW03Nwtkd6hTE8pnubMR2RfQMu4ae_9ZAsT0-W8_NicXl2MZ8tCl3VtSwUGGhAAnCGlTC8rQ1HgFZJjQqFFmCUaH4o3XImBYOeGy64bFspVCmFOCRfdmsfYvg1YMrdyiaNzoHHMKSOV2UreaO26PEb9C4M0Y_HjZRgrB6xeqSqHaVjSCmi6bTN2_dzBOu6knWbDLpNBt2_DEZt-kZ7iHYFcf1_Qe2EJ-tw_Q7dzb59n726L8CynXs
CitedBy_id crossref_primary_10_1007_s12274_023_6291_9
crossref_primary_10_1016_j_jacomc_2025_100064
crossref_primary_10_1016_j_matpr_2022_01_342
crossref_primary_10_1021_acs_jpcc_5c02230
crossref_primary_10_1002_slct_202301560
crossref_primary_10_1063_5_0040047
crossref_primary_10_1002_admt_202200442
crossref_primary_10_1002_ente_202200197
crossref_primary_10_1039_D3CY01494K
crossref_primary_10_1002_adpr_202300269
crossref_primary_10_1002_ange_202307646
crossref_primary_10_1007_s10904_024_03560_z
crossref_primary_10_1016_j_apsusc_2023_157877
crossref_primary_10_1039_D5SC00061K
crossref_primary_10_1016_j_apcatb_2022_122146
crossref_primary_10_3390_nano13020263
crossref_primary_10_1002_anie_202315817
crossref_primary_10_1002_smtd_202300429
crossref_primary_10_1002_adom_202202153
crossref_primary_10_1016_j_cej_2023_148127
crossref_primary_10_1016_j_mtener_2023_101407
crossref_primary_10_1016_j_cej_2023_143754
crossref_primary_10_1016_j_jhazmat_2025_138874
crossref_primary_10_1002_aenm_202500921
crossref_primary_10_1016_j_ccr_2023_215031
crossref_primary_10_1021_jacs_4c03532
crossref_primary_10_1016_j_apcatb_2024_124318
crossref_primary_10_1016_j_apcatb_2023_123247
crossref_primary_10_1007_s40843_020_1553_8
crossref_primary_10_1016_j_apsusc_2022_155446
crossref_primary_10_1002_smll_202501570
crossref_primary_10_1103_PhysRevApplied_19_044083
crossref_primary_10_1016_j_jallcom_2025_182454
crossref_primary_10_1002_anie_202307646
crossref_primary_10_1016_j_diamond_2024_111258
crossref_primary_10_1039_D5NR01676B
crossref_primary_10_1002_aelm_202101094
crossref_primary_10_1016_j_ijhydene_2021_12_255
crossref_primary_10_1016_j_cej_2025_160881
crossref_primary_10_1016_j_mtcomm_2023_107541
crossref_primary_10_1016_j_mtchem_2024_102405
crossref_primary_10_1088_2515_7655_ac01bf
crossref_primary_10_3390_nano11020433
crossref_primary_10_1016_j_mtphys_2022_100731
crossref_primary_10_1002_smtd_202300405
crossref_primary_10_1002_anie_202411047
crossref_primary_10_1038_s41467_023_39445_x
crossref_primary_10_1007_s40820_021_00685_5
crossref_primary_10_1002_anie_202404496
crossref_primary_10_1002_ange_202404496
crossref_primary_10_1016_j_apcatb_2023_122812
crossref_primary_10_1016_j_nanoen_2021_106000
crossref_primary_10_1016_j_cej_2022_138927
crossref_primary_10_1002_smtd_202201365
crossref_primary_10_1002_aenm_202004002
crossref_primary_10_1007_s10971_025_06713_9
crossref_primary_10_1016_j_physrep_2024_01_004
crossref_primary_10_1016_j_cej_2025_164785
crossref_primary_10_1063_5_0120767
crossref_primary_10_1002_eom2_12074
crossref_primary_10_1016_j_molstruc_2025_143992
crossref_primary_10_1002_ange_202108133
crossref_primary_10_1016_j_jcis_2023_10_148
crossref_primary_10_1016_j_apcatb_2022_121375
crossref_primary_10_1016_j_cej_2022_139748
crossref_primary_10_1016_j_apcatb_2025_125859
crossref_primary_10_1002_cssc_202402106
crossref_primary_10_1016_j_apcatb_2023_123272
crossref_primary_10_1002_smll_202506894
crossref_primary_10_1016_j_mtchem_2024_102306
crossref_primary_10_1016_j_mtsust_2024_100797
crossref_primary_10_1002_adfm_202402894
crossref_primary_10_1016_j_pmatsci_2023_101192
crossref_primary_10_1002_advs_202305919
crossref_primary_10_1002_cptc_202300104
crossref_primary_10_1002_adom_202300578
crossref_primary_10_1016_j_apsusc_2025_163317
crossref_primary_10_1016_j_ces_2023_119334
crossref_primary_10_1016_j_ces_2021_116983
crossref_primary_10_1002_ange_202411047
crossref_primary_10_1016_j_apsusc_2023_156877
crossref_primary_10_1002_smll_202308088
crossref_primary_10_1002_smtd_202001308
crossref_primary_10_1016_j_ijbiomac_2023_128885
crossref_primary_10_1016_j_rser_2023_114187
crossref_primary_10_1002_ange_202315817
crossref_primary_10_1016_j_ijhydene_2024_07_145
crossref_primary_10_1016_j_apsusc_2022_155881
crossref_primary_10_1016_j_optmat_2022_112148
crossref_primary_10_1002_solr_202200784
crossref_primary_10_1016_j_seppur_2024_130527
crossref_primary_10_3390_nano14010094
crossref_primary_10_1039_D4QM00878B
crossref_primary_10_1016_j_jallcom_2025_181680
crossref_primary_10_1002_advs_202309714
crossref_primary_10_1039_D2CC02453E
crossref_primary_10_1016_j_jcat_2025_116104
crossref_primary_10_1002_adom_202301583
crossref_primary_10_1021_jacs_3c04181
crossref_primary_10_1002_advs_202206070
crossref_primary_10_1016_j_jallcom_2023_172132
crossref_primary_10_1002_adma_202005888
crossref_primary_10_1016_j_jallcom_2025_180365
crossref_primary_10_1016_j_matchemphys_2023_128159
crossref_primary_10_1002_adfm_202503074
crossref_primary_10_1002_adma_202304711
crossref_primary_10_1002_smll_202401301
crossref_primary_10_1016_j_cej_2022_137197
crossref_primary_10_1002_anie_202108133
crossref_primary_10_1021_acscatal_5c02654
crossref_primary_10_1016_j_nxmate_2025_100655
crossref_primary_10_1002_adom_202002267
crossref_primary_10_1016_j_jece_2022_109050
crossref_primary_10_1002_adfm_202303430
crossref_primary_10_1021_jacs_4c03191
crossref_primary_10_1002_adfm_202201721
crossref_primary_10_1016_j_jechem_2023_03_010
crossref_primary_10_1016_j_physb_2024_415802
Cites_doi 10.1002/adma.201605587
10.1021/acs.jpclett.7b03286
10.1021/acs.jpcc.5b00148
10.1002/adfm.201704446
10.1021/acsenergylett.8b02090
10.1002/pssb.2221060230
10.1039/C6CS00896H
10.1002/adma.201505002
10.1039/C9NR10075J
10.1002/anie.201914768
10.1002/admi.201800464
10.1038/nphoton.2016.41
10.1016/S1872-2067(15)60929-9
10.1002/cssc.201900716
10.1016/S1872-2067(14)60162-5
10.1002/smll.201703762
10.1038/nphoton.2013.342
10.1038/nenergy.2016.177
10.1021/acs.chemrev.6b00136
10.1039/C8NA00416A
10.1002/adfm.201807375
10.1021/jp310138b
10.1002/anie.201703970
10.1021/acssuschemeng.9b00038
10.1038/ncomms5475
10.1016/j.progsolidstchem.2014.08.001
10.1021/acs.inorgchem.6b01571
10.1002/chem.201705031
10.1002/adma.201704342
10.1021/jacs.7b00489
10.1021/acs.chemmater.5b03147
10.1107/S0567740877009984
10.1021/acsnano.8b02936
10.1038/nenergy.2016.185
10.1021/jacs.5b13294
10.1002/adma.201803792
10.1038/s41560-017-0067-y
10.1039/C8CC01110A
10.1016/j.apcatb.2019.118399
10.1021/acsenergylett.6b00337
10.1021/acs.chemmater.5b04231
10.1038/nmat4271
10.1016/S0924-2031(97)00041-6
10.1002/anie.201800660
10.1038/nmat4014
10.1002/adma.201501978
10.1002/anie.201704739
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH GmbH
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH GmbH
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202002137
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_202002137
ADMA202002137
Genre article
GrantInformation_xml – fundername: Chinese Academy of Sciences
  funderid: XDA21010000; QYZDY‐SSW‐JSC023
– fundername: National Natural Science Foundation of China
  funderid: 21633010; 21673230
– fundername: LiaoNing Revitalization Talents Program
  funderid: XLYC1907078; 016.Veni.172.034
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4557-9afa6a7aa20e43f285f2eaa897ce9e3c3af936b9c820730ad2f2327887391733
IEDL.DBID DRFUL
ISICitedReferencesCount 162
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000543741400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Wed Oct 01 13:47:39 EDT 2025
Sun Jul 13 05:37:30 EDT 2025
Tue Nov 18 21:44:08 EST 2025
Sat Nov 29 07:21:05 EST 2025
Wed Jan 22 16:33:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4557-9afa6a7aa20e43f285f2eaa897ce9e3c3af936b9c820730ad2f2327887391733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9301-7850
0000-0002-8099-0934
PQID 2430052695
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2418726973
proquest_journals_2430052695
crossref_citationtrail_10_1002_adma_202002137
crossref_primary_10_1002_adma_202002137
wiley_primary_10_1002_adma_202002137_ADMA202002137
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 4
2019; 31
2019; 1
2016; 10
2014 2015 2018 2017 2017 2017 2015; 35 36 3 2 29 46 14
2020; 268
2015 2016; 27 138
2018 2017 2018; 30 139 14
2018; 24
1998; 16
2018; 9
1977 1981; 33 106
2014; 5
2016; 1
2015; 27
2018; 5
2016 2017; 28 56
2017; 56
2015; 43
2013; 117
2017 2018; 56 57
2014; 13
2019; 29
2015; 119
2016; 116
2018 2018 2019 2020 2019 2020; 28 54 7 12 12 59
2018; 12
2014; 8
2016; 28
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_24_2
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_5_3
e_1_2_4_7_1
e_1_2_4_5_2
e_1_2_4_6_1
e_1_2_4_5_5
e_1_2_4_7_3
e_1_2_4_9_1
e_1_2_4_5_4
e_1_2_4_7_2
e_1_2_4_8_1
e_1_2_4_5_7
e_1_2_4_5_6
e_1_2_4_9_2
e_1_2_4_30_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_11_2
e_1_2_4_12_1
e_1_2_4_12_2
e_1_2_4_13_1
e_1_2_4_12_3
e_1_2_4_14_1
e_1_2_4_12_4
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_12_5
e_1_2_4_12_6
e_1_2_4_18_1
e_1_2_4_16_2
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 9
  start-page: 620
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 27 138
  start-page: 7137 2138
  year: 2015 2016
  publication-title: Chem. Mater. J. Am. Chem. Soc.
– volume: 4
  start-page: 299
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 27
  start-page: 6806
  year: 2015
  publication-title: Adv. Mater.
– volume: 16
  start-page: 11
  year: 1998
  publication-title: Vib. Spectrosc.
– volume: 33 106
  start-page: 2961 647
  year: 1977 1981
  publication-title: Acta Crystallog. Section B Structural Crystallog. Crystal Chem. Phys. Status Solidi B
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 12
  start-page: 8081
  year: 2018
  publication-title: ACS Nano
– volume: 10
  start-page: 333
  year: 2016
  publication-title: Nat. Photonics
– volume: 56
  start-page: 42
  year: 2017
  publication-title: Inorg. Chem.
– volume: 1
  start-page: 665
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 56 57
  start-page: 5359
  year: 2017 2018
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 28 56
  start-page: 1348 8158
  year: 2016 2017
  publication-title: Chem. Mater. Angew. Chem., Int. Ed.
– volume: 35 36 3 2 29 46 14
  start-page: 983 1183 68 5204 636
  year: 2014 2015 2018 2017 2017 2017 2015
  publication-title: Chin. J. Catal. Chin. J. Catal. Nat. Energy Nat. Energy Adv. Mater. Chem. Soc. Rev. Nat. Mater.
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 30 139 14
  start-page: 5660
  year: 2018 2017 2018
  publication-title: Adv. Mater. J. Am. Chem. Soc. Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 28 54 7 12 12 59
  start-page: 3779 8397 3637 2587 2
  year: 2018 2018 2019 2020 2019 2020
  publication-title: Adv. Funct. Mater. Chem. Commun. ACS Sustainable Chem. Eng. Nanoscale ChemSusChem Angew. Chem., Int. Ed.
– volume: 8
  start-page: 133
  year: 2014
  publication-title: Nat. Photonics
– volume: 5
  start-page: 4475
  year: 2014
  publication-title: Nat. Commun.
– volume: 43
  start-page: 1
  year: 2015
  publication-title: Prog. Solid State Chem.
– volume: 117
  start-page: 376
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 116
  year: 2016
  publication-title: Chem. Rev.
– volume: 24
  start-page: 2305
  year: 2018
  publication-title: Chem. ‐ Eur. J.
– volume: 28
  start-page: 2253
  year: 2016
  publication-title: Adv. Mater.
– volume: 268
  year: 2020
  publication-title: Appl. Catal., B
– volume: 1
  start-page: 1276
  year: 2019
  publication-title: Nanoscale Adv.
– ident: e_1_2_4_5_5
  doi: 10.1002/adma.201605587
– ident: e_1_2_4_27_1
  doi: 10.1021/acs.jpclett.7b03286
– ident: e_1_2_4_17_1
  doi: 10.1021/acs.jpcc.5b00148
– ident: e_1_2_4_12_1
  doi: 10.1002/adfm.201704446
– ident: e_1_2_4_19_1
  doi: 10.1021/acsenergylett.8b02090
– ident: e_1_2_4_16_2
  doi: 10.1002/pssb.2221060230
– ident: e_1_2_4_5_6
  doi: 10.1039/C6CS00896H
– ident: e_1_2_4_28_1
  doi: 10.1002/adma.201505002
– ident: e_1_2_4_12_4
  doi: 10.1039/C9NR10075J
– ident: e_1_2_4_12_6
  doi: 10.1002/anie.201914768
– ident: e_1_2_4_29_1
  doi: 10.1002/admi.201800464
– ident: e_1_2_4_3_1
  doi: 10.1038/nphoton.2016.41
– ident: e_1_2_4_5_2
  doi: 10.1016/S1872-2067(15)60929-9
– ident: e_1_2_4_12_5
  doi: 10.1002/cssc.201900716
– ident: e_1_2_4_5_1
  doi: 10.1016/S1872-2067(14)60162-5
– ident: e_1_2_4_7_3
  doi: 10.1002/smll.201703762
– ident: e_1_2_4_1_1
  doi: 10.1038/nphoton.2013.342
– ident: e_1_2_4_4_1
  doi: 10.1038/nenergy.2016.177
– ident: e_1_2_4_26_1
  doi: 10.1021/acs.chemrev.6b00136
– ident: e_1_2_4_14_1
  doi: 10.1039/C8NA00416A
– ident: e_1_2_4_23_1
  doi: 10.1002/adfm.201807375
– ident: e_1_2_4_30_1
  doi: 10.1021/jp310138b
– ident: e_1_2_4_24_2
  doi: 10.1002/anie.201703970
– ident: e_1_2_4_12_3
  doi: 10.1021/acssuschemeng.9b00038
– ident: e_1_2_4_25_1
  doi: 10.1038/ncomms5475
– ident: e_1_2_4_18_1
  doi: 10.1016/j.progsolidstchem.2014.08.001
– ident: e_1_2_4_13_1
  doi: 10.1021/acs.inorgchem.6b01571
– ident: e_1_2_4_15_1
  doi: 10.1002/chem.201705031
– ident: e_1_2_4_7_1
  doi: 10.1002/adma.201704342
– ident: e_1_2_4_7_2
  doi: 10.1021/jacs.7b00489
– ident: e_1_2_4_9_1
  doi: 10.1021/acs.chemmater.5b03147
– ident: e_1_2_4_16_1
  doi: 10.1107/S0567740877009984
– ident: e_1_2_4_20_1
  doi: 10.1021/acsnano.8b02936
– ident: e_1_2_4_5_4
  doi: 10.1038/nenergy.2016.185
– ident: e_1_2_4_9_2
  doi: 10.1021/jacs.5b13294
– ident: e_1_2_4_21_1
  doi: 10.1002/adma.201803792
– ident: e_1_2_4_5_3
  doi: 10.1038/s41560-017-0067-y
– ident: e_1_2_4_12_2
  doi: 10.1039/C8CC01110A
– ident: e_1_2_4_31_1
  doi: 10.1016/j.apcatb.2019.118399
– ident: e_1_2_4_8_1
  doi: 10.1021/acsenergylett.6b00337
– ident: e_1_2_4_6_1
– ident: e_1_2_4_24_1
  doi: 10.1021/acs.chemmater.5b04231
– ident: e_1_2_4_5_7
  doi: 10.1038/nmat4271
– ident: e_1_2_4_22_1
  doi: 10.1016/S0924-2031(97)00041-6
– ident: e_1_2_4_11_2
  doi: 10.1002/anie.201800660
– ident: e_1_2_4_2_1
  doi: 10.1038/nmat4014
– ident: e_1_2_4_10_1
  doi: 10.1002/adma.201501978
– ident: e_1_2_4_11_1
  doi: 10.1002/anie.201704739
SSID ssj0009606
Score 2.651074
Snippet Lead‐free inorganic halide perovskites have triggered appealing interests in various energy‐related applications including solar cells and photocatalysis....
Lead-free inorganic halide perovskites have triggered appealing interests in various energy-related applications including solar cells and photocatalysis....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2002137
SubjectTerms Crystal structure
crystalline structural transformations
Crystallinity
Current carriers
Derivation
Excitons
Hydrogen evolution
lead‐free inorganic halide perovskites
Materials science
Perovskites
Photocatalysis
Photoelectric effect
photoelectric properties
Photoelectricity
Photovoltaic cells
Properties (attributes)
Solar cells
Solar energy conversion
Transformations
Valence band
Title Understanding the Effect of Crystalline Structural Transformation for Lead‐Free Inorganic Halide Perovskites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202002137
https://www.proquest.com/docview/2430052695
https://www.proquest.com/docview/2418726973
Volume 32
WOSCitedRecordID wos000543741400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFMcfWj3owV2sSxlB8BSaziSZzLGopYIW0RZ6C9NZQJBEGi148yP4Gf0kzkzSNB5E0NuEvCzMm-U_2-8BnAk_6GgeMU8GkRmgTHzhMV8pL5ZU6VBLK_FdsAk6GMTjMburneIv-BDVhJutGa69thWcT_L2AhrKpeMGuU0GhC7DCjaFN2zAyuV9b3SzAO9GLr6mXe_zWBTEc3Cjj9vf3_C9Y1qozbpmdZ1Ob_P_v7sFG6XgRN2ihGzDkkp3YL2GIdyFdFQ_4YKMJEQF1BhlGl1M38wdS-5W6MHBZi2oAw1rgjdLkUkhG63z8_2jN1UKXadFuCiB-kboS4Xu1DSb5XaqON-DYe9qeNH3yjgMngjCkHqMG29yyjn2VUA0jkONFecxo0IxRQThmpFowoRRE6bB4BJro9PsNkViBoOE7EMjzVJ1AMg0DlQy4fNQaNMrSq6xXaYNCSOSs4lugjf3QSJKRrkNlfGUFHRlnNhsTKpsbMJ5Zf9c0Dl-tDyeuzQpa2me4IA43g0Lm3Ba3Tb1yy6a8FRlr9amE1NjQkkTsHPwL19Kupe33erq8C8PHcGaTRf7DI-hYZyrTmBVzF4e82kLluk4bpXl_AsPB_5U
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB7xUwk4FGiL2JaCkSr1FBHsJI6PK-hqEcsKwSJxi7z-kZCqBO0CEjceoc_YJ2HGyWaXQ1Wp6i2JJ3HkmbE_2-NvAL6ZODn2OlORTTKcoIxjE6nYuSi30vnUW4L4IdmEHA7z21t12UQT0lmYmh-iXXAjzwj9NTk4LUgfzVlDtQ3EQSHKQMhlWE3QltDIV0-vejeDOfNuFhJs0oZfpLIknzE3xvzo7RfejkxzuLkIWsOo09v8D_-7Be8byMm6tY1sw5IrP8DGAhHhRyhvFs-4MASFrKY1ZpVnJ5NnLCHubseuA90sUXWw0QLkrUqGV4zydf5--dWbOMfOyjphlGF9hPrWsUs3qZ6mtFg8_QSj3o_RST9qMjFEJklTGSmN-tRSax67RHiep547rXMljVNOGKG9EtlYGcQT2GVoyz0iNQpUFDgdFGIHVsqqdLvAsHuQVplYp8bjuGi157RRmwolrFZj34FopoTCNCzllCzjZ1HzK_OCmrFom7ED31v5-5qf44-SezOdFo2fTgueiMB4o9IOHLbF6GG0baJLVz2SzHEuUUSKDvCg4b_UVHRPL7rt3ed_eekA1vqji0ExOBuef4F1el5HHe7BCirafYV35unhbjrZb8z9FU_QAWs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3aTSntoWk-SrZNUgUKPZk4km1ZxyVbk9BkWZIN5Ga00ggCwQ67SSC3_oT-xv6SamSvd3MohdKbbY0_0HikJ2n0HsAXEydHTmcqsknmByjT2EQqRoxyK9GlzhLED2ITcjTKr6_VuM0mpL0wDT9EN-FGkRHaawpwvLPucMkaqm0gDgpZBkK-hLWElGR6sDa8KK7Olsy7WRDYpAW_SGVJvmBujPnh8yc875mWcHMVtIZep1j_D9_7Ht61kJMNmn9kA15gtQlvV4gIt6C6Wt3jwjwoZA2tMasdO549-RLi7kZ2GehmiaqDTVYgb10xf8RIr_PXj5_FDJGdVo1glGEnHupbZGOc1Y9zmiyeb8Ok-DY5PolaJYbIJGkqI6W9P7XUmseYCMfz1HHUOlfSoEJhhHZKZFNlPJ7wTYa23HmkRomKwg8HhfgAvaqucAeYbx6kVSbWqXG-X7TacVqoTYUSVqup60O0cEJpWpZyEsu4LRt-ZV5SNZZdNfbha2d_1_Bz_NFyd-HTso3TeckTERhvVNqHg67YRxgtm-gK6weyOcqlN5GiDzx4-C9vKgfD80F39vFfbvoMr8fDojw7HX3_BG_ocpN0uAs972fcg1fm8f5mPttv__bf1-gA5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Effect+of+Crystalline+Structural+Transformation+for+Lead%E2%80%90Free+Inorganic+Halide+Perovskites&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Ming&rft.au=Li%2C+Guanna&rft.au=Tian%2C+Wenming&rft.au=Jin%2C+Shengye&rft.date=2020-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=31&rft_id=info:doi/10.1002%2Fadma.202002137&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202002137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon