The Hunga Tonga‐Hunga Ha'apai Hydration of the Stratosphere
Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption....
Uloženo v:
| Vydáno v: | Geophysical research letters Ročník 49; číslo 13; s. e2022GL099381 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
John Wiley & Sons, Inc
16.07.2022
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 0094-8276, 1944-8007 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17‐year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O.
Plain Language Summary
The violent Hunga Tonga‐Hunga Ha'apai eruption on 15 January 2022 not only injected ash into the stratosphere but also large amounts of water vapor, breaking all records for direct injection of water vapor, by a volcano or otherwise, in the satellite era. This is not surprising since the Hunga Tonga‐Hunga Ha'apai caldera was formerly situated 150 m below sea level. The massive blast injected water vapor up to altitudes as high as 53 km. Using measurements from the Microwave Limb Sounder on NASA's Aura satellite, we estimate that the excess water vapor is equivalent to around 10% of the amount of water vapor typically residing in the stratosphere. Unlike previous strong eruptions, this event may not cool the surface, but rather it could potentially warm the surface due to the excess water vapor.
Key Points
Following the Hunga Tonga‐Hunga Ha'apai eruption, the Aura Microwave Limb Sounder measured enhancements of stratospheric H2O, SO2, and HCl
The mass of SO2 and HCl injected is comparable to that from prior eruptions, whereas the magnitude of the H2O injection is unprecedented
Excess stratospheric H2O will persist for years, could affect stratospheric chemistry and dynamics, and may lead to surface warming |
|---|---|
| AbstractList | Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17‐year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O.
Following the Hunga Tonga‐Hunga Ha'apai eruption, the Aura Microwave Limb Sounder measured enhancements of stratospheric H2O, SO2, and HClThe mass of SO2 and HCl injected is comparable to that from prior eruptions, whereas the magnitude of the H2O injection is unprecedentedExcess stratospheric H2O will persist for years, could affect stratospheric chemistry and dynamics, and may lead to surface warming Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17‐year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O. Plain Language Summary The violent Hunga Tonga‐Hunga Ha'apai eruption on 15 January 2022 not only injected ash into the stratosphere but also large amounts of water vapor, breaking all records for direct injection of water vapor, by a volcano or otherwise, in the satellite era. This is not surprising since the Hunga Tonga‐Hunga Ha'apai caldera was formerly situated 150 m below sea level. The massive blast injected water vapor up to altitudes as high as 53 km. Using measurements from the Microwave Limb Sounder on NASA's Aura satellite, we estimate that the excess water vapor is equivalent to around 10% of the amount of water vapor typically residing in the stratosphere. Unlike previous strong eruptions, this event may not cool the surface, but rather it could potentially warm the surface due to the excess water vapor. Key Points Following the Hunga Tonga‐Hunga Ha'apai eruption, the Aura Microwave Limb Sounder measured enhancements of stratospheric H2O, SO2, and HCl The mass of SO2 and HCl injected is comparable to that from prior eruptions, whereas the magnitude of the H2O injection is unprecedented Excess stratospheric H2O will persist for years, could affect stratospheric chemistry and dynamics, and may lead to surface warming Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17‐year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O. Following the 15 January 2022 Hunga Tonga-Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H O, SO , and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H O injection was unprecedented in both magnitude (far exceeding any previous values in the 17-year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H O. Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H 2 O, SO 2 , and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO 2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H 2 O injection was unprecedented in both magnitude (far exceeding any previous values in the 17‐year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H 2 O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H 2 O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H 2 O. The violent Hunga Tonga‐Hunga Ha'apai eruption on 15 January 2022 not only injected ash into the stratosphere but also large amounts of water vapor, breaking all records for direct injection of water vapor, by a volcano or otherwise, in the satellite era. This is not surprising since the Hunga Tonga‐Hunga Ha'apai caldera was formerly situated 150 m below sea level. The massive blast injected water vapor up to altitudes as high as 53 km. Using measurements from the Microwave Limb Sounder on NASA's Aura satellite, we estimate that the excess water vapor is equivalent to around 10% of the amount of water vapor typically residing in the stratosphere. Unlike previous strong eruptions, this event may not cool the surface, but rather it could potentially warm the surface due to the excess water vapor. Following the Hunga Tonga‐Hunga Ha'apai eruption, the Aura Microwave Limb Sounder measured enhancements of stratospheric H 2 O, SO 2 , and HCl The mass of SO 2 and HCl injected is comparable to that from prior eruptions, whereas the magnitude of the H 2 O injection is unprecedented Excess stratospheric H 2 O will persist for years, could affect stratospheric chemistry and dynamics, and may lead to surface warming Following the 15 January 2022 Hunga Tonga-Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17-year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O.Following the 15 January 2022 Hunga Tonga-Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous stratospheric values. Trajectories and radiance simulations confirm that the H2O, SO2, and HCl enhancements were injected by the eruption. In comparison with those from previous eruptions, the SO2 and HCl mass injections were unexceptional, although they reached higher altitudes. In contrast, the H2O injection was unprecedented in both magnitude (far exceeding any previous values in the 17-year MLS record) and altitude (penetrating into the mesosphere). We estimate the mass of H2O injected into the stratosphere to be 146 ± 5 Tg, or ∼10% of the stratospheric burden. It may take several years for the H2O plume to dissipate. This eruption could impact climate not through surface cooling due to sulfate aerosols, but rather through surface warming due to the radiative forcing from the excess stratospheric H2O. |
| Author | Millán, L. Read, W. G. Werner, F. Wu, L. Santee, M. L. Froidevaux, L. Lambert, A. Manney, G. L. Wang, Y. Su, H. Schwartz, M. J. Livesey, N. J. Pumphrey, H. C. |
| AuthorAffiliation | 3 NorthWest Research Associates Socorro NM USA 2 School of GeoSciences The University of Edinburgh Edinburgh UK 1 Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA 4 New Mexico Institute of Mining and Technology Socorro NM USA 5 Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA |
| AuthorAffiliation_xml | – name: 2 School of GeoSciences The University of Edinburgh Edinburgh UK – name: 3 NorthWest Research Associates Socorro NM USA – name: 4 New Mexico Institute of Mining and Technology Socorro NM USA – name: 1 Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA – name: 5 Division of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA |
| Author_xml | – sequence: 1 givenname: L. orcidid: 0000-0002-9509-9095 surname: Millán fullname: Millán, L. email: luis.f.millan@jpl.nasa.gov organization: California Institute of Technology – sequence: 2 givenname: M. L. orcidid: 0000-0002-9466-7257 surname: Santee fullname: Santee, M. L. organization: California Institute of Technology – sequence: 3 givenname: A. surname: Lambert fullname: Lambert, A. organization: California Institute of Technology – sequence: 4 givenname: N. J. orcidid: 0000-0001-8753-9153 surname: Livesey fullname: Livesey, N. J. organization: California Institute of Technology – sequence: 5 givenname: F. orcidid: 0000-0002-7141-0934 surname: Werner fullname: Werner, F. organization: California Institute of Technology – sequence: 6 givenname: M. J. orcidid: 0000-0001-6169-5094 surname: Schwartz fullname: Schwartz, M. J. organization: California Institute of Technology – sequence: 7 givenname: H. C. orcidid: 0000-0003-0747-1457 surname: Pumphrey fullname: Pumphrey, H. C. organization: The University of Edinburgh – sequence: 8 givenname: G. L. orcidid: 0000-0003-4489-4811 surname: Manney fullname: Manney, G. L. organization: New Mexico Institute of Mining and Technology – sequence: 9 givenname: Y. orcidid: 0000-0001-6657-8401 surname: Wang fullname: Wang, Y. organization: California Institute of Technology – sequence: 10 givenname: H. orcidid: 0000-0003-1265-9702 surname: Su fullname: Su, H. organization: California Institute of Technology – sequence: 11 givenname: L. orcidid: 0000-0001-8447-8180 surname: Wu fullname: Wu, L. organization: California Institute of Technology – sequence: 12 givenname: W. G. surname: Read fullname: Read, W. G. organization: California Institute of Technology – sequence: 13 givenname: L. surname: Froidevaux fullname: Froidevaux, L. organization: California Institute of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35865735$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctOGzEUhq2KqgTorutqpC7aBQHfLwsqIVSSSpEqlXRteTxniNFknI5nQNnxCH3GPgkOAQQs2oUvR_7O7_-cs4d22tgCQh8IPiKYmmOKKZ3MsDFMkzdoRAznY42x2kEjjE2-UyV30V5KVxhjhhl5h3aZ0FIoJkboZL6AYjq0l66Yx7z_vf2zjabus1u5UEzXVef6ENsi1kWf4Ys-xzGtFtDBAXpbuybB-4dzH_06_zY_m45nPybfz05nY8-FIGNdVkaKmimJsS41AQ86rxI77j1nXioOouJayVJrIitMKy7K7Ba0qWoAto--bnVXQ7mEykObTTR21YWl69Y2umBfvrRhYS_jtTVUC8NFFvjyINDF3wOk3i5D8tA0roU4JEulYUoJIWhGP71Cr-LQtbm8TGm9aZvYCH587ujJymNnM3C4BXwXU-qgfkIItpvB2eeDyzh9hfvQ3_c91xOa_yTdhAbW__zATn7OJGeKsDteTaiV |
| CitedBy_id | crossref_primary_10_1007_s00445_025_01832_1 crossref_primary_10_1038_s43247_022_00618_z crossref_primary_10_5194_acp_24_4851_2024 crossref_primary_10_3389_feart_2022_976962 crossref_primary_10_1007_s00024_024_03546_5 crossref_primary_10_1038_s41561_023_01183_6 crossref_primary_10_1038_s43247_022_00580_w crossref_primary_10_5194_essd_15_2295_2023 crossref_primary_10_1016_j_biocon_2024_110466 crossref_primary_10_1038_s43247_022_00652_x crossref_primary_10_5194_acp_25_3623_2025 crossref_primary_10_1073_pnas_2301994120 crossref_primary_10_1029_2024EA003707 crossref_primary_10_1016_j_polar_2022_100920 crossref_primary_10_1038_s41612_025_01056_2 crossref_primary_10_1016_j_ocemod_2023_102258 crossref_primary_10_1016_j_atmosres_2025_108235 crossref_primary_10_5194_acp_25_9859_2025 crossref_primary_10_1029_2022GL100248 crossref_primary_10_1029_2023JD039963 crossref_primary_10_1016_j_jvolgeores_2024_108077 crossref_primary_10_1029_2023JD039169 crossref_primary_10_1007_s00376_023_3254_8 crossref_primary_10_1029_2023JD039329 crossref_primary_10_1029_2022GL101978 crossref_primary_10_1016_j_earscirev_2025_105274 crossref_primary_10_1002_qj_4658 crossref_primary_10_1016_j_jqsrt_2025_109560 crossref_primary_10_1007_s11069_025_07320_1 crossref_primary_10_1007_s13351_024_4029_6 crossref_primary_10_1029_2023GL106482 crossref_primary_10_1029_2023GL103076 crossref_primary_10_1016_j_atmosres_2025_108428 crossref_primary_10_1029_2023GL106980 crossref_primary_10_3390_atmos15010080 crossref_primary_10_1007_s10874_025_09478_1 crossref_primary_10_3390_atmos13111910 crossref_primary_10_3390_atmos13122055 crossref_primary_10_3390_rs15143602 crossref_primary_10_1007_s00704_024_05276_z crossref_primary_10_1038_s43247_025_02181_9 crossref_primary_10_1029_2022JD038100 crossref_primary_10_1029_2025GL115935 crossref_primary_10_1016_j_jqsrt_2024_109056 crossref_primary_10_5194_amt_16_2733_2023 crossref_primary_10_1016_j_jqsrt_2024_109333 crossref_primary_10_1016_j_jastp_2025_106535 crossref_primary_10_1126_science_adg2551 crossref_primary_10_5194_cp_20_313_2024 crossref_primary_10_1029_2024JD041940 crossref_primary_10_1038_s41612_023_00539_4 crossref_primary_10_5194_amt_18_555_2025 crossref_primary_10_1029_2023JD039010 crossref_primary_10_1029_2022EA002632 crossref_primary_10_1029_2023GL105762 crossref_primary_10_5194_acp_24_6233_2024 crossref_primary_10_5194_acp_25_367_2025 crossref_primary_10_5194_acp_24_7405_2024 crossref_primary_10_1038_s41561_025_01691_7 crossref_primary_10_5194_acp_25_10677_2025 crossref_primary_10_1029_2024JD040907 crossref_primary_10_1016_j_envpol_2023_121429 crossref_primary_10_1038_s43247_022_00606_3 crossref_primary_10_1029_2025GL117308 crossref_primary_10_1029_2024GL111983 crossref_primary_10_1029_2022JD038238 crossref_primary_10_1029_2024GL111500 crossref_primary_10_1029_2024GL110412 crossref_primary_10_1029_2022GL102443 crossref_primary_10_1080_02626667_2023_2287047 crossref_primary_10_1029_2024JD041296 crossref_primary_10_1016_j_asr_2024_11_075 crossref_primary_10_1029_2023JA031354 crossref_primary_10_1029_2023GL103855 crossref_primary_10_1007_s00445_024_01749_1 crossref_primary_10_1007_s00382_025_07616_9 crossref_primary_10_5194_amt_15_7195_2022 crossref_primary_10_1029_2024GL108649 crossref_primary_10_5194_amt_17_6677_2024 crossref_primary_10_1029_2024JD041848 crossref_primary_10_1029_2025JD043928 crossref_primary_10_1029_2023JD039636 crossref_primary_10_1073_pnas_2219547120 crossref_primary_10_1029_2022GL100833 crossref_primary_10_1029_2023JD038667 crossref_primary_10_1029_2023JD039196 crossref_primary_10_1029_2024JD040990 crossref_primary_10_5194_acp_24_2783_2024 crossref_primary_10_1038_s43247_024_01620_3 crossref_primary_10_1088_1748_9326_adb448 crossref_primary_10_1029_2024GL110841 crossref_primary_10_1038_s41598_023_32574_9 crossref_primary_10_1038_s41598_023_50411_x crossref_primary_10_3390_rs17162751 crossref_primary_10_1016_j_icarus_2025_116589 crossref_primary_10_1016_j_wace_2023_100627 crossref_primary_10_1038_s41561_025_01663_x crossref_primary_10_5194_acp_23_3133_2023 crossref_primary_10_1029_2024GL112610 crossref_primary_10_1029_2022GL102341 crossref_primary_10_1038_s43247_024_01421_8 crossref_primary_10_1016_j_scib_2023_03_002 crossref_primary_10_5194_acp_22_14957_2022 crossref_primary_10_1029_2023GL105076 crossref_primary_10_1038_s43247_024_01651_w crossref_primary_10_1016_j_jqsrt_2023_108520 crossref_primary_10_1029_2023GL107630 crossref_primary_10_1029_2024GL109512 crossref_primary_10_5194_acp_24_5765_2024 crossref_primary_10_3390_rs15215219 crossref_primary_10_3390_rs15082167 crossref_primary_10_5194_acp_25_10887_2025 crossref_primary_10_5194_gmd_18_5487_2025 crossref_primary_10_1029_2022JA030984 crossref_primary_10_3390_rs15061534 crossref_primary_10_5194_acp_25_6353_2025 crossref_primary_10_1007_s11430_022_1218_0 crossref_primary_10_1071_ES22033 crossref_primary_10_1016_j_rse_2023_113684 crossref_primary_10_5194_acp_23_13355_2023 crossref_primary_10_3390_atmos14020263 crossref_primary_10_1029_2023GL105565 crossref_primary_10_5194_amt_17_3751_2024 crossref_primary_10_3390_atmos15040483 crossref_primary_10_1038_s41598_023_41639_8 crossref_primary_10_1029_2025GL115607 crossref_primary_10_1029_2023GL104634 crossref_primary_10_1029_2023JA031542 crossref_primary_10_1029_2023GL104914 crossref_primary_10_5194_acp_25_3635_2025 crossref_primary_10_1016_j_copbio_2023_102945 crossref_primary_10_1029_2023JD040687 crossref_primary_10_5194_gi_14_1_2025 crossref_primary_10_1038_s41558_022_01568_2 crossref_primary_10_1111_1462_2920_70046 crossref_primary_10_1029_2024EF005011 crossref_primary_10_1029_2024JD041595 crossref_primary_10_5194_acp_25_3821_2025 crossref_primary_10_1029_2024GL111388 crossref_primary_10_1029_2022GL100982 crossref_primary_10_1016_j_jqsrt_2024_109088 |
| Cites_doi | 10.5194/acp-21-10851-2021 10.1002/grl.50421 10.1029/95jd00196 10.1127/0941-2948/2001/0010-0387 10.5194/acp-20-9591-2020 10.1029/2022gl098153 10.1109/tgrs.2006.873771 10.1029/97gl01289 10.1175/jcli-d-12-00155.1 10.1126/science.1182488 10.1029/2020GL088101 10.5194/nhess-2-91-2002 10.1029/2022GL098131 10.1007/s12583-022-1624-2 10.1029/96jd03125 10.1029/jd094id08p11165 10.5194/acp-9-6109-2009 10.1002/qj.49707532603 10.21203/rs.3.rs-1562573/v1 10.1029/2017EO076589 10.1029/2020gl090831 10.5194/acp-21-16645-2021 10.1002/2016gl069918 10.5194/amt-8-195-2015 10.1007/s13351-022-2013-6 10.1029/2007jd009109 10.1002/essoar.10510674.2 10.1016/j.eqrea.2022.100134 10.1038/373399a0 10.5194/acp-20-12905-2020 10.31223/x5x33z 10.1029/95jd03763 10.1029/2020gl090131 10.1029/2007jd008709 10.1029/95jd03422 10.1016/j.jvolgeores.2016.01.002 10.5194/acp-15-10471-2015 10.5194/acp-15-9945-2015 10.1029/2021GL096270 10.1109/tgrs.2006.872327 10.5194/acp-5-1257-2005 10.1038/s43247-020-00022-5 10.1002/essoar.10511092.1 10.1029/2005jd006744 10.1002/2014eo270001 10.5194/acp-16-8125-2016 10.1029/93gl00831 10.1029/2022gl098158 10.1029/2000jd900637 10.1007/s00382-016-3231-3 |
| ContentType | Journal Article |
| Copyright | 2022 Jet Propulsion Laboratory, California Institute of Technology. Government sponsorship acknowledged. 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 Jet Propulsion Laboratory, California Institute of Technology. Government sponsorship acknowledged. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7X8 5PM |
| DOI | 10.1029/2022GL099381 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| DocumentTitleAlternate | Millán et al |
| EISSN | 1944-8007 |
| EndPage | n/a |
| ExternalDocumentID | PMC9285945 35865735 10_1029_2022GL099381 GRL64371 |
| Genre | article Journal Article |
| GeographicLocations | Tonga |
| GeographicLocations_xml | – name: Tonga |
| GrantInformation_xml | – fundername: National Aeronautics and Space Administration funderid: 80NM0018D0004 – fundername: National Aeronautics and Space Administration grantid: 80NM0018D0004 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BFHJK BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAFWJ AAMMB AAYXX ACTHY AEFGJ AFPKN AGXDD AIDQK AIDYY CITATION NPM 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M 7X8 5PM |
| ID | FETCH-LOGICAL-c4551-8bd965f376008b81ece8eceb0a4cc43c674e5d4876b8816d02d45b003e89dfee3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 184 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000822766100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Tue Sep 30 16:52:56 EDT 2025 Sun Nov 09 11:01:29 EST 2025 Fri Jul 25 10:33:59 EDT 2025 Thu Jan 02 22:39:34 EST 2025 Sat Nov 29 02:58:09 EST 2025 Tue Nov 18 21:50:49 EST 2025 Wed Jan 22 16:25:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | Attribution-NonCommercial 2022 Jet Propulsion Laboratory, California Institute of Technology. Government sponsorship acknowledged. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4551-8bd965f376008b81ece8eceb0a4cc43c674e5d4876b8816d02d45b003e89dfee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4489-4811 0000-0002-9509-9095 0000-0002-7141-0934 0000-0001-8447-8180 0000-0002-9466-7257 0000-0003-0747-1457 0000-0003-1265-9702 0000-0001-6169-5094 0000-0001-8753-9153 0000-0001-6657-8401 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL099381 |
| PMID | 35865735 |
| PQID | 2688573555 |
| PQPubID | 54723 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9285945 proquest_miscellaneous_2693775552 proquest_journals_2688573555 pubmed_primary_35865735 crossref_primary_10_1029_2022GL099381 crossref_citationtrail_10_1029_2022GL099381 wiley_primary_10_1029_2022GL099381_GRL64371 |
| PublicationCentury | 2000 |
| PublicationDate | 16 July 2022 |
| PublicationDateYYYYMMDD | 2022-07-16 |
| PublicationDate_xml | – month: 07 year: 2022 text: 16 July 2022 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington – name: Hoboken |
| PublicationTitle | Geophysical research letters |
| PublicationTitleAlternate | Geophys Res Lett |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | 2015; 15 2021; 21 2013; 26 1949; 75 2020; 20 2010; 327 2017; 48 2013; 40 1997; 24 1993; 20 2022; 23 2002; 2 1995; 373 2016; 16 2015; 8 1996; 101 2013; 6 2022; 49 2006; 111 2001; 106 2022; 179 1997; 102 2007; 112 1989; 94 2020; 1 2022 2020 2006; 44 2016; 311 2016; 43 2005; 5 2009; 9 2022; 36 2017 2020; 47 1995; 100 2022; 33 2013 2022; 11 2008; 113 2014; 95 2001; 10 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 Ko M. K. W. (e_1_2_8_18_1) 2013 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Myhre G. (e_1_2_8_27_1) 2013 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_39_1 e_1_2_8_14_1 Livesey N. J. (e_1_2_8_20_1) 2020 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 113 issue: D6 year: 2008 article-title: Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection publication-title: Journal of Geophysical Research – year: 2022 article-title: Under the surface: Pressure‐induced planetary‐scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga‐Hunga Ha'apai volcano publication-title: Earthquake Research Advances – volume: 10 start-page: 387 issue: 5 year: 2001 end-page: 393 article-title: Testing broadband radiation schemes for their ability to calculate the radiative forcing and temperature response to stratospheric water vapour and ozone changes publication-title: Meteorologische Zeitschrift – volume: 20 start-page: 12905 issue: 21 year: 2020 end-page: 12920 article-title: Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP publication-title: Atmospheric Chemistry and Physics – volume: 44 start-page: 1144 issue: 5 year: 2006 end-page: 1155 article-title: Retrieval algorithms for the EOS Microwave Limb Sounder (MLS) publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 106 start-page: 7505 issue: D7 year: 2001 end-page: 7514 article-title: Response of the stratospheric temperatures and ozone to past and future increases in stratospheric humidity publication-title: Journal of Geophysical Research – volume: 21 start-page: 16645 issue: 22 year: 2021 end-page: 16659 article-title: Microwave Limb Sounder (MLS) observations of biomass burning products in the stratosphere from Canadian forest fires in August 2017 publication-title: Atmospheric Chemistry and Physics – volume: 311 start-page: 99 year: 2016 end-page: 134 article-title: Multi‐decadal satellite measurements of global volcanic degassing publication-title: Journal of Volcanology and Geothermal Research – volume: 101 start-page: 3989 issue: D2 year: 1996 end-page: 4006 article-title: An atmospheric tape recorder: The imprint of tropical tropopause temperatures on stratospheric water vapor publication-title: Journal of Geophysical Research – volume: 49 issue: 7 year: 2022 article-title: Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption publication-title: Geophysical Research Letters – volume: 15 start-page: 9945 issue: 17 year: 2015 end-page: 9963 article-title: A Match‐based approach to the estimation of polar stratospheric ozone loss using Aura Microwave Limb Sounder observations publication-title: Atmospheric Chemistry and Physics – volume: 26 start-page: 545 issue: 2 year: 2013 end-page: 561 article-title: The circulation response to idealized changes in stratospheric water vapor publication-title: Journal of Climate – volume: 47 issue: 24 year: 2020 article-title: Australian New Year's pyroCb impact on stratospheric composition publication-title: Geophysical Research Letters – volume: 49 issue: 4 year: 2022 article-title: Prolonged and pervasive perturbations in the composition of the Southern Hemisphere midlatitude lower stratosphere from the Australian New Year’s fires publication-title: Geophysical Research Letters – volume: 48 start-page: 2671 issue: 7–8 year: 2017 end-page: 2683 article-title: The linkage between stratospheric water vapor and surface temperature in an observation‐constrained coupled general circulation model publication-title: Climate Dynamics – volume: 47 issue: 24 year: 2020 article-title: Extreme outliers in lower stratospheric water vapor over North America observed by MLS: Relation to overshooting convection diagnosed from colocated Aqua‐MODIS data publication-title: Geophysical Research Letters – volume: 44 start-page: 1075 issue: 5 year: 2006 end-page: 1092 article-title: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 179 start-page: 1117 year: 2022 end-page: 1137 article-title: Tsunami effects on the Coast of Mexico by the Hunga Tonga‐Hunga Ha’apai volcano eruption publication-title: Pure and Applied Geophysics – volume: 100 start-page: 7381 issue: D4 year: 1995 end-page: 7396 article-title: Modeled impacts of stratospheric ozone and water vapor perturbations with implications for high‐speed civil transport aircraft publication-title: Journal of Geophysical Research – volume: 20 start-page: 9591 issue: 16 year: 2020 end-page: 9618 article-title: Effective radiative forcing and adjustments in CMIP6 models publication-title: Atmospheric Chemistry and Physics – year: 2022 – volume: 101 start-page: 6767 issue: D3 year: 1996 end-page: 6780 article-title: Observations of the impact of volcanic activity on stratospheric chemistry publication-title: Journal of Geophysical Research – volume: 16 start-page: 8125 issue: 13 year: 2016 end-page: 8140 article-title: The millennium water vapour drop in chemistry–climate model simulations publication-title: Atmospheric Chemistry and Physics – volume: 47 issue: 13 year: 2020 article-title: Australian PyroCb smoke generates synoptic‐scale stratospheric anticyclones publication-title: Geophysical Research Letters – volume: 36 start-page: 1 issue: 1 year: 2022 end-page: 5 article-title: Potential impact of Tonga volcano eruption on global mean surface air temperature publication-title: Journal of Meteorological Research – volume: 95 start-page: 245 issue: 27 year: 2014 end-page: 246 article-title: Another drop in water vapor publication-title: Eos, Transactions American Geophysical Union – volume: 43 start-page: 7694 issue: 14 year: 2016 end-page: 7700 article-title: Direct injection of water vapor into the stratosphere by volcanic eruptions publication-title: Geophysical Research Letters – volume: 112 issue: D24 year: 2007 article-title: Solar occultation satellite data and derived meteorological products: Sampling issues and comparisons with Aura Microwave Limb Sounder publication-title: Journal of Geophysical Research – volume: 5 start-page: 1257 issue: 5 year: 2005 end-page: 1272 article-title: Simulation of stratospheric water vapor trends: Impact on stratospheric ozone chemistry publication-title: Atmospheric Chemistry and Physics – start-page: 659 year: 2013 end-page: 740 – volume: 102 start-page: 6099 issue: D5 year: 1997 end-page: 6108 article-title: Transport of atmospheric water vapor by volcanic eruption columns publication-title: Journal of Geophysical Research – volume: 9 start-page: 6109 issue: 16 year: 2009 end-page: 6118 article-title: The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions publication-title: Atmospheric Chemistry and Physics – volume: 49 issue: 9 year: 2022 article-title: Stereo plume height and motion retrievals for the record‐setting Hunga Tonga‐Hunga Ha'apai eruption of 15 January 2022 publication-title: Geophysical Research Letters – volume: 49 issue: 6 year: 2022 article-title: Worldwide signature of the 2022 Tonga volcanic tsunami publication-title: Geophysical Research Letters – volume: 94 issue: D8 year: 1989 article-title: Self‐limiting physical and chemical effects in volcanic eruption clouds publication-title: Journal of Geophysical Research – volume: 40 start-page: 2316 issue: 10 year: 2013 end-page: 2321 article-title: Convectively injected water vapor in the North American summer lowermost stratosphere publication-title: Geophysical Research Letters – volume: 15 start-page: 10471 issue: 18 year: 2015 end-page: 10507 article-title: Global OZone chemistry and related trace gas data records for the stratosphere (GOZCARDS): Methodology and sample results with a focus on HCl, H O, and O publication-title: Atmospheric Chemistry and Physics – volume: 21 start-page: 10851 issue: 14 year: 2021 end-page: 10879 article-title: The 2019 Raikoke volcanic eruption—Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide publication-title: Atmospheric Chemistry and Physics – volume: 327 start-page: 1219 issue: 5970 year: 2010 end-page: 1223 article-title: Contributions of stratospheric water vapor to decadal changes in the rate of global warming publication-title: Science – volume: 1 issue: 1 year: 2020 article-title: The 2019/20 Australian wildfires generated a persistent smoke‐charged vortex rising up to 35 km altitude publication-title: Communications Earth and Environment – volume: 111 issue: D12 year: 2006 article-title: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer‐Dobson circulation publication-title: Journal of Geophysical Research – volume: 2 start-page: 91 issue: 1/2 year: 2002 end-page: 108 article-title: Short‐term climatic impact of the 1991 volcanic eruption of Mt. Pinatubo and effects on atmospheric tracers publication-title: Natural Hazards and Earth System Sciences – volume: 75 start-page: 351 issue: 326 year: 1949 end-page: 363 article-title: Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 6 year: 2013 – volume: 24 start-page: 1383 issue: 11 year: 1997 end-page: 1386 article-title: Tracer transport in the tropical stratosphere due to vertical diffusion and horizontal mixing publication-title: Geophysical Research Letters – year: 2017 – volume: 33 start-page: 229 issue: 2 year: 2022 end-page: 235 article-title: Déjà vu: Might future eruptions of Hunga Tonga‐Hunga Ha’apai volcano be a repeat of the devastating eruption of Santorini, Greece (1650 BC)? publication-title: Journal of Earth Sciences – volume: 8 start-page: 195 issue: 1 year: 2015 end-page: 209 article-title: Observations of volcanic SO from MLS on Aura publication-title: Atmospheric Measurement Techniques – volume: 23 year: 2022 article-title: Surface‐to‐space atmospheric waves from Hunga Tonga‐Hunga Ha'apai eruption publication-title: Earth and Space Science Open Archive – volume: 373 start-page: 399 issue: 6513 year: 1995 end-page: 404 article-title: Atmospheric effects of the Mt Pinatubo eruption publication-title: Nature – year: 2020 article-title: Version 4.2x Level 2 and 3 data quality and description document (Tech. Rep. No. JPL D‐33509 Rev. E) publication-title: Jet Propulsion Laboratory – volume: 11 year: 2022 article-title: The January 2022 eruption of Hunga Tonga‐Hunga Ha’apai volcano reached the mesosphere publication-title: Earth and Space Science Open Archive – volume: 20 start-page: 1299 issue: 12 year: 1993 end-page: 1302 article-title: Microwave Limb Sounder measurement of stratospheric SO from the Mt. Pinatubo volcano publication-title: Geophysical Research Letters – ident: e_1_2_8_9_1 doi: 10.5194/acp-21-10851-2021 – ident: e_1_2_8_39_1 doi: 10.1002/grl.50421 – ident: e_1_2_8_36_1 doi: 10.1029/95jd00196 – ident: e_1_2_8_11_1 doi: 10.1127/0941-2948/2001/0010-0387 – ident: e_1_2_8_43_1 doi: 10.5194/acp-20-9591-2020 – ident: e_1_2_8_6_1 doi: 10.1029/2022gl098153 – ident: e_1_2_8_50_1 doi: 10.1109/tgrs.2006.873771 – ident: e_1_2_8_14_1 doi: 10.1029/97gl01289 – ident: e_1_2_8_24_1 doi: 10.1175/jcli-d-12-00155.1 – ident: e_1_2_8_44_1 doi: 10.1126/science.1182488 – ident: e_1_2_8_16_1 doi: 10.1029/2020GL088101 – volume-title: SPARC report on lifetimes of stratospheric ozone‐depleting substances, their replacements, and related species year: 2013 ident: e_1_2_8_18_1 – ident: e_1_2_8_29_1 doi: 10.5194/nhess-2-91-2002 – ident: e_1_2_8_5_1 doi: 10.1029/2022GL098131 – ident: e_1_2_8_19_1 doi: 10.1007/s12583-022-1624-2 – ident: e_1_2_8_13_1 doi: 10.1029/96jd03125 – ident: e_1_2_8_28_1 doi: 10.1029/jd094id08p11165 – ident: e_1_2_8_15_1 doi: 10.5194/acp-9-6109-2009 – ident: e_1_2_8_2_1 doi: 10.1002/qj.49707532603 – ident: e_1_2_8_41_1 doi: 10.21203/rs.3.rs-1562573/v1 – ident: e_1_2_8_8_1 doi: 10.1029/2017EO076589 – ident: e_1_2_8_40_1 doi: 10.1029/2020gl090831 – ident: e_1_2_8_32_1 doi: 10.5194/acp-21-16645-2021 – ident: e_1_2_8_42_1 doi: 10.1002/2016gl069918 – ident: e_1_2_8_31_1 doi: 10.5194/amt-8-195-2015 – ident: e_1_2_8_54_1 doi: 10.1007/s13351-022-2013-6 – ident: e_1_2_8_37_1 doi: 10.1029/2007jd009109 – ident: e_1_2_8_52_1 doi: 10.1002/essoar.10510674.2 – ident: e_1_2_8_53_1 doi: 10.1016/j.eqrea.2022.100134 – ident: e_1_2_8_25_1 doi: 10.1038/373399a0 – ident: e_1_2_8_46_1 doi: 10.5194/acp-20-12905-2020 – ident: e_1_2_8_33_1 doi: 10.31223/x5x33z – ident: e_1_2_8_7_1 doi: 10.1029/95jd03763 – ident: e_1_2_8_51_1 doi: 10.1029/2020gl090131 – ident: e_1_2_8_23_1 doi: 10.1029/2007jd008709 – ident: e_1_2_8_26_1 doi: 10.1029/95jd03422 – ident: e_1_2_8_4_1 doi: 10.1016/j.jvolgeores.2016.01.002 – ident: e_1_2_8_12_1 doi: 10.5194/acp-15-10471-2015 – ident: e_1_2_8_21_1 doi: 10.5194/acp-15-9945-2015 – start-page: 659 volume-title: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change year: 2013 ident: e_1_2_8_27_1 – ident: e_1_2_8_38_1 doi: 10.1029/2021GL096270 – year: 2020 ident: e_1_2_8_20_1 article-title: Version 4.2x Level 2 and 3 data quality and description document (Tech. Rep. No. JPL D‐33509 Rev. E) publication-title: Jet Propulsion Laboratory – ident: e_1_2_8_22_1 doi: 10.1109/tgrs.2006.872327 – ident: e_1_2_8_45_1 doi: 10.5194/acp-5-1257-2005 – ident: e_1_2_8_17_1 doi: 10.1038/s43247-020-00022-5 – ident: e_1_2_8_30_1 doi: 10.1002/essoar.10511092.1 – ident: e_1_2_8_34_1 doi: 10.1029/2005jd006744 – ident: e_1_2_8_48_1 doi: 10.1002/2014eo270001 – ident: e_1_2_8_3_1 doi: 10.5194/acp-16-8125-2016 – ident: e_1_2_8_35_1 doi: 10.1029/93gl00831 – ident: e_1_2_8_47_1 doi: 10.1029/2022gl098158 – ident: e_1_2_8_10_1 doi: 10.1029/2000jd900637 – ident: e_1_2_8_49_1 doi: 10.1007/s00382-016-3231-3 |
| SSID | ssj0003031 |
| Score | 2.6904945 |
| Snippet | Following the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous... Following the 15 January 2022 Hunga Tonga-Hunga Ha'apai eruption, several trace gases measured by the Aura Microwave Limb Sounder (MLS) displayed anomalous... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2022GL099381 |
| SubjectTerms | Abrupt/Rapid Climate Change Air/Sea Constituent Fluxes Air/Sea Interactions Altitude Atmospheric Atmospheric Composition and Structure Atmospheric Effects Atmospheric Processes Atmospheric Science Avalanches Benefit‐cost Analysis Biogeosciences Calderas Climate and Interannual Variability Climate Change and Variability Climate Dynamics Climate Impact Climate Impacts Climate Variability Climatology Computational Geophysics Cryosphere Decadal Ocean Variability Disaster Risk Analysis and Assessment Earth System Modeling Earthquake Ground Motions and Engineering Seismology Effusive Volcanism Eruptions Excess water Explosive Volcanism Gases General Circulation Geodesy and Gravity Geological Global Change Global Change from Geodesy Gravity and Isostasy Hydrological Cycles and Budgets Hydrology Impacts of Global Change Informatics Injection Land/Atmosphere Interactions Lower mantle Marine Geology and Geophysics Mass Balance Mesosphere Middle Atmosphere Dynamics Middle Atmosphere: Composition and Chemistry Middle Atmosphere: Constituent Transport and Chemistry Middle Atmosphere: Energy Deposition Modeling Moisture content Mud Volcanism Natural Hazards Numerical Modeling Numerical Solutions Ocean influence of Earth rotation Ocean Monitoring with Geodetic Techniques Ocean/Atmosphere Interactions Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions Oceanic Oceanography: General Oceanography: Physical Oceans Paleoceanography Physical Modeling Policy Sciences Radiance Radiation: Transmission and Scattering Radiative forcing Radio Oceanography Radio Science Regional Climate Change Regional Modeling Research Letter Risk Satellites Sea level Sea Level Change Sea Level: Variations and Mean Seismology Solid Earth Stratosphere Sulfate aerosols Sulfates Sulfur dioxide Surface cooling Surface temperature Surface Waves and Tides Theoretical Modeling Trace gases Tsunamis and Storm Surges Volcanic Effects Volcanic eruptions Volcanic Hazards and Risks Volcano Monitoring Volcano Seismology Volcano/Climate Interactions Volcanoes Volcanology Water content Water Cycles Water vapor Water vapour |
| Title | The Hunga Tonga‐Hunga Ha'apai Hydration of the Stratosphere |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022GL099381 https://www.ncbi.nlm.nih.gov/pubmed/35865735 https://www.proquest.com/docview/2688573555 https://www.proquest.com/docview/2693775552 https://pubmed.ncbi.nlm.nih.gov/PMC9285945 |
| Volume | 49 |
| WOSCitedRecordID | wos000822766100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library (Open Access Collection) customDbUrl: eissn: 1944-8007 dateEnd: 20231209 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFB6kVfDFeje1lgiKDyWYmUzm8ii2uyssSymt7luYW-iCJNK0Qt_8Cf5Gf4nnTNKwS1EQHzIkmTMkmTnnzDeXfIeQNyxQF5zhmSyMyDhlNDPKlZlSVuSuqKmIc7qf53KxUMulPh4m3PBfmJ4fYpxwQ8uI_hoN3NhuIBtAjkwYtbPpHABOgX9eb1NaSNRqxo9HTwzuuY-Yp3mmmBTDxnco_3699GaXdAtn3t4uuQ5jYz802fnfL3hIHgwINP3Qq8wjcic0j8m9aYzwew1ncU-o657ECPTpDJyBSU9bSH_9-Nlfzcw76GJX6eza9_qTtnUKQDKNVLdth0wF4Sk5mxydfpxlQ7SFzHGATZmyXouyxk0yubKKBhcUHDY33DleOCF5KD2Mb4RVigqfM89LdApBaV-HUDwjW03bhBckDdQy77TzAsCKLqzBQZgF5JPzuvS5TsjBTYVXbqAix4gYX6u4JM50tV41CXk7Sn_rKTj-ILd303bVYIhdxYRSpQRQVSbk9ZgNJoTrIqYJ7RXKAEaTIMIS8rxv6vFBRakElk-I3FCCUQDpuTdzmtV5pOnWyA3IoeRBVIK_vns1PZnjEird_Sfpl-Q-3se5Zir2yNblxVV4Re6675er7mI_GgOkcqn2yfbhyeRsDldfPi1-A8HdCks |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hLai98GopgQJBAnGoIhLHduwjAnaDCCtUbVFvUWI7YiWUoG6L1Bs_gd_IL2HGSaNdVVRCHBIl8jgPe2b8-fUNwAvmEuNMxaMsrWTEE5ZElTIiUqqWsUmbRPox3S9FNp-rkxP9eYhzSnthen6IccCNLMP7azJwGpAe2AaIJBO77WxWIMJJaev1FkdNEhPYenc0PS5GZ4weug-ap3mkWCaHte_4hNfr-TdbpStQ8-qKyXUk65ui6Z3__om7cHtAoeGbXm3uwQ3X3odbMx_l9wKv_LpQs9r1UejDHB1CFS46PP_--au_y6tX2Mwuw_zC9joUdk2IYDL0dLfditgK3B4cT98v3ubREHEhMhyhU6Rqq6VoaKFMrGqVOOMUHnVccWN4amTGnbDYx5G1Uom0MbNckGNwStvGufQBTNqudQ8hdEnNrNHGSgQsOq0r6ojViH5i3ggb6wAOL0u8NAMdOUXF-Fb6aXGmy_WiCeDlKP29p-H4i9zBZeWVgzGuSiaVEhkCKxHA8zEZzYjmRqrWdeckgzgtQxEWwH5f1-OLUqEk5Q8g29CCUYAoujdT2uVXT9WtiR-QY85DrwXXfns5OypoGjV59E_Sz2A7X3wqyuLD_ONj2CEZGntO5AFMzk7P3RO4aX6cLVenTwfb-AOgigwx |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB-kVumL1n81bdUUFB9KMLvZ3ew-inp30uM4pErfQrK7wQNJSq8V-uZH8DP2k3Rmk4Y7ioL4kJCwMyTZzMz-9t9vAF5zz6y3pUjyrFSJYJwlpbYy0bpSqc1qpsKY7rdpPpvpkxMz7_Oc0l6Yjh9iGHAjzwjxmhzcn7q6ZxsgkkzstvPxFBFORluv7wqJYZaoncV8CMUYn7uUeUYkmueqX_mO-u9WtdfbpFtA8_Z6yVUcGxqi0cP__oRteNBj0Ph9ZzSP4I5vHsO9ccjxe4lXYVWoXT4JOejjCYaDMj5u8Xz163d3NynfYiO7iCeXrrOguK1jhJJxILttl8RV4J_C19Gn4w-TpM-3kFiBwCnRlTNK1rRMJtWVZt56jUeVlsJakVmVCy8d9nBUpTVTLuVOSAoLXhtXe589g42mbfxziD2ruLPGOoVwxWRVSd2wCrFPKmrpUhPB4U2NF7YnI6ecGD-KMCnOTbFaNRG8GaRPOxKOP8jt3_y8onfFZcGV1jJHWCUjOBiK0YloZqRsfHtBMojSchThEex0_3p4UCa1Iv0I8jUrGASIoHu9pFl8D0TdhtgBBWoeBiv467sX4y9TmkRlu_8k_Qruzz-Oiunn2dEebJEIDTwztQ8b52cX_gVs2p_ni-XZy-AY10voCho |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Hunga+Tonga-Hunga+Ha%27apai+Hydration+of+the+Stratosphere&rft.jtitle=Geophysical+research+letters&rft.au=Mill%C3%A1n%2C+L&rft.au=Santee%2C+M+L&rft.au=Lambert%2C+A&rft.au=Livesey%2C+N+J&rft.date=2022-07-16&rft.issn=0094-8276&rft.volume=49&rft.issue=13&rft.spage=e2022GL099381&rft_id=info:doi/10.1029%2F2022GL099381&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |