Understanding the Effect of Crystalline Structural Transformation for Lead‐Free Inorganic Halide Perovskites
Lead‐free inorganic halide perovskites have triggered appealing interests in various energy‐related applications including solar cells and photocatalysis. However, why perovskite‐structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the char...
Uloženo v:
| Vydáno v: | Advanced materials (Weinheim) Ročník 32; číslo 31; s. e2002137 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Weinheim
Wiley Subscription Services, Inc
01.08.2020
|
| Témata: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Lead‐free inorganic halide perovskites have triggered appealing interests in various energy‐related applications including solar cells and photocatalysis. However, why perovskite‐structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs3Bi2Br9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs3Bi2Br9 to Cs2AgBiBr6, which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co‐operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs2AgBiBr6 more dispersible, eliminating the strong localization of electron–hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100‐fold enhancement in photocatalytic performances compared with pristine Cs3Bi2Br9, verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion.
Incorporating silver atoms into the inorganic halide perovskite Cs3Bi2Br9 to form Cs2AgBiBr6 eliminates the strong localization of electron–hole pairs, makes the electronic band distribution more dispersible, and further changes the photoelectric properties including band structure, exciton binding energy, charge carrier mobility, and carrier relaxation lifetime, leading to a remarkable enhancement in photocatalytic hydrogen evolution under visible light. |
|---|---|
| AbstractList | Lead-free inorganic halide perovskites have triggered appealing interests in various energy-related applications including solar cells and photocatalysis. However, why perovskite-structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs3 Bi2 Br9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs3 Bi2 Br9 to Cs2 AgBiBr6 , which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co-operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs2 AgBiBr6 more dispersible, eliminating the strong localization of electron-hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100-fold enhancement in photocatalytic performances compared with pristine Cs3 Bi2 Br9 , verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion.Lead-free inorganic halide perovskites have triggered appealing interests in various energy-related applications including solar cells and photocatalysis. However, why perovskite-structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs3 Bi2 Br9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs3 Bi2 Br9 to Cs2 AgBiBr6 , which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co-operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs2 AgBiBr6 more dispersible, eliminating the strong localization of electron-hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100-fold enhancement in photocatalytic performances compared with pristine Cs3 Bi2 Br9 , verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion. Lead‐free inorganic halide perovskites have triggered appealing interests in various energy‐related applications including solar cells and photocatalysis. However, why perovskite‐structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs 3 Bi 2 Br 9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs 3 Bi 2 Br 9 to Cs 2 AgBiBr 6 , which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co‐operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs 2 AgBiBr 6 more dispersible, eliminating the strong localization of electron–hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100‐fold enhancement in photocatalytic performances compared with pristine Cs 3 Bi 2 Br 9 , verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion. Lead‐free inorganic halide perovskites have triggered appealing interests in various energy‐related applications including solar cells and photocatalysis. However, why perovskite‐structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs3Bi2Br9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs3Bi2Br9 to Cs2AgBiBr6, which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co‐operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs2AgBiBr6 more dispersible, eliminating the strong localization of electron–hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100‐fold enhancement in photocatalytic performances compared with pristine Cs3Bi2Br9, verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion. Incorporating silver atoms into the inorganic halide perovskite Cs3Bi2Br9 to form Cs2AgBiBr6 eliminates the strong localization of electron–hole pairs, makes the electronic band distribution more dispersible, and further changes the photoelectric properties including band structure, exciton binding energy, charge carrier mobility, and carrier relaxation lifetime, leading to a remarkable enhancement in photocatalytic hydrogen evolution under visible light. Lead‐free inorganic halide perovskites have triggered appealing interests in various energy‐related applications including solar cells and photocatalysis. However, why perovskite‐structured materials exhibit excellent photoelectric properties and how the unique crystalline structures affect the charge behaviors are still not well elucidated but essentially desired. Herein, taking inorganic halide perovskite Cs3Bi2Br9 as a prototype, the significant derivation process of silver atoms incorporation to induce the structural transformation from Cs3Bi2Br9 to Cs2AgBiBr6, which brings about dramatic differences in photoelectric properties is unraveled. It is demonstrated that the silver incorporation results in the co‐operated orbitals hybridization, which makes the electronic distributions in conduction and valence bands of Cs2AgBiBr6 more dispersible, eliminating the strong localization of electron–hole pairs. As consequences of the electronic structures derivation, exhilarating changes in photoelectric properties like band structure, exciton binding energy, and charge carrier dynamics are verified experimentally and theoretically. Using photocatalytic hydrogen evolution activity under visible light as a typical evaluation, such crystalline structure transformation contributes to a more than 100‐fold enhancement in photocatalytic performances compared with pristine Cs3Bi2Br9, verifying the significant effect of structural derivations on the exhibited performances. The findings will provide evidences for understanding the origin of photoelectric properties for perovskites semiconductors in solar energy conversion. |
| Author | Jiang, Yiming Tao, Xiaoping Shi, Ming Pidko, Evgeny A. Li, Rengui Jin, Shengye Tian, Wenming Li, Can Li, Guanna |
| Author_xml | – sequence: 1 givenname: Ming surname: Shi fullname: Shi, Ming organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Guanna surname: Li fullname: Li, Guanna organization: Delft University of Technology – sequence: 3 givenname: Wenming surname: Tian fullname: Tian, Wenming organization: Chinese Academy of Sciences – sequence: 4 givenname: Shengye surname: Jin fullname: Jin, Shengye organization: Chinese Academy of Sciences – sequence: 5 givenname: Xiaoping surname: Tao fullname: Tao, Xiaoping organization: Chinese Academy of Sciences – sequence: 6 givenname: Yiming surname: Jiang fullname: Jiang, Yiming organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Evgeny A. surname: Pidko fullname: Pidko, Evgeny A. organization: Delft University of Technology – sequence: 8 givenname: Rengui orcidid: 0000-0002-8099-0934 surname: Li fullname: Li, Rengui email: rgli@dicp.ac.cn organization: Chinese Academy of Sciences – sequence: 9 givenname: Can orcidid: 0000-0002-9301-7850 surname: Li fullname: Li, Can email: canli@dicp.ac.cn organization: Chinese Academy of Sciences |
| BookMark | eNqFkc9qGzEQh0VJoE7Sa8-CXHpZVyvtrlZH4-YfuCQQ57xMtaNUiSylkjbBtz5CnzFPkrVdGgiUnGZgvm-Y4XdA9nzwSMjnkk1LxvhX6Fcw5YyPfSnkBzIpa14WFVP1HpkwJepCNVX7kRykdMcYUw1rJsTf-B5jyuB7629p_on0xBjUmQZD53E9TpyzHul1joPOQwRHlxF8MiGuINvg6djRBUL__PvPaUSkFz7EW_BW03Nwtkd6hTE8pnubMR2RfQMu4ae_9ZAsT0-W8_NicXl2MZ8tCl3VtSwUGGhAAnCGlTC8rQ1HgFZJjQqFFmCUaH4o3XImBYOeGy64bFspVCmFOCRfdmsfYvg1YMrdyiaNzoHHMKSOV2UreaO26PEb9C4M0Y_HjZRgrB6xeqSqHaVjSCmi6bTN2_dzBOu6knWbDLpNBt2_DEZt-kZ7iHYFcf1_Qe2EJ-tw_Q7dzb59n726L8CynXs |
| CitedBy_id | crossref_primary_10_1007_s12274_023_6291_9 crossref_primary_10_1016_j_jacomc_2025_100064 crossref_primary_10_1016_j_matpr_2022_01_342 crossref_primary_10_1021_acs_jpcc_5c02230 crossref_primary_10_1002_slct_202301560 crossref_primary_10_1063_5_0040047 crossref_primary_10_1002_admt_202200442 crossref_primary_10_1002_ente_202200197 crossref_primary_10_1039_D3CY01494K crossref_primary_10_1002_adpr_202300269 crossref_primary_10_1002_ange_202307646 crossref_primary_10_1007_s10904_024_03560_z crossref_primary_10_1016_j_apsusc_2023_157877 crossref_primary_10_1039_D5SC00061K crossref_primary_10_1016_j_apcatb_2022_122146 crossref_primary_10_3390_nano13020263 crossref_primary_10_1002_anie_202315817 crossref_primary_10_1002_smtd_202300429 crossref_primary_10_1002_adom_202202153 crossref_primary_10_1016_j_cej_2023_148127 crossref_primary_10_1016_j_mtener_2023_101407 crossref_primary_10_1016_j_cej_2023_143754 crossref_primary_10_1016_j_jhazmat_2025_138874 crossref_primary_10_1002_aenm_202500921 crossref_primary_10_1016_j_ccr_2023_215031 crossref_primary_10_1021_jacs_4c03532 crossref_primary_10_1016_j_apcatb_2024_124318 crossref_primary_10_1016_j_apcatb_2023_123247 crossref_primary_10_1007_s40843_020_1553_8 crossref_primary_10_1016_j_apsusc_2022_155446 crossref_primary_10_1002_smll_202501570 crossref_primary_10_1103_PhysRevApplied_19_044083 crossref_primary_10_1016_j_jallcom_2025_182454 crossref_primary_10_1002_anie_202307646 crossref_primary_10_1016_j_diamond_2024_111258 crossref_primary_10_1039_D5NR01676B crossref_primary_10_1002_aelm_202101094 crossref_primary_10_1016_j_ijhydene_2021_12_255 crossref_primary_10_1016_j_cej_2025_160881 crossref_primary_10_1016_j_mtcomm_2023_107541 crossref_primary_10_1016_j_mtchem_2024_102405 crossref_primary_10_1088_2515_7655_ac01bf crossref_primary_10_3390_nano11020433 crossref_primary_10_1016_j_mtphys_2022_100731 crossref_primary_10_1002_smtd_202300405 crossref_primary_10_1002_anie_202411047 crossref_primary_10_1038_s41467_023_39445_x crossref_primary_10_1007_s40820_021_00685_5 crossref_primary_10_1002_anie_202404496 crossref_primary_10_1002_ange_202404496 crossref_primary_10_1016_j_apcatb_2023_122812 crossref_primary_10_1016_j_nanoen_2021_106000 crossref_primary_10_1016_j_cej_2022_138927 crossref_primary_10_1002_smtd_202201365 crossref_primary_10_1002_aenm_202004002 crossref_primary_10_1007_s10971_025_06713_9 crossref_primary_10_1016_j_physrep_2024_01_004 crossref_primary_10_1016_j_cej_2025_164785 crossref_primary_10_1063_5_0120767 crossref_primary_10_1002_eom2_12074 crossref_primary_10_1016_j_molstruc_2025_143992 crossref_primary_10_1002_ange_202108133 crossref_primary_10_1016_j_jcis_2023_10_148 crossref_primary_10_1016_j_apcatb_2022_121375 crossref_primary_10_1016_j_cej_2022_139748 crossref_primary_10_1016_j_apcatb_2025_125859 crossref_primary_10_1002_cssc_202402106 crossref_primary_10_1016_j_apcatb_2023_123272 crossref_primary_10_1002_smll_202506894 crossref_primary_10_1016_j_mtchem_2024_102306 crossref_primary_10_1016_j_mtsust_2024_100797 crossref_primary_10_1002_adfm_202402894 crossref_primary_10_1016_j_pmatsci_2023_101192 crossref_primary_10_1002_advs_202305919 crossref_primary_10_1002_cptc_202300104 crossref_primary_10_1002_adom_202300578 crossref_primary_10_1016_j_apsusc_2025_163317 crossref_primary_10_1016_j_ces_2023_119334 crossref_primary_10_1016_j_ces_2021_116983 crossref_primary_10_1002_ange_202411047 crossref_primary_10_1016_j_apsusc_2023_156877 crossref_primary_10_1002_smll_202308088 crossref_primary_10_1002_smtd_202001308 crossref_primary_10_1016_j_ijbiomac_2023_128885 crossref_primary_10_1016_j_rser_2023_114187 crossref_primary_10_1002_ange_202315817 crossref_primary_10_1016_j_ijhydene_2024_07_145 crossref_primary_10_1016_j_apsusc_2022_155881 crossref_primary_10_1016_j_optmat_2022_112148 crossref_primary_10_1002_solr_202200784 crossref_primary_10_1016_j_seppur_2024_130527 crossref_primary_10_3390_nano14010094 crossref_primary_10_1039_D4QM00878B crossref_primary_10_1016_j_jallcom_2025_181680 crossref_primary_10_1002_advs_202309714 crossref_primary_10_1039_D2CC02453E crossref_primary_10_1016_j_jcat_2025_116104 crossref_primary_10_1002_adom_202301583 crossref_primary_10_1021_jacs_3c04181 crossref_primary_10_1002_advs_202206070 crossref_primary_10_1016_j_jallcom_2023_172132 crossref_primary_10_1002_adma_202005888 crossref_primary_10_1016_j_jallcom_2025_180365 crossref_primary_10_1016_j_matchemphys_2023_128159 crossref_primary_10_1002_adfm_202503074 crossref_primary_10_1002_adma_202304711 crossref_primary_10_1002_smll_202401301 crossref_primary_10_1016_j_cej_2022_137197 crossref_primary_10_1002_anie_202108133 crossref_primary_10_1021_acscatal_5c02654 crossref_primary_10_1016_j_nxmate_2025_100655 crossref_primary_10_1002_adom_202002267 crossref_primary_10_1016_j_jece_2022_109050 crossref_primary_10_1002_adfm_202303430 crossref_primary_10_1021_jacs_4c03191 crossref_primary_10_1002_adfm_202201721 crossref_primary_10_1016_j_jechem_2023_03_010 crossref_primary_10_1016_j_physb_2024_415802 |
| Cites_doi | 10.1002/adma.201605587 10.1021/acs.jpclett.7b03286 10.1021/acs.jpcc.5b00148 10.1002/adfm.201704446 10.1021/acsenergylett.8b02090 10.1002/pssb.2221060230 10.1039/C6CS00896H 10.1002/adma.201505002 10.1039/C9NR10075J 10.1002/anie.201914768 10.1002/admi.201800464 10.1038/nphoton.2016.41 10.1016/S1872-2067(15)60929-9 10.1002/cssc.201900716 10.1016/S1872-2067(14)60162-5 10.1002/smll.201703762 10.1038/nphoton.2013.342 10.1038/nenergy.2016.177 10.1021/acs.chemrev.6b00136 10.1039/C8NA00416A 10.1002/adfm.201807375 10.1021/jp310138b 10.1002/anie.201703970 10.1021/acssuschemeng.9b00038 10.1038/ncomms5475 10.1016/j.progsolidstchem.2014.08.001 10.1021/acs.inorgchem.6b01571 10.1002/chem.201705031 10.1002/adma.201704342 10.1021/jacs.7b00489 10.1021/acs.chemmater.5b03147 10.1107/S0567740877009984 10.1021/acsnano.8b02936 10.1038/nenergy.2016.185 10.1021/jacs.5b13294 10.1002/adma.201803792 10.1038/s41560-017-0067-y 10.1039/C8CC01110A 10.1016/j.apcatb.2019.118399 10.1021/acsenergylett.6b00337 10.1021/acs.chemmater.5b04231 10.1038/nmat4271 10.1016/S0924-2031(97)00041-6 10.1002/anie.201800660 10.1038/nmat4014 10.1002/adma.201501978 10.1002/anie.201704739 |
| ContentType | Journal Article |
| Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH GmbH 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH GmbH – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202002137 |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_adma_202002137 ADMA202002137 |
| Genre | article |
| GrantInformation_xml | – fundername: Chinese Academy of Sciences funderid: XDA21010000; QYZDY‐SSW‐JSC023 – fundername: National Natural Science Foundation of China funderid: 21633010; 21673230 – fundername: LiaoNing Revitalization Talents Program funderid: XLYC1907078; 016.Veni.172.034 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4557-9afa6a7aa20e43f285f2eaa897ce9e3c3af936b9c820730ad2f2327887391733 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 162 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000543741400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Wed Oct 01 13:47:39 EDT 2025 Sun Jul 13 05:37:30 EDT 2025 Tue Nov 18 21:44:08 EST 2025 Sat Nov 29 07:21:05 EST 2025 Wed Jan 22 16:33:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 31 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4557-9afa6a7aa20e43f285f2eaa897ce9e3c3af936b9c820730ad2f2327887391733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9301-7850 0000-0002-8099-0934 |
| PQID | 2430052695 |
| PQPubID | 2045203 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2418726973 proquest_journals_2430052695 crossref_citationtrail_10_1002_adma_202002137 crossref_primary_10_1002_adma_202002137 wiley_primary_10_1002_adma_202002137_ADMA202002137 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019; 4 2019; 31 2019; 1 2016; 10 2014 2015 2018 2017 2017 2017 2015; 35 36 3 2 29 46 14 2020; 268 2015 2016; 27 138 2018 2017 2018; 30 139 14 2018; 24 1998; 16 2018; 9 1977 1981; 33 106 2014; 5 2016; 1 2015; 27 2018; 5 2016 2017; 28 56 2017; 56 2015; 43 2013; 117 2017 2018; 56 57 2014; 13 2019; 29 2015; 119 2016; 116 2018 2018 2019 2020 2019 2020; 28 54 7 12 12 59 2018; 12 2014; 8 2016; 28 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_24_2 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_5_3 e_1_2_4_7_1 e_1_2_4_5_2 e_1_2_4_6_1 e_1_2_4_5_5 e_1_2_4_7_3 e_1_2_4_9_1 e_1_2_4_5_4 e_1_2_4_7_2 e_1_2_4_8_1 e_1_2_4_5_7 e_1_2_4_5_6 e_1_2_4_9_2 e_1_2_4_30_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_11_2 e_1_2_4_12_1 e_1_2_4_12_2 e_1_2_4_13_1 e_1_2_4_12_3 e_1_2_4_14_1 e_1_2_4_12_4 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_12_5 e_1_2_4_12_6 e_1_2_4_18_1 e_1_2_4_16_2 e_1_2_4_17_1 e_1_2_4_19_1 |
| References_xml | – volume: 9 start-page: 620 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 27 138 start-page: 7137 2138 year: 2015 2016 publication-title: Chem. Mater. J. Am. Chem. Soc. – volume: 4 start-page: 299 year: 2019 publication-title: ACS Energy Lett. – volume: 27 start-page: 6806 year: 2015 publication-title: Adv. Mater. – volume: 16 start-page: 11 year: 1998 publication-title: Vib. Spectrosc. – volume: 33 106 start-page: 2961 647 year: 1977 1981 publication-title: Acta Crystallog. Section B Structural Crystallog. Crystal Chem. Phys. Status Solidi B – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 12 start-page: 8081 year: 2018 publication-title: ACS Nano – volume: 10 start-page: 333 year: 2016 publication-title: Nat. Photonics – volume: 56 start-page: 42 year: 2017 publication-title: Inorg. Chem. – volume: 1 start-page: 665 year: 2016 publication-title: ACS Energy Lett. – volume: 56 57 start-page: 5359 year: 2017 2018 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 28 56 start-page: 1348 8158 year: 2016 2017 publication-title: Chem. Mater. Angew. Chem., Int. Ed. – volume: 35 36 3 2 29 46 14 start-page: 983 1183 68 5204 636 year: 2014 2015 2018 2017 2017 2017 2015 publication-title: Chin. J. Catal. Chin. J. Catal. Nat. Energy Nat. Energy Adv. Mater. Chem. Soc. Rev. Nat. Mater. – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 30 139 14 start-page: 5660 year: 2018 2017 2018 publication-title: Adv. Mater. J. Am. Chem. Soc. Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 28 54 7 12 12 59 start-page: 3779 8397 3637 2587 2 year: 2018 2018 2019 2020 2019 2020 publication-title: Adv. Funct. Mater. Chem. Commun. ACS Sustainable Chem. Eng. Nanoscale ChemSusChem Angew. Chem., Int. Ed. – volume: 8 start-page: 133 year: 2014 publication-title: Nat. Photonics – volume: 5 start-page: 4475 year: 2014 publication-title: Nat. Commun. – volume: 43 start-page: 1 year: 2015 publication-title: Prog. Solid State Chem. – volume: 117 start-page: 376 year: 2013 publication-title: J. Phys. Chem. C – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 116 year: 2016 publication-title: Chem. Rev. – volume: 24 start-page: 2305 year: 2018 publication-title: Chem. ‐ Eur. J. – volume: 28 start-page: 2253 year: 2016 publication-title: Adv. Mater. – volume: 268 year: 2020 publication-title: Appl. Catal., B – volume: 1 start-page: 1276 year: 2019 publication-title: Nanoscale Adv. – ident: e_1_2_4_5_5 doi: 10.1002/adma.201605587 – ident: e_1_2_4_27_1 doi: 10.1021/acs.jpclett.7b03286 – ident: e_1_2_4_17_1 doi: 10.1021/acs.jpcc.5b00148 – ident: e_1_2_4_12_1 doi: 10.1002/adfm.201704446 – ident: e_1_2_4_19_1 doi: 10.1021/acsenergylett.8b02090 – ident: e_1_2_4_16_2 doi: 10.1002/pssb.2221060230 – ident: e_1_2_4_5_6 doi: 10.1039/C6CS00896H – ident: e_1_2_4_28_1 doi: 10.1002/adma.201505002 – ident: e_1_2_4_12_4 doi: 10.1039/C9NR10075J – ident: e_1_2_4_12_6 doi: 10.1002/anie.201914768 – ident: e_1_2_4_29_1 doi: 10.1002/admi.201800464 – ident: e_1_2_4_3_1 doi: 10.1038/nphoton.2016.41 – ident: e_1_2_4_5_2 doi: 10.1016/S1872-2067(15)60929-9 – ident: e_1_2_4_12_5 doi: 10.1002/cssc.201900716 – ident: e_1_2_4_5_1 doi: 10.1016/S1872-2067(14)60162-5 – ident: e_1_2_4_7_3 doi: 10.1002/smll.201703762 – ident: e_1_2_4_1_1 doi: 10.1038/nphoton.2013.342 – ident: e_1_2_4_4_1 doi: 10.1038/nenergy.2016.177 – ident: e_1_2_4_26_1 doi: 10.1021/acs.chemrev.6b00136 – ident: e_1_2_4_14_1 doi: 10.1039/C8NA00416A – ident: e_1_2_4_23_1 doi: 10.1002/adfm.201807375 – ident: e_1_2_4_30_1 doi: 10.1021/jp310138b – ident: e_1_2_4_24_2 doi: 10.1002/anie.201703970 – ident: e_1_2_4_12_3 doi: 10.1021/acssuschemeng.9b00038 – ident: e_1_2_4_25_1 doi: 10.1038/ncomms5475 – ident: e_1_2_4_18_1 doi: 10.1016/j.progsolidstchem.2014.08.001 – ident: e_1_2_4_13_1 doi: 10.1021/acs.inorgchem.6b01571 – ident: e_1_2_4_15_1 doi: 10.1002/chem.201705031 – ident: e_1_2_4_7_1 doi: 10.1002/adma.201704342 – ident: e_1_2_4_7_2 doi: 10.1021/jacs.7b00489 – ident: e_1_2_4_9_1 doi: 10.1021/acs.chemmater.5b03147 – ident: e_1_2_4_16_1 doi: 10.1107/S0567740877009984 – ident: e_1_2_4_20_1 doi: 10.1021/acsnano.8b02936 – ident: e_1_2_4_5_4 doi: 10.1038/nenergy.2016.185 – ident: e_1_2_4_9_2 doi: 10.1021/jacs.5b13294 – ident: e_1_2_4_21_1 doi: 10.1002/adma.201803792 – ident: e_1_2_4_5_3 doi: 10.1038/s41560-017-0067-y – ident: e_1_2_4_12_2 doi: 10.1039/C8CC01110A – ident: e_1_2_4_31_1 doi: 10.1016/j.apcatb.2019.118399 – ident: e_1_2_4_8_1 doi: 10.1021/acsenergylett.6b00337 – ident: e_1_2_4_6_1 – ident: e_1_2_4_24_1 doi: 10.1021/acs.chemmater.5b04231 – ident: e_1_2_4_5_7 doi: 10.1038/nmat4271 – ident: e_1_2_4_22_1 doi: 10.1016/S0924-2031(97)00041-6 – ident: e_1_2_4_11_2 doi: 10.1002/anie.201800660 – ident: e_1_2_4_2_1 doi: 10.1038/nmat4014 – ident: e_1_2_4_10_1 doi: 10.1002/adma.201501978 – ident: e_1_2_4_11_1 doi: 10.1002/anie.201704739 |
| SSID | ssj0009606 |
| Score | 2.651074 |
| Snippet | Lead‐free inorganic halide perovskites have triggered appealing interests in various energy‐related applications including solar cells and photocatalysis.... Lead-free inorganic halide perovskites have triggered appealing interests in various energy-related applications including solar cells and photocatalysis.... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | e2002137 |
| SubjectTerms | Crystal structure crystalline structural transformations Crystallinity Current carriers Derivation Excitons Hydrogen evolution lead‐free inorganic halide perovskites Materials science Perovskites Photocatalysis Photoelectric effect photoelectric properties Photoelectricity Photovoltaic cells Properties (attributes) Solar cells Solar energy conversion Transformations Valence band |
| Title | Understanding the Effect of Crystalline Structural Transformation for Lead‐Free Inorganic Halide Perovskites |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202002137 https://www.proquest.com/docview/2430052695 https://www.proquest.com/docview/2418726973 |
| Volume | 32 |
| WOSCitedRecordID | wos000543741400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1JS8NAFMcfWj3owV2sSxlB8BSaziSZzLGopYIW0RZ6C9NZQJBEGi148yP4Gf0kzkzSNB5E0NuEvCzMm-U_2-8BnAk_6GgeMU8GkRmgTHzhMV8pL5ZU6VBLK_FdsAk6GMTjMburneIv-BDVhJutGa69thWcT_L2AhrKpeMGuU0GhC7DCjaFN2zAyuV9b3SzAO9GLr6mXe_zWBTEc3Cjj9vf3_C9Y1qozbpmdZ1Ob_P_v7sFG6XgRN2ihGzDkkp3YL2GIdyFdFQ_4YKMJEQF1BhlGl1M38wdS-5W6MHBZi2oAw1rgjdLkUkhG63z8_2jN1UKXadFuCiB-kboS4Xu1DSb5XaqON-DYe9qeNH3yjgMngjCkHqMG29yyjn2VUA0jkONFecxo0IxRQThmpFowoRRE6bB4BJro9PsNkViBoOE7EMjzVJ1AMg0DlQy4fNQaNMrSq6xXaYNCSOSs4lugjf3QSJKRrkNlfGUFHRlnNhsTKpsbMJ5Zf9c0Dl-tDyeuzQpa2me4IA43g0Lm3Ba3Tb1yy6a8FRlr9amE1NjQkkTsHPwL19Kupe33erq8C8PHcGaTRf7DI-hYZyrTmBVzF4e82kLluk4bpXl_AsPB_5U |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwEB7xUwk4FGiL2JaCkSr1FBHsJI6PK-hqEcsKwSJxi7z-kZCqBO0CEjceoc_YJ2HGyWaXQ1Wp6i2JJ3HkmbE_2-NvAL6ZODn2OlORTTKcoIxjE6nYuSi30vnUW4L4IdmEHA7z21t12UQT0lmYmh-iXXAjzwj9NTk4LUgfzVlDtQ3EQSHKQMhlWE3QltDIV0-vejeDOfNuFhJs0oZfpLIknzE3xvzo7RfejkxzuLkIWsOo09v8D_-7Be8byMm6tY1sw5IrP8DGAhHhRyhvFs-4MASFrKY1ZpVnJ5NnLCHubseuA90sUXWw0QLkrUqGV4zydf5--dWbOMfOyjphlGF9hPrWsUs3qZ6mtFg8_QSj3o_RST9qMjFEJklTGSmN-tRSax67RHiep547rXMljVNOGKG9EtlYGcQT2GVoyz0iNQpUFDgdFGIHVsqqdLvAsHuQVplYp8bjuGi157RRmwolrFZj34FopoTCNCzllCzjZ1HzK_OCmrFom7ED31v5-5qf44-SezOdFo2fTgueiMB4o9IOHLbF6GG0baJLVz2SzHEuUUSKDvCg4b_UVHRPL7rt3ed_eekA1vqji0ExOBuef4F1el5HHe7BCirafYV35unhbjrZb8z9FU_QAWs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3aTSntoWk-SrZNUgUKPZk4km1ZxyVbk9BkWZIN5Ga00ggCwQ67SSC3_oT-xv6SamSvd3MohdKbbY0_0HikJ2n0HsAXEydHTmcqsknmByjT2EQqRoxyK9GlzhLED2ITcjTKr6_VuM0mpL0wDT9EN-FGkRHaawpwvLPucMkaqm0gDgpZBkK-hLWElGR6sDa8KK7Olsy7WRDYpAW_SGVJvmBujPnh8yc875mWcHMVtIZep1j_D9_7Ht61kJMNmn9kA15gtQlvV4gIt6C6Wt3jwjwoZA2tMasdO549-RLi7kZ2GehmiaqDTVYgb10xf8RIr_PXj5_FDJGdVo1glGEnHupbZGOc1Y9zmiyeb8Ok-DY5PolaJYbIJGkqI6W9P7XUmseYCMfz1HHUOlfSoEJhhHZKZFNlPJ7wTYa23HmkRomKwg8HhfgAvaqucAeYbx6kVSbWqXG-X7TacVqoTYUSVqup60O0cEJpWpZyEsu4LRt-ZV5SNZZdNfbha2d_1_Bz_NFyd-HTso3TeckTERhvVNqHg67YRxgtm-gK6weyOcqlN5GiDzx4-C9vKgfD80F39vFfbvoMr8fDojw7HX3_BG_ocpN0uAs972fcg1fm8f5mPttv__bf1-gA5g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+Effect+of+Crystalline+Structural+Transformation+for+Lead%E2%80%90Free+Inorganic+Halide+Perovskites&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Shi%2C+Ming&rft.au=Li%2C+Guanna&rft.au=Tian%2C+Wenming&rft.au=Jin%2C+Shengye&rft.date=2020-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=31&rft_id=info:doi/10.1002%2Fadma.202002137&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202002137 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |