VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients

In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for expe...

Full description

Saved in:
Bibliographic Details
Published in:Scientific data Vol. 9; no. 1; pp. 279 - 9
Main Authors: Lee, Hyung-Chul, Park, Yoonsang, Yoon, Soo Bin, Yang, Seong Mi, Park, Dongnyeok, Jung, Chul-Woo
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 08.06.2022
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2052-4463, 2052-4463
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development. Measurement(s) vital signs of patients during surgery • perioperative patient information Technology Type(s) Vital Signs Measurement • Electronic Medical Record Factor Type(s) vital signs data including various numeric and waveform data acquired from multiple patient monitors • perioperative patient information acquired from the electronic medical record system Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment hospital Sample Characteristic - Location South Korea
AbstractList In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development.Measurement(s)vital signs of patients during surgery • perioperative patient informationTechnology Type(s)Vital Signs Measurement • Electronic Medical RecordFactor Type(s)vital signs data including various numeric and waveform data acquired from multiple patient monitors • perioperative patient information acquired from the electronic medical record systemSample Characteristic - OrganismHomo sapiensSample Characteristic - EnvironmenthospitalSample Characteristic - LocationSouth Korea
In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development. Measurement(s) vital signs of patients during surgery • perioperative patient information Technology Type(s) Vital Signs Measurement • Electronic Medical Record Factor Type(s) vital signs data including various numeric and waveform data acquired from multiple patient monitors • perioperative patient information acquired from the electronic medical record system Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment hospital Sample Characteristic - Location South Korea
Measurement(s) vital signs of patients during surgery • perioperative patient information Technology Type(s) Vital Signs Measurement • Electronic Medical Record Factor Type(s) vital signs data including various numeric and waveform data acquired from multiple patient monitors • perioperative patient information acquired from the electronic medical record system Sample Characteristic - Organism Homo sapiens Sample Characteristic - Environment hospital Sample Characteristic - Location South Korea
In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development.
In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development. Measurement(s)vital signs of patients during surgery • perioperative patient informationTechnology Type(s)Vital Signs Measurement • Electronic Medical RecordFactor Type(s)vital signs data including various numeric and waveform data acquired from multiple patient monitors • perioperative patient information acquired from the electronic medical record systemSample Characteristic - OrganismHomo sapiensSample Characteristic - EnvironmenthospitalSample Characteristic - LocationSouth Korea
In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development.In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development.
ArticleNumber 279
Author Park, Dongnyeok
Lee, Hyung-Chul
Park, Yoonsang
Jung, Chul-Woo
Yoon, Soo Bin
Yang, Seong Mi
Author_xml – sequence: 1
  givenname: Hyung-Chul
  surname: Lee
  fullname: Lee, Hyung-Chul
  organization: Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital
– sequence: 2
  givenname: Yoonsang
  orcidid: 0000-0001-6200-2157
  surname: Park
  fullname: Park, Yoonsang
  organization: Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital
– sequence: 3
  givenname: Soo Bin
  surname: Yoon
  fullname: Yoon, Soo Bin
  organization: Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital
– sequence: 4
  givenname: Seong Mi
  surname: Yang
  fullname: Yang, Seong Mi
  organization: Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital
– sequence: 5
  givenname: Dongnyeok
  surname: Park
  fullname: Park, Dongnyeok
  organization: Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital
– sequence: 6
  givenname: Chul-Woo
  orcidid: 0000-0001-7876-8659
  surname: Jung
  fullname: Jung, Chul-Woo
  email: jungcwoo@gmail.com
  organization: Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35676300$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URB_0D7BAkdiwaMDPONkglfKqVAkJAVvr2rEzHmXiwXYq9d_jmbTQdtGVH_c7R8fX9xgdTGGyCL0i-B3BrH2fOBGdrDGlNSackFo8Q0cUC1pz3rCDe_tDdJrSGmNMGMdC4hfokIlGNgzjI_Tjt88wfvp4VkG18sOqdr63o8831WYes6-3EGFjs43V9Q6skh-mVPWQQUOylZ-qNMfBm1LaQvZ2yukleu5gTPb0dj1Bv758_nnxrb76_vXy4vyqNlwIUfdEit5J1hriKDPlxBpnDccAGAuroe2Is5I3klrqtMECqOW6ASf7pm86doIuF98-wFpto99AvFEBvNpfhDgoiNmb0aoWBGm1kGB4x7HVmkvNhNGlCb2jIIvXh8VrO-uN7U15R4TxgenDyuRXagjXqiOyxYwWg7e3BjH8mW3KauOTseMIkw1zUrSRXJaud7ygbx6h6zDHqbRqTxHWdrIt1Ov7if5Fufu6ArQLYGJIKVqnTPmh7MMuoB8VwWo3KGoZFFUGRe0HRYkipY-kd-5PitgiSgWeBhv_x35C9RfULM-Q
CitedBy_id crossref_primary_10_1681_ASN_0000000775
crossref_primary_10_3390_bioengineering10070822
crossref_primary_10_1038_s41598_024_57971_6
crossref_primary_10_1088_1361_6579_ad75e4
crossref_primary_10_1088_1741_2552_ad6592
crossref_primary_10_1186_s12871_025_03100_3
crossref_primary_10_3390_app131911025
crossref_primary_10_1007_s44254_025_00091_9
crossref_primary_10_3390_e25121582
crossref_primary_10_1109_JSEN_2024_3512197
crossref_primary_10_1161_JAHA_123_032216
crossref_primary_10_3389_frai_2025_1533508
crossref_primary_10_1038_s41598_025_10172_1
crossref_primary_10_1213_ANE_0000000000007295
crossref_primary_10_1007_s10877_025_01357_0
crossref_primary_10_1109_ACCESS_2024_3449704
crossref_primary_10_34133_bmef_0111
crossref_primary_10_1016_j_bja_2025_03_024
crossref_primary_10_1080_0886022X_2023_2287130
crossref_primary_10_1093_jamia_ocad219
crossref_primary_10_1088_3049_477X_ae01a8
crossref_primary_10_3390_s25154792
crossref_primary_10_3390_s23229057
crossref_primary_10_1146_annurev_biodatasci_103123_095824
crossref_primary_10_1109_JSEN_2024_3468316
crossref_primary_10_3390_jpm14060587
crossref_primary_10_1109_ACCESS_2025_3540440
crossref_primary_10_1109_LCSYS_2023_3291665
crossref_primary_10_1016_j_bspc_2024_106788
crossref_primary_10_1016_j_hrtlng_2023_08_001
crossref_primary_10_1007_s10489_025_06391_8
crossref_primary_10_1007_s00540_025_03527_5
crossref_primary_10_1109_JBHI_2024_3483301
crossref_primary_10_1016_j_jclinane_2025_111810
crossref_primary_10_1038_s41598_024_84265_8
crossref_primary_10_1177_10892532251332464
crossref_primary_10_1016_j_ifacsc_2025_100324
crossref_primary_10_1016_j_bspc_2025_108380
crossref_primary_10_1016_j_jprocont_2024_103179
crossref_primary_10_1038_s41598_024_82026_1
crossref_primary_10_1161_HYPERTENSIONAHA_125_24822
crossref_primary_10_1186_s40708_024_00241_y
crossref_primary_10_1016_j_accpm_2023_101248
crossref_primary_10_1016_j_device_2025_100778
crossref_primary_10_1109_JBHI_2024_3422023
crossref_primary_10_2196_64855
crossref_primary_10_1038_s41598_023_40769_3
crossref_primary_10_1177_0310057X241303622
crossref_primary_10_3390_s25061864
crossref_primary_10_1016_j_knosys_2025_114082
crossref_primary_10_1088_1361_6579_ad4e92
crossref_primary_10_1088_1361_6579_adcb86
crossref_primary_10_1016_j_tracli_2024_10_006
crossref_primary_10_1097_EJA_0000000000002027
crossref_primary_10_1109_ACCESS_2024_3524262
crossref_primary_10_1016_j_neucom_2025_129812
crossref_primary_10_1186_s12911_025_02986_w
crossref_primary_10_3390_diagnostics14080816
crossref_primary_10_1097_ACO_0000000000001201
crossref_primary_10_1016_j_bja_2025_06_016
crossref_primary_10_1007_s10877_024_01206_6
crossref_primary_10_1186_s13741_025_00544_6
crossref_primary_10_3390_bioengineering12050493
crossref_primary_10_1016_j_ifacol_2024_10_319
crossref_primary_10_1016_j_eswa_2025_127994
crossref_primary_10_3349_ymj_2024_0020
crossref_primary_10_1016_j_asoc_2024_112390
crossref_primary_10_1213_ANE_0000000000006874
crossref_primary_10_1016_j_jbi_2024_104680
crossref_primary_10_1109_JIOT_2025_3579524
crossref_primary_10_1109_TBME_2024_3434344
crossref_primary_10_1109_JBHI_2024_3377128
crossref_primary_10_1186_s12911_025_02930_y
crossref_primary_10_1007_s10489_024_05354_9
crossref_primary_10_1186_s12871_024_02784_3
crossref_primary_10_3389_fphys_2023_1126957
crossref_primary_10_3389_fphys_2024_1398904
crossref_primary_10_1016_j_asjsur_2025_06_171
crossref_primary_10_1038_s41597_024_03517_4
Cites_doi 10.1213/ANE.0000000000004473
10.1213/ane.0000000000002331
10.1016/j.bja.2020.09.049
10.1186/s12871-020-01122-7
10.1093/jamia/ocaa347
10.1038/s41598-019-50391-x
10.1038/s41598-018-20062-4
10.1213/ane.0000000000000027
10.1016/j.compbiomed.2019.04.027
10.1038/sdata.2018.178
10.5281/zenodo.6321507
10.2196/24762
10.17605/OSF.IO/DTC45
10.1016/j.bja.2020.12.035
10.1055/s-0038-1667083
10.1097/ALN.0000000000001892
10.1097/ccm.0000000000004916
10.5281/zenodo.6321522
10.1023/a:1024294700397
10.1016/j.bja.2021.03.011
10.1038/sdata.2016.35
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41597-022-01411-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2052-4463
EndPage 9
ExternalDocumentID oai_doaj_org_article_8a518b57ac4940ebb47b35cb763df2a7
PMC9178032
35676300
10_1038_s41597_022_01411_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: This study was supported by the Ministry of Science and ICT (MSIT), Republic of Korea, under the Information Technology Research Center (ITRC) support program (IITP-2022-2018-0-01833) supervised by the Institute for Information & communications Technology Promotion (IITP). This study was also supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI21C1074).
– fundername: ;
GroupedDBID 0R~
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSFO
ACSMW
ADBBV
ADRAZ
AFKRA
AGHDO
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M1P
M48
M7P
M~E
NAO
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c4555-d175df738c1f23c17536fec40aa005eba891fe74672e2fbc05a2e4b6af7d6d693
IEDL.DBID PIMPY
ISSN 2052-4463
IngestDate Thu Dec 04 16:44:10 EST 2025
Tue Nov 04 01:49:52 EST 2025
Sun Nov 09 10:19:31 EST 2025
Tue Oct 07 06:55:11 EDT 2025
Wed Feb 19 02:26:57 EST 2025
Sat Nov 29 01:43:34 EST 2025
Tue Nov 18 22:11:21 EST 2025
Fri Feb 21 02:37:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4555-d175df738c1f23c17536fec40aa005eba891fe74672e2fbc05a2e4b6af7d6d693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0001-7876-8659
0000-0001-6200-2157
OpenAccessLink https://www.proquest.com/publiccontent/docview/2674138978?pq-origsite=%requestingapplication%
PMID 35676300
PQID 2674138978
PQPubID 2041912
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_8a518b57ac4940ebb47b35cb763df2a7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9178032
proquest_miscellaneous_2674756794
proquest_journals_2674138978
pubmed_primary_35676300
crossref_citationtrail_10_1038_s41597_022_01411_5
crossref_primary_10_1038_s41597_022_01411_5
springer_journals_10_1038_s41597_022_01411_5
PublicationCentury 2000
PublicationDate 20220608
PublicationDateYYYYMMDD 2022-06-08
PublicationDate_xml – month: 6
  year: 2022
  text: 20220608
  day: 8
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific data
PublicationTitleAbbrev Sci Data
PublicationTitleAlternate Sci Data
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Fahy, Chau (CR2) 2018; 126
Yang (CR18) 2021; 9
Barton (CR6) 2019; 109
Lee (CR17) 2021; 126
Saugel (CR3) 2021; 126
Pollard (CR11) 2018; 5
Anderson (CR1) 2020; 130
Ganapathy, Swaminathan, Deserno (CR4) 2018; 27
Romero-Brufau (CR5) 2021; 28
Lee, Jung (CR9) 2018; 8
Lee (CR21) 2022
CR10
Thoral (CR12) 2021; 49
Jung, Lee (CR19) 2022
Yoon (CR16) 2020; 20
Lee (CR20) 2022
Vistisen, Pollard, Enevoldsen, Scheeren (CR13) 2021; 127
Lee, Ryu, Chung, Jung (CR14) 2018; 128
Lee (CR15) 2019; 9
Nair (CR7) 2014; 118
Sticher (CR8) 2002; 17
BG Fahy (1411_CR2) 2018; 126
C-W Jung (1411_CR19) 2022
S Romero-Brufau (1411_CR5) 2021; 28
J Sticher (1411_CR8) 2002; 17
N Ganapathy (1411_CR4) 2018; 27
TA Anderson (1411_CR1) 2020; 130
HC Lee (1411_CR15) 2019; 9
PJ Thoral (1411_CR12) 2021; 49
S Lee (1411_CR17) 2021; 126
H-C Lee (1411_CR21) 2022
S Yoon (1411_CR16) 2020; 20
1411_CR10
H-C Lee (1411_CR20) 2022
C Barton (1411_CR6) 2019; 109
ST Vistisen (1411_CR13) 2021; 127
B Saugel (1411_CR3) 2021; 126
TJ Pollard (1411_CR11) 2018; 5
HC Lee (1411_CR14) 2018; 128
HC Lee (1411_CR9) 2018; 8
HL Yang (1411_CR18) 2021; 9
BG Nair (1411_CR7) 2014; 118
References_xml – volume: 130
  start-page: 1261
  year: 2020
  end-page: 1263
  ident: CR1
  article-title: Intraoperative Analgesia-Nociception Monitors: Where We Are and Where We Want To Be
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0000000000004473
– volume: 126
  start-page: 111
  year: 2018
  end-page: 117
  ident: CR2
  article-title: The Technology of Processed Electroencephalogram Monitoring Devices for Assessment of Depth of Anesthesia
  publication-title: Anesth Analg
  doi: 10.1213/ane.0000000000002331
– volume: 126
  start-page: 67
  year: 2021
  end-page: 76
  ident: CR3
  article-title: Cardiac output estimation using pulse wave analysis-physiology, algorithms, and technologies: a narrative review
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2020.09.049
– volume: 20
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR16
  article-title: The cumulative duration of bispectral index less than 40 concurrent with hypotension is associated with 90-day postoperative mortality: a retrospective study
  publication-title: BMC anesthesiology
  doi: 10.1186/s12871-020-01122-7
– volume: 28
  start-page: 1207
  year: 2021
  end-page: 1215
  ident: CR5
  article-title: Using machine learning to improve the accuracy of patient deterioration predictions: Mayo Clinic Early Warning Score (MC-EWS)
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocaa347
– volume: 9
  year: 2019
  ident: CR15
  article-title: Data Driven Investigation of Bispectral Index Algorithm
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-50391-x
– volume: 8
  year: 2018
  ident: CR9
  article-title: Vital Recorder-a free research tool for automatic recording of high-resolution time-synchronised physiological data from multiple anaesthesia devices
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-20062-4
– volume: 118
  start-page: 206
  year: 2014
  end-page: 214
  ident: CR7
  article-title: Anesthesia information management system-based near real-time decision support to manage intraoperative hypotension and hypertension
  publication-title: Anesth Analg
  doi: 10.1213/ane.0000000000000027
– volume: 109
  start-page: 79
  year: 2019
  end-page: 84
  ident: CR6
  article-title: Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.04.027
– volume: 5
  year: 2018
  ident: CR11
  article-title: The eICU Collaborative Research Database, a freely available multi-center database for critical care research
  publication-title: Sci Data
  doi: 10.1038/sdata.2018.178
– year: 2022
  ident: CR20
  publication-title: Github
  doi: 10.5281/zenodo.6321507
– ident: CR10
– volume: 9
  start-page: e24762
  year: 2021
  ident: CR18
  article-title: Development and Validation of an Arterial Pressure-Based Cardiac Output Algorithm Using a Convolutional Neural Network: Retrospective Study Based on Prospective Registry Data
  publication-title: JMIR Med Inform
  doi: 10.2196/24762
– year: 2022
  ident: CR19
  publication-title: Open Science Framework
  doi: 10.17605/OSF.IO/DTC45
– volume: 126
  start-page: 808
  year: 2021
  end-page: 817
  ident: CR17
  article-title: Deep learning models for the prediction of intraoperative hypotension
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2020.12.035
– volume: 27
  start-page: 98
  year: 2018
  end-page: 109
  ident: CR4
  article-title: Deep Learning on 1-D Bio-signals: a Taxonomy-based Survey
  publication-title: Yearb Med Inform
  doi: 10.1055/s-0038-1667083
– volume: 128
  start-page: 92
  year: 2018
  end-page: 501
  ident: CR14
  article-title: Prediction of Bispectral Index during Target-controlled Infusion of Propofol and Remifentanil: A Deep Learning Approach
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000001892
– volume: 49
  start-page: e563
  year: 2021
  end-page: e577
  ident: CR12
  article-title: Sharing ICU Patient Data Responsibly Under the Society of Critical Care Medicine/European Society of Intensive Care Medicine Joint Data Science Collaboration: The Amsterdam University Medical Centers Database (AmsterdamUMCdb) Example
  publication-title: Crit Care Med
  doi: 10.1097/ccm.0000000000004916
– year: 2022
  ident: CR21
  publication-title: Github
  doi: 10.5281/zenodo.6321522
– volume: 17
  start-page: 335
  year: 2002
  end-page: 343
  ident: CR8
  article-title: Computerize anesthesia record keeping in thoracic surgery–suitability of electronic anesthesia records in evaluating predictors for hypoxemia during one-lung ventilation
  publication-title: J Clin Monit Comput
  doi: 10.1023/a:1024294700397
– volume: 127
  start-page: 184
  year: 2021
  end-page: 187
  ident: CR13
  article-title: VitalDB: fostering collaboration in anaesthesia research
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2021.03.011
– volume: 27
  start-page: 98
  year: 2018
  ident: 1411_CR4
  publication-title: Yearb Med Inform
  doi: 10.1055/s-0038-1667083
– year: 2022
  ident: 1411_CR19
  doi: 10.17605/OSF.IO/DTC45
– volume: 109
  start-page: 79
  year: 2019
  ident: 1411_CR6
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.04.027
– year: 2022
  ident: 1411_CR21
  doi: 10.5281/zenodo.6321522
– volume: 118
  start-page: 206
  year: 2014
  ident: 1411_CR7
  publication-title: Anesth Analg
  doi: 10.1213/ane.0000000000000027
– volume: 49
  start-page: e563
  year: 2021
  ident: 1411_CR12
  publication-title: Crit Care Med
  doi: 10.1097/ccm.0000000000004916
– volume: 126
  start-page: 808
  year: 2021
  ident: 1411_CR17
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2020.12.035
– year: 2022
  ident: 1411_CR20
  doi: 10.5281/zenodo.6321507
– volume: 130
  start-page: 1261
  year: 2020
  ident: 1411_CR1
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0000000000004473
– volume: 126
  start-page: 67
  year: 2021
  ident: 1411_CR3
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2020.09.049
– ident: 1411_CR10
  doi: 10.1038/sdata.2016.35
– volume: 8
  year: 2018
  ident: 1411_CR9
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-20062-4
– volume: 20
  start-page: 1
  year: 2020
  ident: 1411_CR16
  publication-title: BMC anesthesiology
  doi: 10.1186/s12871-020-01122-7
– volume: 127
  start-page: 184
  year: 2021
  ident: 1411_CR13
  publication-title: Br J Anaesth
  doi: 10.1016/j.bja.2021.03.011
– volume: 128
  start-page: 92
  year: 2018
  ident: 1411_CR14
  publication-title: Anesthesiology
  doi: 10.1097/ALN.0000000000001892
– volume: 126
  start-page: 111
  year: 2018
  ident: 1411_CR2
  publication-title: Anesth Analg
  doi: 10.1213/ane.0000000000002331
– volume: 9
  year: 2019
  ident: 1411_CR15
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-50391-x
– volume: 9
  start-page: e24762
  year: 2021
  ident: 1411_CR18
  publication-title: JMIR Med Inform
  doi: 10.2196/24762
– volume: 28
  start-page: 1207
  year: 2021
  ident: 1411_CR5
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocaa347
– volume: 17
  start-page: 335
  year: 2002
  ident: 1411_CR8
  publication-title: J Clin Monit Comput
  doi: 10.1023/a:1024294700397
– volume: 5
  year: 2018
  ident: 1411_CR11
  publication-title: Sci Data
  doi: 10.1038/sdata.2018.178
SSID ssj0001340570
Score 2.2775557
Snippet In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve...
Measurement(s) vital signs of patients during surgery • perioperative patient information Technology Type(s) Vital Signs Measurement • Electronic Medical...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 279
SubjectTerms 631/114/1305
692/308
Anesthesia
Data Descriptor
Databases, Factual
Datasets
Electronic health records
Electronic medical records
Humanities and Social Sciences
Humans
Interfaces
Learning algorithms
Machine Learning
Medical equipment
Medical records
Monitoring, Physiologic - methods
multidisciplinary
Patients
R&D
Research & development
Science
Science (multidisciplinary)
Vital Signs
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6higMXRMsr0CIjcQBRq44fsXOkQMWpQghQb5bt2GIlmqJNt78fj-NdujwvXGNHGs0j8008_gbgme6QdK33NMYM32SfCxRjkqCCt17HJHJZNA-b0Ken5uysf39t1Bf2hM30wLPijoxTrfFKuyB7yaL3Unuhgs9xMSTuyj1ypvtrxVT5uyIQiLB6S4YJczTlTIXEoxw7EWTbUrWViQph_-9Q5q_Nkj-dmJZEdHIHblcESV7Nku_CjTjuwW6N0Yk8r0TSL-7Ch884EeTN8SFxBGmJaUJOqwy7SWkjpEj7fY7tMOQKNxLs5ZgI9oxibiOLkUyrZfkykkq_Ot2DTydvP75-R-sMBRqkUooOGR4MSQsT2sRFQF7OLsUgmXM5_qJ3pm9TxJkjPPLkA1OOR-k7l_TQDV0v7sPOeDHGh0BcSh7HWWkfhBx46IPnsmM-yZgib10D7VqfNlSCcZxz8dWWg25h7GwDm21giw2sauDl5p1vM73GX3cfo5k2O5EauzzIDmOrw9h_OUwD-2sj2xqvk-VdRlYZu2nTwNPNco40PD5xY7xYzXu0yr4tG3gw-8RGEpGfI3lZA3rLW7ZE3V4ZF18Km3eulw0TvIHDtV_9EOvPqnj0P1TxGG7xEhAdZWYfdi6Xq3gAN8PV5WJaPikR9R21YyKp
  priority: 102
  providerName: Directory of Open Access Journals
Title VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients
URI https://link.springer.com/article/10.1038/s41597-022-01411-5
https://www.ncbi.nlm.nih.gov/pubmed/35676300
https://www.proquest.com/docview/2674138978
https://www.proquest.com/docview/2674756794
https://pubmed.ncbi.nlm.nih.gov/PMC9178032
https://doaj.org/article/8a518b57ac4940ebb47b35cb763df2a7
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2052-4463
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001340570
  issn: 2052-4463
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH9iKwcuwPgYgVEZiQOIRU1sJ3ZOiEInOFBVE6BximzHhkqQjmbdkb8dP8dtVT524uKD40hO3qftn38P4KkokXSt0qm1Pn3jlV-gSOlYymiuhXXML4v6YhNiOpVnZ9UsXo_uIqxy7RODo-7ZnhG37Z3wqFkY3DEf0dJHQh9rhXx5_iPFGlJ41hoLauzBAIm3vL4PZu_ezz5v91wYpidZvDuTMTnqfPxCOlKK-ASe52mxE58Cjf_fcs8_IZS_naOG8HRy6_9-2G24GdNU8qrXqwO4Zts7cBAdQUeeRbbq53fh9BOWHXkzPiaKIPdx6pA4y-f2JGAVU-QW_46YG3KJAwkCRjqCwFQMoGTekm61DO6XRI7X7h58PJl8eP02jYUaUsOLokgbn4M0TjBpckeZQfLP0lnDM6W8kVutZJU7i4VNqKVOm6xQ1HJdKieasikrdh_220VrHwBRzmmsmSW0YbyhpjKa8jLTjltnaa4SyNfiqU1kMcdiGt_qcJrOZN2LtPYirYNI6yKBF5t3znsOjytHj1Hqm5HIvx06FssvdTTnWqoil7oQyvCKZ1ZrLjQrjPbeunFUiQSO1sKuo1Po6q1sE3iyeezNGc9oVGsXq36MKLwB8QQOexXbzIT5fmRIS0DsKN_OVHeftPOvgTLcL8plxmgCx2s13U7r37_i4dVf8Qhu0GA5ZZrJI9i_WK7sY7huLi_m3XIIe-JMhFYOYTCeTGenw7DjMUR87Qzbn5NhNNFfFZJD4A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQkuQPkMFDASSCAaNbGd2DkgRClVq5YVQgXtzbUdG1aC3bLpFvGn-I14nGRXy0dvPXBNHMlJ3rwZx5P3AB6LEkXXKpM6F8o3XoUFipSepYzmRjjPwrKoNZsQg4EcDqt3K_Cz_xcG2yp7ToxEXU8sfiPfpGXIfSG7Cvny-FuKrlG4u9pbaLSw2Hc_voclW_Nibzu83yeU7rw5fL2bdq4CqeVFUaR1SJi1F0za3FNmUamy9M7yTOuASGe0rHLv0IWDOuqNzQpNHTel9qIu6xLFlwLlXwg8LjCixFAsvukwLH-y7t-cjMnNJuRHlDul2P_A8zwtlvJftAn4W237Z4vmb_u0Mf3tXP3fHtw1uNIV2uRVGxlrsOLG12Gto7KGPO30tp_dgPcf0Thle2uDaILqzalH6a-wOiGx2zJFdfSv2DVETnEgwZaXhmBrLZYAZDQmzWwaEwjpVGqbm_DhXO7tFqyOJ2N3B4j23qDrlzCW8ZrayhrKy8x47ryjuU4g7wGgbKfDjnYgX1TsB2BStaBRATQqgkYVCTyfX3PcqpCcOXoLcTUfiQri8cBk-kl1hKSkLnJpCqEtr3jmjOHCsMKakG9qT7VIYL2Hk-porVELLCXwaH46EBLuMumxm8zaMaIIFMATuN2CeD4TFo6jxlsCYgneS1NdPjMefY6i51UuZMZoAht9ICym9e9Hcffsu3gIl3YP3x6og73B_j24TGOclmkm12H1ZDpz9-GiPT0ZNdMHMdAJHJ13gPwCc_-N6w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aBkK8AOMaGGAkkEAsamI7sfOAEKNUTENVhQDtLdiOvVWCdDTrEH-NX4ePk7Qql73tgVfnRLKT71wcf_kOwGORo-haoWNrffnGC79BkdKxmNFUC-uY3xa1zSbEeCwPDorJBvzs_4VBWmUfE0OgrmYGv5EPaO5zn8-uQg5cR4uYDEcvj7_F2EEKT1r7dhotRPbtj-9--9a82Bv6d_2E0tGbD6_fxl2HgdjwLMviyifPygkmTeooM6hamTtreKKUR6fVShaps9iRg1rqtEkyRS3XuXKiyqschZh8-L_gDRIZaIOT1fcdhqVQ0v2nkzA5aHyuROlTilwInqZxtpYLQ8uAv9W5f9I1fzuzDalwdPV_fojX4EpXgJNXrcdswYatr8NWF-Ia8rTT4X52A95_woYqw90dogiqOscOJcH8roUEFmaMqulfkU1ETtGQIBWmIUi5xdKATGvSLOYhsZBOvba5CR_PZW23YLOe1fYOEOWcxm5gQhvGK2oKo6nHjXbcOktTFUHag6E0nT47tgn5UgaeAJNlC6DSA6gMACqzCJ4v7zlu1UnOtN5FjC0tUVk8DMzmh2UXqEqpslTqTCjDC55YrbnQLDPa56HKUSUi2O6hVXbhrilXuIrg0fKyD1R4-qRqO1u0NiLzoYFHcLsF9HImzI-j9lsEYg3qa1Ndv1JPj4IYepEKmTAawU7vFKtp_ftR3D17FQ_hkveL8t3eeP8eXKbBZfM4kduweTJf2Ptw0ZyeTJv5g-DzBD6ft3_8AskFlsI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VitalDB%2C+a+high-fidelity+multi-parameter+vital+signs+database+in+surgical+patients&rft.jtitle=Scientific+data&rft.au=Lee%2C+Hyung-Chul&rft.au=Park%2C+Yoonsang&rft.au=Yoon%2C+Soo+Bin&rft.au=Yang%2C+Seong+Mi&rft.date=2022-06-08&rft.issn=2052-4463&rft.eissn=2052-4463&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41597-022-01411-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41597_022_01411_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-4463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-4463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-4463&client=summon