The Hunga Tonga‐Hunga Ha'apai Hydration of the Stratosphere

Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption....

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters Vol. 49; no. 13; pp. e2022GL099381 - n/a
Main Authors: Millán, L., Santee, M. L., Lambert, A., Livesey, N. J., Werner, F., Schwartz, M. J., Pumphrey, H. C., Manney, G. L., Wang, Y., Su, H., Wu, L., Read, W. G., Froidevaux, L.
Format: Journal Article
Language:English
Published: United States John Wiley & Sons, Inc 16.07.2022
John Wiley and Sons Inc
Subjects:
ISSN:0094-8276, 1944-8007
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17‐year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O. Plain Language Summary The violent Hunga Tonga‐Hunga Ha'apai eruption on 15 January 2022 not only injected ash into the stratosphere but also large amounts of water vapor, breaking all records for direct injection of water vapor, by a volcano or otherwise, in the satellite era. This is not surprising since the Hunga Tonga‐Hunga Ha'apai caldera was formerly situated 150 m below sea level. The massive blast injected water vapor up to altitudes as high as 53 km. Using measurements from the Microwave Limb Sounder on NASA's Aura satellite, we estimate that the excess water vapor is equivalent to around 10% of the amount of water vapor typically residing in the stratosphere. Unlike previous strong eruptions, this event may not cool the surface, but rather it could potentially warm the surface due to the excess water vapor. Key Points Following the Hunga Tonga‐Hunga Ha'apai eruption, the Aura Microwave Limb Sounder measured enhancements of stratospheric H2O, SO2, and HCl The mass of SO2 and HCl injected is comparable to that from prior eruptions, whereas the magnitude of the H2O injection is unprecedented Excess stratospheric H2O will persist for years, could affect stratospheric chemistry and dynamics, and may lead to surface warming
AbstractList Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17‐year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O.
Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17‐year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O. Following the Hunga Tonga‐Hunga Ha'apai eruption, the Aura Microwave Limb Sounder measured enhancements of stratospheric H2O, SO2, and HClThe mass of SO2 and HCl injected is comparable to that from prior eruptions, whereas the magnitude of the H2O injection is unprecedentedExcess stratospheric H2O will persist for years, could affect stratospheric chemistry and dynamics, and may lead to surface warming
Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17‐year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O. Plain Language Summary The violent Hunga Tonga‐Hunga Ha'apai eruption on 15 January 2022 not only injected ash into the stratosphere but also large amounts of water vapor, breaking all records for direct injection of water vapor, by a volcano or otherwise, in the satellite era. This is not surprising since the Hunga Tonga‐Hunga Ha'apai caldera was formerly situated 150 m below sea level. The massive blast injected water vapor up to altitudes as high as 53 km. Using measurements from the Microwave Limb Sounder on NASA's Aura satellite, we estimate that the excess water vapor is equivalent to around 10% of the amount of water vapor typically residing in the stratosphere. Unlike previous strong eruptions, this event may not cool the surface, but rather it could potentially warm the surface due to the excess water vapor. Key Points Following the Hunga Tonga‐Hunga Ha'apai eruption, the Aura Microwave Limb Sounder measured enhancements of stratospheric H2O, SO2, and HCl The mass of SO2 and HCl injected is comparable to that from prior eruptions, whereas the magnitude of the H2O injection is unprecedented Excess stratospheric H2O will persist for years, could affect stratospheric chemistry and dynamics, and may lead to surface warming
Following the 15 January 2022 Hunga Tonga-Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H O, SO , and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H O injection was unprecedented in both magnitude (far exceeding any previous values in the 17-year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H O.
Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H 2 O, SO 2 , and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO 2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H 2 O injection was unprecedented in both magnitude (far exceeding any previous values in the 17‐year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H 2 O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H 2 O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H 2 O. The violent Hunga Tonga‐Hunga Ha'apai eruption on 15 January 2022 not only injected ash into the stratosphere but also large amounts of water vapor, breaking all records for direct injection of water vapor, by a volcano or otherwise, in the satellite era. This is not surprising since the Hunga Tonga‐Hunga Ha'apai caldera was formerly situated 150 m below sea level. The massive blast injected water vapor up to altitudes as high as 53 km. Using measurements from the Microwave Limb Sounder on NASA's Aura satellite, we estimate that the excess water vapor is equivalent to around 10% of the amount of water vapor typically residing in the stratosphere. Unlike previous strong eruptions, this event may not cool the surface, but rather it could potentially warm the surface due to the excess water vapor. Following the Hunga Tonga‐Hunga Ha'apai eruption, the Aura Microwave Limb Sounder measured enhancements of stratospheric H 2 O, SO 2 , and HCl The mass of SO 2 and HCl injected is comparable to that from prior eruptions, whereas the magnitude of the H 2 O injection is unprecedented Excess stratospheric H 2 O will persist for years, could affect stratospheric chemistry and dynamics, and may lead to surface warming
Following the 15 January 2022 Hunga Tonga-Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17-year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O.Following the 15 January 2022 Hunga Tonga-Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17-year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O.
Author Millán, L.
Read, W. G.
Werner, F.
Wu, L.
Santee, M. L.
Froidevaux, L.
Lambert, A.
Manney, G. L.
Wang, Y.
Su, H.
Schwartz, M. J.
Livesey, N. J.
Pumphrey, H. C.
AuthorAffiliation 3 NorthWest Research Associates Socorro NM USA
2 School of GeoSciences The University of Edinburgh Edinburgh UK
1 Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
4 New Mexico Institute of Mining and Technology Socorro NM USA
5 Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
AuthorAffiliation_xml – name: 2 School of GeoSciences The University of Edinburgh Edinburgh UK
– name: 3 NorthWest Research Associates Socorro NM USA
– name: 4 New Mexico Institute of Mining and Technology Socorro NM USA
– name: 1 Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
– name: 5 Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA
Author_xml – sequence: 1
  givenname: L.
  orcidid: 0000-0002-9509-9095
  surname: Millán
  fullname: Millán, L.
  email: luis.f.millan@jpl.nasa.gov
  organization: California Institute of Technology
– sequence: 2
  givenname: M. L.
  orcidid: 0000-0002-9466-7257
  surname: Santee
  fullname: Santee, M. L.
  organization: California Institute of Technology
– sequence: 3
  givenname: A.
  surname: Lambert
  fullname: Lambert, A.
  organization: California Institute of Technology
– sequence: 4
  givenname: N. J.
  orcidid: 0000-0001-8753-9153
  surname: Livesey
  fullname: Livesey, N. J.
  organization: California Institute of Technology
– sequence: 5
  givenname: F.
  orcidid: 0000-0002-7141-0934
  surname: Werner
  fullname: Werner, F.
  organization: California Institute of Technology
– sequence: 6
  givenname: M. J.
  orcidid: 0000-0001-6169-5094
  surname: Schwartz
  fullname: Schwartz, M. J.
  organization: California Institute of Technology
– sequence: 7
  givenname: H. C.
  orcidid: 0000-0003-0747-1457
  surname: Pumphrey
  fullname: Pumphrey, H. C.
  organization: The University of Edinburgh
– sequence: 8
  givenname: G. L.
  orcidid: 0000-0003-4489-4811
  surname: Manney
  fullname: Manney, G. L.
  organization: New Mexico Institute of Mining and Technology
– sequence: 9
  givenname: Y.
  orcidid: 0000-0001-6657-8401
  surname: Wang
  fullname: Wang, Y.
  organization: California Institute of Technology
– sequence: 10
  givenname: H.
  orcidid: 0000-0003-1265-9702
  surname: Su
  fullname: Su, H.
  organization: California Institute of Technology
– sequence: 11
  givenname: L.
  orcidid: 0000-0001-8447-8180
  surname: Wu
  fullname: Wu, L.
  organization: California Institute of Technology
– sequence: 12
  givenname: W. G.
  surname: Read
  fullname: Read, W. G.
  organization: California Institute of Technology
– sequence: 13
  givenname: L.
  surname: Froidevaux
  fullname: Froidevaux, L.
  organization: California Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35865735$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOGzEUhq2KqgTorutqpC7aBQHfLwsqIVSSSpEqlXRteTxniNFknI5nQNnxCH3GPgkOAQQs2oUvR_7O7_-cs4d22tgCQh8IPiKYmmOKKZ3MsDFMkzdoRAznY42x2kEjjE2-UyV30V5KVxhjhhl5h3aZ0FIoJkboZL6AYjq0l66Yx7z_vf2zjabus1u5UEzXVef6ENsi1kWf4Ys-xzGtFtDBAXpbuybB-4dzH_06_zY_m45nPybfz05nY8-FIGNdVkaKmimJsS41AQ86rxI77j1nXioOouJayVJrIitMKy7K7Ba0qWoAto--bnVXQ7mEykObTTR21YWl69Y2umBfvrRhYS_jtTVUC8NFFvjyINDF3wOk3i5D8tA0roU4JEulYUoJIWhGP71Cr-LQtbm8TGm9aZvYCH587ujJymNnM3C4BXwXU-qgfkIItpvB2eeDyzh9hfvQ3_c91xOa_yTdhAbW__zATn7OJGeKsDteTaiV
CitedBy_id crossref_primary_10_1007_s00445_025_01832_1
crossref_primary_10_1038_s43247_022_00618_z
crossref_primary_10_5194_acp_24_4851_2024
crossref_primary_10_3389_feart_2022_976962
crossref_primary_10_1007_s00024_024_03546_5
crossref_primary_10_1038_s41561_023_01183_6
crossref_primary_10_1038_s43247_022_00580_w
crossref_primary_10_5194_essd_15_2295_2023
crossref_primary_10_1016_j_biocon_2024_110466
crossref_primary_10_1038_s43247_022_00652_x
crossref_primary_10_5194_acp_25_3623_2025
crossref_primary_10_1073_pnas_2301994120
crossref_primary_10_1029_2024EA003707
crossref_primary_10_1016_j_polar_2022_100920
crossref_primary_10_1038_s41612_025_01056_2
crossref_primary_10_1016_j_ocemod_2023_102258
crossref_primary_10_1016_j_atmosres_2025_108235
crossref_primary_10_5194_acp_25_9859_2025
crossref_primary_10_1029_2022GL100248
crossref_primary_10_1029_2023JD039963
crossref_primary_10_1016_j_jvolgeores_2024_108077
crossref_primary_10_1029_2023JD039169
crossref_primary_10_1007_s00376_023_3254_8
crossref_primary_10_1029_2023JD039329
crossref_primary_10_1029_2022GL101978
crossref_primary_10_1016_j_earscirev_2025_105274
crossref_primary_10_1002_qj_4658
crossref_primary_10_1016_j_jqsrt_2025_109560
crossref_primary_10_1007_s11069_025_07320_1
crossref_primary_10_1007_s13351_024_4029_6
crossref_primary_10_1029_2023GL106482
crossref_primary_10_1029_2023GL103076
crossref_primary_10_1016_j_atmosres_2025_108428
crossref_primary_10_1029_2023GL106980
crossref_primary_10_3390_atmos15010080
crossref_primary_10_1007_s10874_025_09478_1
crossref_primary_10_3390_atmos13111910
crossref_primary_10_3390_atmos13122055
crossref_primary_10_3390_rs15143602
crossref_primary_10_1007_s00704_024_05276_z
crossref_primary_10_1038_s43247_025_02181_9
crossref_primary_10_1029_2022JD038100
crossref_primary_10_1029_2025GL115935
crossref_primary_10_1016_j_jqsrt_2024_109056
crossref_primary_10_5194_amt_16_2733_2023
crossref_primary_10_1016_j_jqsrt_2024_109333
crossref_primary_10_1016_j_jastp_2025_106535
crossref_primary_10_1126_science_adg2551
crossref_primary_10_5194_cp_20_313_2024
crossref_primary_10_1029_2024JD041940
crossref_primary_10_1038_s41612_023_00539_4
crossref_primary_10_5194_amt_18_555_2025
crossref_primary_10_1029_2023JD039010
crossref_primary_10_1029_2022EA002632
crossref_primary_10_1029_2023GL105762
crossref_primary_10_5194_acp_24_6233_2024
crossref_primary_10_5194_acp_25_367_2025
crossref_primary_10_5194_acp_24_7405_2024
crossref_primary_10_1038_s41561_025_01691_7
crossref_primary_10_5194_acp_25_10677_2025
crossref_primary_10_1029_2024JD040907
crossref_primary_10_1016_j_envpol_2023_121429
crossref_primary_10_1038_s43247_022_00606_3
crossref_primary_10_1029_2025GL117308
crossref_primary_10_1029_2024GL111983
crossref_primary_10_1029_2022JD038238
crossref_primary_10_1029_2024GL111500
crossref_primary_10_1029_2024GL110412
crossref_primary_10_1029_2022GL102443
crossref_primary_10_1080_02626667_2023_2287047
crossref_primary_10_1029_2024JD041296
crossref_primary_10_1016_j_asr_2024_11_075
crossref_primary_10_1029_2023JA031354
crossref_primary_10_1029_2023GL103855
crossref_primary_10_1007_s00445_024_01749_1
crossref_primary_10_1007_s00382_025_07616_9
crossref_primary_10_5194_amt_15_7195_2022
crossref_primary_10_1029_2024GL108649
crossref_primary_10_5194_amt_17_6677_2024
crossref_primary_10_1029_2024JD041848
crossref_primary_10_1029_2025JD043928
crossref_primary_10_1029_2023JD039636
crossref_primary_10_1073_pnas_2219547120
crossref_primary_10_1029_2022GL100833
crossref_primary_10_1029_2023JD038667
crossref_primary_10_1029_2023JD039196
crossref_primary_10_1029_2024JD040990
crossref_primary_10_5194_acp_24_2783_2024
crossref_primary_10_1038_s43247_024_01620_3
crossref_primary_10_1088_1748_9326_adb448
crossref_primary_10_1029_2024GL110841
crossref_primary_10_1038_s41598_023_32574_9
crossref_primary_10_1038_s41598_023_50411_x
crossref_primary_10_3390_rs17162751
crossref_primary_10_1016_j_icarus_2025_116589
crossref_primary_10_1016_j_wace_2023_100627
crossref_primary_10_1038_s41561_025_01663_x
crossref_primary_10_5194_acp_23_3133_2023
crossref_primary_10_1029_2024GL112610
crossref_primary_10_1029_2022GL102341
crossref_primary_10_1038_s43247_024_01421_8
crossref_primary_10_1016_j_scib_2023_03_002
crossref_primary_10_5194_acp_22_14957_2022
crossref_primary_10_1029_2023GL105076
crossref_primary_10_1038_s43247_024_01651_w
crossref_primary_10_1016_j_jqsrt_2023_108520
crossref_primary_10_1029_2023GL107630
crossref_primary_10_1029_2024GL109512
crossref_primary_10_5194_acp_24_5765_2024
crossref_primary_10_3390_rs15215219
crossref_primary_10_3390_rs15082167
crossref_primary_10_5194_acp_25_10887_2025
crossref_primary_10_5194_gmd_18_5487_2025
crossref_primary_10_1029_2022JA030984
crossref_primary_10_3390_rs15061534
crossref_primary_10_5194_acp_25_6353_2025
crossref_primary_10_1007_s11430_022_1218_0
crossref_primary_10_1071_ES22033
crossref_primary_10_1016_j_rse_2023_113684
crossref_primary_10_5194_acp_23_13355_2023
crossref_primary_10_3390_atmos14020263
crossref_primary_10_1029_2023GL105565
crossref_primary_10_5194_amt_17_3751_2024
crossref_primary_10_3390_atmos15040483
crossref_primary_10_1038_s41598_023_41639_8
crossref_primary_10_1029_2025GL115607
crossref_primary_10_1029_2023GL104634
crossref_primary_10_1029_2023JA031542
crossref_primary_10_1029_2023GL104914
crossref_primary_10_5194_acp_25_3635_2025
crossref_primary_10_1016_j_copbio_2023_102945
crossref_primary_10_1029_2023JD040687
crossref_primary_10_5194_gi_14_1_2025
crossref_primary_10_1038_s41558_022_01568_2
crossref_primary_10_1111_1462_2920_70046
crossref_primary_10_1029_2024EF005011
crossref_primary_10_1029_2024JD041595
crossref_primary_10_5194_acp_25_3821_2025
crossref_primary_10_1029_2024GL111388
crossref_primary_10_1029_2022GL100982
crossref_primary_10_1016_j_jqsrt_2024_109088
Cites_doi 10.5194/acp-21-10851-2021
10.1002/grl.50421
10.1029/95jd00196
10.1127/0941-2948/2001/0010-0387
10.5194/acp-20-9591-2020
10.1029/2022gl098153
10.1109/tgrs.2006.873771
10.1029/97gl01289
10.1175/jcli-d-12-00155.1
10.1126/science.1182488
10.1029/2020GL088101
10.5194/nhess-2-91-2002
10.1029/2022GL098131
10.1007/s12583-022-1624-2
10.1029/96jd03125
10.1029/jd094id08p11165
10.5194/acp-9-6109-2009
10.1002/qj.49707532603
10.21203/rs.3.rs-1562573/v1
10.1029/2017EO076589
10.1029/2020gl090831
10.5194/acp-21-16645-2021
10.1002/2016gl069918
10.5194/amt-8-195-2015
10.1007/s13351-022-2013-6
10.1029/2007jd009109
10.1002/essoar.10510674.2
10.1016/j.eqrea.2022.100134
10.1038/373399a0
10.5194/acp-20-12905-2020
10.31223/x5x33z
10.1029/95jd03763
10.1029/2020gl090131
10.1029/2007jd008709
10.1029/95jd03422
10.1016/j.jvolgeores.2016.01.002
10.5194/acp-15-10471-2015
10.5194/acp-15-9945-2015
10.1029/2021GL096270
10.1109/tgrs.2006.872327
10.5194/acp-5-1257-2005
10.1038/s43247-020-00022-5
10.1002/essoar.10511092.1
10.1029/2005jd006744
10.1002/2014eo270001
10.5194/acp-16-8125-2016
10.1029/93gl00831
10.1029/2022gl098158
10.1029/2000jd900637
10.1007/s00382-016-3231-3
ContentType Journal Article
Copyright 2022 Jet Propulsion Laboratory, California Institute of Technology. Government sponsorship acknowledged.
2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 Jet Propulsion Laboratory, California Institute of Technology. Government sponsorship acknowledged.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7X8
5PM
DOI 10.1029/2022GL099381
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
DatabaseTitleList Aerospace Database


PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
DocumentTitleAlternate Millán et al
EISSN 1944-8007
EndPage n/a
ExternalDocumentID PMC9285945
35865735
10_1029_2022GL099381
GRL64371
Genre article
Journal Article
GeographicLocations Tonga
GeographicLocations_xml – name: Tonga
GrantInformation_xml – fundername: National Aeronautics and Space Administration
  funderid: 80NM0018D0004
– fundername: National Aeronautics and Space Administration
  grantid: 80NM0018D0004
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAFWJ
AAMMB
AAYXX
ACTHY
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
NPM
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
7X8
5PM
ID FETCH-LOGICAL-c4551-8bd965f376008b81ece8eceb0a4cc43c674e5d4876b8816d02d45b003e89dfee3
IEDL.DBID 24P
ISICitedReferencesCount 184
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000822766100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Tue Sep 30 16:52:56 EDT 2025
Sun Nov 09 11:01:29 EST 2025
Fri Jul 25 10:33:59 EDT 2025
Thu Jan 02 22:39:34 EST 2025
Sat Nov 29 02:58:09 EST 2025
Tue Nov 18 21:50:49 EST 2025
Wed Jan 22 16:25:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Attribution-NonCommercial
2022 Jet Propulsion Laboratory, California Institute of Technology. Government sponsorship acknowledged.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4551-8bd965f376008b81ece8eceb0a4cc43c674e5d4876b8816d02d45b003e89dfee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4489-4811
0000-0002-9509-9095
0000-0002-7141-0934
0000-0001-8447-8180
0000-0002-9466-7257
0000-0003-0747-1457
0000-0003-1265-9702
0000-0001-6169-5094
0000-0001-8753-9153
0000-0001-6657-8401
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL099381
PMID 35865735
PQID 2688573555
PQPubID 54723
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9285945
proquest_miscellaneous_2693775552
proquest_journals_2688573555
pubmed_primary_35865735
crossref_primary_10_1029_2022GL099381
crossref_citationtrail_10_1029_2022GL099381
wiley_primary_10_1029_2022GL099381_GRL64371
PublicationCentury 2000
PublicationDate 16 July 2022
PublicationDateYYYYMMDD 2022-07-16
PublicationDate_xml – month: 07
  year: 2022
  text: 16 July 2022
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: Hoboken
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys Res Lett
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2015; 15
2021; 21
2013; 26
1949; 75
2020; 20
2010; 327
2017; 48
2013; 40
1997; 24
1993; 20
2022; 23
2002; 2
1995; 373
2016; 16
2015; 8
1996; 101
2013; 6
2022; 49
2006; 111
2001; 106
2022; 179
1997; 102
2007; 112
1989; 94
2020; 1
2022
2020
2006; 44
2016; 311
2016; 43
2005; 5
2009; 9
2022; 36
2017
2020; 47
1995; 100
2022; 33
2013
2022; 11
2008; 113
2014; 95
2001; 10
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
Ko M. K. W. (e_1_2_8_18_1) 2013
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Myhre G. (e_1_2_8_27_1) 2013
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_39_1
e_1_2_8_14_1
Livesey N. J. (e_1_2_8_20_1) 2020
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 113
  issue: D6
  year: 2008
  article-title: Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection
  publication-title: Journal of Geophysical Research
– year: 2022
  article-title: Under the surface: Pressure‐induced planetary‐scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga‐Hunga Ha'apai volcano
  publication-title: Earthquake Research Advances
– volume: 10
  start-page: 387
  issue: 5
  year: 2001
  end-page: 393
  article-title: Testing broadband radiation schemes for their ability to calculate the radiative forcing and temperature response to stratospheric water vapour and ozone changes
  publication-title: Meteorologische Zeitschrift
– volume: 20
  start-page: 12905
  issue: 21
  year: 2020
  end-page: 12920
  article-title: Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP
  publication-title: Atmospheric Chemistry and Physics
– volume: 44
  start-page: 1144
  issue: 5
  year: 2006
  end-page: 1155
  article-title: Retrieval algorithms for the EOS Microwave Limb Sounder (MLS)
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 106
  start-page: 7505
  issue: D7
  year: 2001
  end-page: 7514
  article-title: Response of the stratospheric temperatures and ozone to past and future increases in stratospheric humidity
  publication-title: Journal of Geophysical Research
– volume: 21
  start-page: 16645
  issue: 22
  year: 2021
  end-page: 16659
  article-title: Microwave Limb Sounder (MLS) observations of biomass burning products in the stratosphere from Canadian forest fires in August 2017
  publication-title: Atmospheric Chemistry and Physics
– volume: 311
  start-page: 99
  year: 2016
  end-page: 134
  article-title: Multi‐decadal satellite measurements of global volcanic degassing
  publication-title: Journal of Volcanology and Geothermal Research
– volume: 101
  start-page: 3989
  issue: D2
  year: 1996
  end-page: 4006
  article-title: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor
  publication-title: Journal of Geophysical Research
– volume: 49
  issue: 7
  year: 2022
  article-title: Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption
  publication-title: Geophysical Research Letters
– volume: 15
  start-page: 9945
  issue: 17
  year: 2015
  end-page: 9963
  article-title: A Match‐based approach to the estimation of polar stratospheric ozone loss using Aura Microwave Limb Sounder observations
  publication-title: Atmospheric Chemistry and Physics
– volume: 26
  start-page: 545
  issue: 2
  year: 2013
  end-page: 561
  article-title: The circulation response to idealized changes in stratospheric water vapor
  publication-title: Journal of Climate
– volume: 47
  issue: 24
  year: 2020
  article-title: Australian New Year's pyroCb impact on stratospheric composition
  publication-title: Geophysical Research Letters
– volume: 49
  issue: 4
  year: 2022
  article-title: Prolonged and pervasive perturbations in the composition of the Southern Hemisphere midlatitude lower stratosphere from the Australian New Year’s fires
  publication-title: Geophysical Research Letters
– volume: 48
  start-page: 2671
  issue: 7–8
  year: 2017
  end-page: 2683
  article-title: The linkage between stratospheric water vapor and surface temperature in an observation‐constrained coupled general circulation model
  publication-title: Climate Dynamics
– volume: 47
  issue: 24
  year: 2020
  article-title: Extreme outliers in lower stratospheric water vapor over North America observed by MLS: Relation to overshooting convection diagnosed from colocated Aqua‐MODIS data
  publication-title: Geophysical Research Letters
– volume: 44
  start-page: 1075
  issue: 5
  year: 2006
  end-page: 1092
  article-title: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 179
  start-page: 1117
  year: 2022
  end-page: 1137
  article-title: Tsunami effects on the Coast of Mexico by the Hunga Tonga‐Hunga Ha’apai volcano eruption
  publication-title: Pure and Applied Geophysics
– volume: 100
  start-page: 7381
  issue: D4
  year: 1995
  end-page: 7396
  article-title: Modeled impacts of stratospheric ozone and water vapor perturbations with implications for high‐speed civil transport aircraft
  publication-title: Journal of Geophysical Research
– volume: 20
  start-page: 9591
  issue: 16
  year: 2020
  end-page: 9618
  article-title: Effective radiative forcing and adjustments in CMIP6 models
  publication-title: Atmospheric Chemistry and Physics
– year: 2022
– volume: 101
  start-page: 6767
  issue: D3
  year: 1996
  end-page: 6780
  article-title: Observations of the impact of volcanic activity on stratospheric chemistry
  publication-title: Journal of Geophysical Research
– volume: 16
  start-page: 8125
  issue: 13
  year: 2016
  end-page: 8140
  article-title: The millennium water vapour drop in chemistry–climate model simulations
  publication-title: Atmospheric Chemistry and Physics
– volume: 47
  issue: 13
  year: 2020
  article-title: Australian PyroCb smoke generates synoptic‐scale stratospheric anticyclones
  publication-title: Geophysical Research Letters
– volume: 36
  start-page: 1
  issue: 1
  year: 2022
  end-page: 5
  article-title: Potential impact of Tonga volcano eruption on global mean surface air temperature
  publication-title: Journal of Meteorological Research
– volume: 95
  start-page: 245
  issue: 27
  year: 2014
  end-page: 246
  article-title: Another drop in water vapor
  publication-title: Eos, Transactions American Geophysical Union
– volume: 43
  start-page: 7694
  issue: 14
  year: 2016
  end-page: 7700
  article-title: Direct injection of water vapor into the stratosphere by volcanic eruptions
  publication-title: Geophysical Research Letters
– volume: 112
  issue: D24
  year: 2007
  article-title: Solar occultation satellite data and derived meteorological products: Sampling issues and comparisons with Aura Microwave Limb Sounder
  publication-title: Journal of Geophysical Research
– volume: 5
  start-page: 1257
  issue: 5
  year: 2005
  end-page: 1272
  article-title: Simulation of stratospheric water vapor trends: Impact on stratospheric ozone chemistry
  publication-title: Atmospheric Chemistry and Physics
– start-page: 659
  year: 2013
  end-page: 740
– volume: 102
  start-page: 6099
  issue: D5
  year: 1997
  end-page: 6108
  article-title: Transport of atmospheric water vapor by volcanic eruption columns
  publication-title: Journal of Geophysical Research
– volume: 9
  start-page: 6109
  issue: 16
  year: 2009
  end-page: 6118
  article-title: The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions
  publication-title: Atmospheric Chemistry and Physics
– volume: 49
  issue: 9
  year: 2022
  article-title: Stereo plume height and motion retrievals for the record‐setting Hunga Tonga‐Hunga Ha'apai eruption of 15 January 2022
  publication-title: Geophysical Research Letters
– volume: 49
  issue: 6
  year: 2022
  article-title: Worldwide signature of the 2022 Tonga volcanic tsunami
  publication-title: Geophysical Research Letters
– volume: 94
  issue: D8
  year: 1989
  article-title: Self‐limiting physical and chemical effects in volcanic eruption clouds
  publication-title: Journal of Geophysical Research
– volume: 40
  start-page: 2316
  issue: 10
  year: 2013
  end-page: 2321
  article-title: Convectively injected water vapor in the North American summer lowermost stratosphere
  publication-title: Geophysical Research Letters
– volume: 15
  start-page: 10471
  issue: 18
  year: 2015
  end-page: 10507
  article-title: Global OZone chemistry and related trace gas data records for the stratosphere (GOZCARDS): Methodology and sample results with a focus on HCl, H O, and O
  publication-title: Atmospheric Chemistry and Physics
– volume: 21
  start-page: 10851
  issue: 14
  year: 2021
  end-page: 10879
  article-title: The 2019 Raikoke volcanic eruption—Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide
  publication-title: Atmospheric Chemistry and Physics
– volume: 327
  start-page: 1219
  issue: 5970
  year: 2010
  end-page: 1223
  article-title: Contributions of stratospheric water vapor to decadal changes in the rate of global warming
  publication-title: Science
– volume: 1
  issue: 1
  year: 2020
  article-title: The 2019/20 Australian wildfires generated a persistent smoke‐charged vortex rising up to 35 km altitude
  publication-title: Communications Earth and Environment
– volume: 111
  issue: D12
  year: 2006
  article-title: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer‐Dobson circulation
  publication-title: Journal of Geophysical Research
– volume: 2
  start-page: 91
  issue: 1/2
  year: 2002
  end-page: 108
  article-title: Short‐term climatic impact of the 1991 volcanic eruption of Mt. Pinatubo and effects on atmospheric tracers
  publication-title: Natural Hazards and Earth System Sciences
– volume: 75
  start-page: 351
  issue: 326
  year: 1949
  end-page: 363
  article-title: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 6
  year: 2013
– volume: 24
  start-page: 1383
  issue: 11
  year: 1997
  end-page: 1386
  article-title: Tracer transport in the tropical stratosphere due to vertical diffusion and horizontal mixing
  publication-title: Geophysical Research Letters
– year: 2017
– volume: 33
  start-page: 229
  issue: 2
  year: 2022
  end-page: 235
  article-title: Déjà vu: Might future eruptions of Hunga Tonga‐Hunga Ha’apai volcano be a repeat of the devastating eruption of Santorini, Greece (1650 BC)?
  publication-title: Journal of Earth Sciences
– volume: 8
  start-page: 195
  issue: 1
  year: 2015
  end-page: 209
  article-title: Observations of volcanic SO from MLS on Aura
  publication-title: Atmospheric Measurement Techniques
– volume: 23
  year: 2022
  article-title: Surface‐to‐space atmospheric waves from Hunga Tonga‐Hunga Ha'apai eruption
  publication-title: Earth and Space Science Open Archive
– volume: 373
  start-page: 399
  issue: 6513
  year: 1995
  end-page: 404
  article-title: Atmospheric effects of the Mt Pinatubo eruption
  publication-title: Nature
– year: 2020
  article-title: Version 4.2x Level 2 and 3 data quality and description document (Tech. Rep. No. JPL D‐33509 Rev. E)
  publication-title: Jet Propulsion Laboratory
– volume: 11
  year: 2022
  article-title: The January 2022 eruption of Hunga Tonga‐Hunga Ha’apai volcano reached the mesosphere
  publication-title: Earth and Space Science Open Archive
– volume: 20
  start-page: 1299
  issue: 12
  year: 1993
  end-page: 1302
  article-title: Microwave Limb Sounder measurement of stratospheric SO from the Mt. Pinatubo volcano
  publication-title: Geophysical Research Letters
– ident: e_1_2_8_9_1
  doi: 10.5194/acp-21-10851-2021
– ident: e_1_2_8_39_1
  doi: 10.1002/grl.50421
– ident: e_1_2_8_36_1
  doi: 10.1029/95jd00196
– ident: e_1_2_8_11_1
  doi: 10.1127/0941-2948/2001/0010-0387
– ident: e_1_2_8_43_1
  doi: 10.5194/acp-20-9591-2020
– ident: e_1_2_8_6_1
  doi: 10.1029/2022gl098153
– ident: e_1_2_8_50_1
  doi: 10.1109/tgrs.2006.873771
– ident: e_1_2_8_14_1
  doi: 10.1029/97gl01289
– ident: e_1_2_8_24_1
  doi: 10.1175/jcli-d-12-00155.1
– ident: e_1_2_8_44_1
  doi: 10.1126/science.1182488
– ident: e_1_2_8_16_1
  doi: 10.1029/2020GL088101
– volume-title: SPARC report on lifetimes of stratospheric ozone‐depleting substances, their replacements, and related species
  year: 2013
  ident: e_1_2_8_18_1
– ident: e_1_2_8_29_1
  doi: 10.5194/nhess-2-91-2002
– ident: e_1_2_8_5_1
  doi: 10.1029/2022GL098131
– ident: e_1_2_8_19_1
  doi: 10.1007/s12583-022-1624-2
– ident: e_1_2_8_13_1
  doi: 10.1029/96jd03125
– ident: e_1_2_8_28_1
  doi: 10.1029/jd094id08p11165
– ident: e_1_2_8_15_1
  doi: 10.5194/acp-9-6109-2009
– ident: e_1_2_8_2_1
  doi: 10.1002/qj.49707532603
– ident: e_1_2_8_41_1
  doi: 10.21203/rs.3.rs-1562573/v1
– ident: e_1_2_8_8_1
  doi: 10.1029/2017EO076589
– ident: e_1_2_8_40_1
  doi: 10.1029/2020gl090831
– ident: e_1_2_8_32_1
  doi: 10.5194/acp-21-16645-2021
– ident: e_1_2_8_42_1
  doi: 10.1002/2016gl069918
– ident: e_1_2_8_31_1
  doi: 10.5194/amt-8-195-2015
– ident: e_1_2_8_54_1
  doi: 10.1007/s13351-022-2013-6
– ident: e_1_2_8_37_1
  doi: 10.1029/2007jd009109
– ident: e_1_2_8_52_1
  doi: 10.1002/essoar.10510674.2
– ident: e_1_2_8_53_1
  doi: 10.1016/j.eqrea.2022.100134
– ident: e_1_2_8_25_1
  doi: 10.1038/373399a0
– ident: e_1_2_8_46_1
  doi: 10.5194/acp-20-12905-2020
– ident: e_1_2_8_33_1
  doi: 10.31223/x5x33z
– ident: e_1_2_8_7_1
  doi: 10.1029/95jd03763
– ident: e_1_2_8_51_1
  doi: 10.1029/2020gl090131
– ident: e_1_2_8_23_1
  doi: 10.1029/2007jd008709
– ident: e_1_2_8_26_1
  doi: 10.1029/95jd03422
– ident: e_1_2_8_4_1
  doi: 10.1016/j.jvolgeores.2016.01.002
– ident: e_1_2_8_12_1
  doi: 10.5194/acp-15-10471-2015
– ident: e_1_2_8_21_1
  doi: 10.5194/acp-15-9945-2015
– start-page: 659
  volume-title: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change
  year: 2013
  ident: e_1_2_8_27_1
– ident: e_1_2_8_38_1
  doi: 10.1029/2021GL096270
– year: 2020
  ident: e_1_2_8_20_1
  article-title: Version 4.2x Level 2 and 3 data quality and description document (Tech. Rep. No. JPL D‐33509 Rev. E)
  publication-title: Jet Propulsion Laboratory
– ident: e_1_2_8_22_1
  doi: 10.1109/tgrs.2006.872327
– ident: e_1_2_8_45_1
  doi: 10.5194/acp-5-1257-2005
– ident: e_1_2_8_17_1
  doi: 10.1038/s43247-020-00022-5
– ident: e_1_2_8_30_1
  doi: 10.1002/essoar.10511092.1
– ident: e_1_2_8_34_1
  doi: 10.1029/2005jd006744
– ident: e_1_2_8_48_1
  doi: 10.1002/2014eo270001
– ident: e_1_2_8_3_1
  doi: 10.5194/acp-16-8125-2016
– ident: e_1_2_8_35_1
  doi: 10.1029/93gl00831
– ident: e_1_2_8_47_1
  doi: 10.1029/2022gl098158
– ident: e_1_2_8_10_1
  doi: 10.1029/2000jd900637
– ident: e_1_2_8_49_1
  doi: 10.1007/s00382-016-3231-3
SSID ssj0003031
Score 2.690454
Snippet Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous...
Following the 15 January 2022 Hunga Tonga-Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2022GL099381
SubjectTerms Abrupt/Rapid Climate Change
Air/Sea Constituent Fluxes
Air/Sea Interactions
Altitude
Atmospheric
Atmospheric Composition and Structure
Atmospheric Effects
Atmospheric Processes
Atmospheric Science
Avalanches
Benefit‐cost Analysis
Biogeosciences
Calderas
Climate and Interannual Variability
Climate Change and Variability
Climate Dynamics
Climate Impact
Climate Impacts
Climate Variability
Climatology
Computational Geophysics
Cryosphere
Decadal Ocean Variability
Disaster Risk Analysis and Assessment
Earth System Modeling
Earthquake Ground Motions and Engineering Seismology
Effusive Volcanism
Eruptions
Excess water
Explosive Volcanism
Gases
General Circulation
Geodesy and Gravity
Geological
Global Change
Global Change from Geodesy
Gravity and Isostasy
Hydrological Cycles and Budgets
Hydrology
Impacts of Global Change
Informatics
Injection
Land/Atmosphere Interactions
Lower mantle
Marine Geology and Geophysics
Mass Balance
Mesosphere
Middle Atmosphere Dynamics
Middle Atmosphere: Composition and Chemistry
Middle Atmosphere: Constituent Transport and Chemistry
Middle Atmosphere: Energy Deposition
Modeling
Moisture content
Mud Volcanism
Natural Hazards
Numerical Modeling
Numerical Solutions
Ocean influence of Earth rotation
Ocean Monitoring with Geodetic Techniques
Ocean/Atmosphere Interactions
Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions
Oceanic
Oceanography: General
Oceanography: Physical
Oceans
Paleoceanography
Physical Modeling
Policy Sciences
Radiance
Radiation: Transmission and Scattering
Radiative forcing
Radio Oceanography
Radio Science
Regional Climate Change
Regional Modeling
Research Letter
Risk
Satellites
Sea level
Sea Level Change
Sea Level: Variations and Mean
Seismology
Solid Earth
Stratosphere
Sulfate aerosols
Sulfates
Sulfur dioxide
Surface cooling
Surface temperature
Surface Waves and Tides
Theoretical Modeling
Trace gases
Tsunamis and Storm Surges
Volcanic Effects
Volcanic eruptions
Volcanic Hazards and Risks
Volcano Monitoring
Volcano Seismology
Volcano/Climate Interactions
Volcanoes
Volcanology
Water content
Water Cycles
Water vapor
Water vapour
Title The Hunga Tonga‐Hunga Ha'apai Hydration of the Stratosphere
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL099381
https://www.ncbi.nlm.nih.gov/pubmed/35865735
https://www.proquest.com/docview/2688573555
https://www.proquest.com/docview/2693775552
https://pubmed.ncbi.nlm.nih.gov/PMC9285945
Volume 49
WOSCitedRecordID wos000822766100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5C0kAvfaUPt2lwoaWHYLq2ZUk-hrS7G1iWEBK6N2NJY7pQ7BIngdzyE_ob-0s6Iztml9BCyMHCtkbYlmZGn_X4BuCjcUbYNMeoFJmKBCryg046StLKCaswR-eDTaj5XC8W-XE_4MZ7YTp-iGHAjS3D-2s28NK0PdkAc2TSX3symRHASXnn9VYcp4q1OhHHgycm99xFzMtFpBMl-4XvVP7Laun1LukOzry7XHIVxvp-aPz0oV_wDJ70CDQ86FTmOWxg_QK2Jz7C7zWd-TWhtt3xEejDKTmDMjxtKP1z87u7mpafqYtdhtNr1-lP2FQhAcnQU902LTMV4Es4G387PZxGfbSFyAqCTZE2LpdZxYtkRtroGC1qOsyoFNaK1EolMHP0fyON1rF0o8SJjJ0C6txViOkr2KybGt9AiKYyhpBnMrLMfVMZZ41FAhOVEQTQVAD7txVe2J6KnCNi_Cz8lHiSF6tVE8CnQfpXR8HxD7nd27YrekNsi0RqnSkCVVkAH4ZsMiGeFylrbC5ZhjCaIpEkgNddUw8PSjMtuXwAak0JBgGm517PqZc_PE13ztyAgkrueyX477sXk5MZT6HGb-8l_Q4e830ea47lLmxenF_ie3hkry6W7fmeNwZK1ULvwdbXk_HZjK6-H83_AtBFDCk
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_kqtgX67exVSMoPpTQu2Szu3ks1buI8ZByhb6F7O4EDyQpvVbom3-Cf6N_iTObNNxRFMSHLAk7m4_NzOxvv34D8MY4I2ySYVSJVEUCFflBJx0lSe2EVZih88Em1HyuT0-zL32cU94L0_FDDANubBneX7OB84B0zzbAJJnUbY9nBSGchLdebwnSpHQEW--PpyfF4IzJQ3dB8zIR6VjJfu073eFgvfxmq3QDat5cMbmOZH1TNN3574-4D_d6FBoedmrzAG5h8xDuzHyU3ys68-tC7eqRj0If5uQQqnDRUvrrx8_uKq_eUTO7DPMr1-lQ2NYhgcnQ0922K2YrwMdwMv2wOMqjPuJCZAVBp0gbl8m05oUyY230BC1qOsy4EtaKxEolMHXUx5FG64l049iJlB0D6szViMkTGDVtg88gRFMbQ-gzHlvmv6mNs8YiAYraCAJpKoD96xovbU9HzlExvpV-WjzOyvWqCeDtIH3W0XD8QW7v-ueVvTGuylhqnSoCVmkAr4dsMiOeG6kabC9ZhnCaIpE4gKfdvx4elKRacvkA1IYWDAJM0b2Z0yy_eqrujPkBBZXc91rw13cvZ8cFT6NOnv-T9Cu4my8-F2Xxcf5pF7ZZhseeJ3IPRhfnl_gCbtvvF8vV-cveNn4DqBYODw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB5K0pZckv4mbtLWhZYegunaliX5GNLubumyLCWF3IwljclCsEM2CeSWR8gz5kk6Iztml9BC6cHCRiNky5rRJ2n0DcBH44ywaY5RKTIVCVRkB510lKSVE1Zhjs4Hm1DTqT4-zmddnFM-C9PyQ_QLbqwZ3l6zguOZqzq2ASbJpGl7MpoQwkn56PU61RWzT1ciZr0pJvvchszLRaQTJTvPdyr_Zbn06pj0AGg-9JdcxrF-IBpu_fcnPIPNDoOGB22neQ6PsH4BT0Y-xu813XmvULt46WPQh2MyB2V41FB6d3PbPo3LzzTIzsPxtWt7UNhUIUHJ0JPdNgvmKsBX8Gv47ehwHHXxFiIrCDhF2rhcZhW7yQy00TFa1HSZQSmsFamVSmDmaIYjjdaxdIPEiYzNAurcVYjpa1irmxp3IERTGUPYMxlYZr-pjLPGIsGJygiCaCqA_fsWL2xHRs4xMU4Lvyme5MVy0wTwqZc-a0k4_iC3d__zik4VF0Uitc4UwaosgA99NikR74yUNTaXLEMoTZFIEsB2-6_7itJMSy4fgFrpBb0AE3Sv5tTzE0_UnTM7oKCS-74X_PXdi9HPCW-ixm_-Sfo9PJ19HRaT79Mfu7DBIrzwHMs9WLs4v8S38NheXcwX5--8YvwGS64L-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Hunga+Tonga%E2%80%90Hunga+Ha%27apai+Hydration+of+the+Stratosphere&rft.jtitle=Geophysical+research+letters&rft.au=Mill%C3%A1n%2C+L.&rft.au=Santee%2C+M.+L.&rft.au=Lambert%2C+A.&rft.au=Livesey%2C+N.+J.&rft.date=2022-07-16&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=49&rft.issue=13&rft_id=info:doi/10.1029%2F2022GL099381&rft_id=info%3Apmid%2F35865735&rft.externalDocID=PMC9285945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon