Mutations in the WG and GW motifs of the three RNA silencing suppressors of grapevine fanleaf virus alter their systemic suppression ability and affect virus infectivity

Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine ( Vitis spp.), were recently identified. GFLV VSRs include the RNA1-encoded protein 1A and the putative helicase protein 1B Hel , as well as their fuse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology Jg. 15; S. 1451285
Hauptverfasser: Choi, Jiyeong, Browning, Scottie, Schmitt-Keichinger, Corinne, Fuchs, Marc
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Switzerland Frontiers Media 12.08.2024
Frontiers Media S.A
Schlagworte:
ISSN:1664-302X, 1664-302X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine ( Vitis spp.), were recently identified. GFLV VSRs include the RNA1-encoded protein 1A and the putative helicase protein 1B Hel , as well as their fused form (1AB Hel ). Key characteristics underlying the suppression function of the GFLV VSRs are unknown. In this study, we explored the role of the conserved tryptophan-glycine (WG) motif in protein 1A and glycine-tryptophan (GW) motif in protein 1B Hel in their systemic RNA silencing suppression ability by co-infiltrating Nicotiana benthamiana 16c line plants with a GFP silencing construct and a wildtype or a mutant GFLV VSR. We analyzed and compared wildtype and mutant GFLV VSRs for their (i) efficiency at suppressing RNA silencing, (ii) ability to limit siRNA accumulation, (iii) modulation of the expression of six host genes involved in RNA silencing, (iv) impact on virus infectivity in planta , and (v) variations in predicted protein structures using molecular and biochemical assays, as well as bioinformatics tools such as AlphaFold2. Mutating W to alanine (A) in WG of proteins 1A and 1AB Hel abolished their ability to induce systemic RNA silencing suppression, limit siRNA accumulation, and downregulate NbAGO2 expression by 1AB Hel . This mutation in the GFLV genome resulted in a non-infectious virus. Mutating W to A in GW of proteins 1BHel and 1ABHel reduced their ability to suppress systemic RNA silencing and abolished the downregulation of NbDCL2 , NbDCL4, , and NbRDR6 expression by 1B Hel . This mutation in the GFLV genome delayed infection at the local level and inhibited systemic infection in planta . Double mutations of W to A in WG and GW of protein 1ABHel abolished its ability to induce RNA silencing suppression, limit siRNA accumulation, and downregulate NbDCL2 and NbRDR6 expression. Finally, in silico protein structure prediction indicated that a W to A substitution potentially modifies the structure and physicochemical properties of the three GFLV VSRs. Together, this study provided insights into the specific roles of WG/GW not only in GFLV VSR functions but also in GFLV biology.
AbstractList Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine ( Vitis spp.), were recently identified. GFLV VSRs include the RNA1-encoded protein 1A and the putative helicase protein 1B Hel , as well as their fused form (1AB Hel ). Key characteristics underlying the suppression function of the GFLV VSRs are unknown. In this study, we explored the role of the conserved tryptophan-glycine (WG) motif in protein 1A and glycine-tryptophan (GW) motif in protein 1B Hel in their systemic RNA silencing suppression ability by co-infiltrating Nicotiana benthamiana 16c line plants with a GFP silencing construct and a wildtype or a mutant GFLV VSR. We analyzed and compared wildtype and mutant GFLV VSRs for their (i) efficiency at suppressing RNA silencing, (ii) ability to limit siRNA accumulation, (iii) modulation of the expression of six host genes involved in RNA silencing, (iv) impact on virus infectivity in planta , and (v) variations in predicted protein structures using molecular and biochemical assays, as well as bioinformatics tools such as AlphaFold2. Mutating W to alanine (A) in WG of proteins 1A and 1AB Hel abolished their ability to induce systemic RNA silencing suppression, limit siRNA accumulation, and downregulate NbAGO2 expression by 1AB Hel . This mutation in the GFLV genome resulted in a non-infectious virus. Mutating W to A in GW of proteins 1BHel and 1ABHel reduced their ability to suppress systemic RNA silencing and abolished the downregulation of NbDCL2 , NbDCL4, , and NbRDR6 expression by 1B Hel . This mutation in the GFLV genome delayed infection at the local level and inhibited systemic infection in planta . Double mutations of W to A in WG and GW of protein 1ABHel abolished its ability to induce RNA silencing suppression, limit siRNA accumulation, and downregulate NbDCL2 and NbRDR6 expression. Finally, in silico protein structure prediction indicated that a W to A substitution potentially modifies the structure and physicochemical properties of the three GFLV VSRs. Together, this study provided insights into the specific roles of WG/GW not only in GFLV VSR functions but also in GFLV biology.
Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine ( Vitis spp.), were recently identified. GFLV VSRs include the RNA1-encoded protein 1A and the putative helicase protein 1B Hel , as well as their fused form (1AB Hel ). Key characteristics underlying the suppression function of the GFLV VSRs are unknown. In this study, we explored the role of the conserved tryptophan-glycine (WG) motif in protein 1A and glycine-tryptophan (GW) motif in protein 1B Hel in their systemic RNA silencing suppression ability by co-infiltrating Nicotiana benthamiana 16c line plants with a GFP silencing construct and a wildtype or a mutant GFLV VSR. We analyzed and compared wildtype and mutant GFLV VSRs for their (i) efficiency at suppressing RNA silencing, (ii) ability to limit siRNA accumulation, (iii) modulation of the expression of six host genes involved in RNA silencing, (iv) impact on virus infectivity in planta , and (v) variations in predicted protein structures using molecular and biochemical assays, as well as bioinformatics tools such as AlphaFold2. Mutating W to alanine (A) in WG of proteins 1A and 1AB Hel abolished their ability to induce systemic RNA silencing suppression, limit siRNA accumulation, and downregulate NbAGO2 expression by 1AB Hel . This mutation in the GFLV genome resulted in a non-infectious virus. Mutating W to A in GW of proteins 1BHel and 1ABHel reduced their ability to suppress systemic RNA silencing and abolished the downregulation of NbDCL2 , NbDCL4, , and NbRDR6 expression by 1B Hel . This mutation in the GFLV genome delayed infection at the local level and inhibited systemic infection in planta . Double mutations of W to A in WG and GW of protein 1ABHel abolished its ability to induce RNA silencing suppression, limit siRNA accumulation, and downregulate NbDCL2 and NbRDR6 expression. Finally, in silico protein structure prediction indicated that a W to A substitution potentially modifies the structure and physicochemical properties of the three GFLV VSRs. Together, this study provided insights into the specific roles of WG/GW not only in GFLV VSR functions but also in GFLV biology.
Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine (Vitis spp.), were recently identified. GFLV VSRs include the RNA1-encoded protein 1A and the putative helicase protein 1BHel, as well as their fused form (1ABHel). Key characteristics underlying the suppression function of the GFLV VSRs are unknown. In this study, we explored the role of the conserved tryptophan-glycine (WG) motif in protein 1A and glycine-tryptophan (GW) motif in protein 1BHel in their systemic RNA silencing suppression ability by co-infiltrating Nicotiana benthamiana 16c line plants with a GFP silencing construct and a wildtype or a mutant GFLV VSR. We analyzed and compared wildtype and mutant GFLV VSRs for their (i) efficiency at suppressing RNA silencing, (ii) ability to limit siRNA accumulation, (iii) modulation of the expression of six host genes involved in RNA silencing, (iv) impact on virus infectivity in planta, and (v) variations in predicted protein structures using molecular and biochemical assays, as well as bioinformatics tools such as AlphaFold2. Mutating W to alanine (A) in WG of proteins 1A and 1ABHel abolished their ability to induce systemic RNA silencing suppression, limit siRNA accumulation, and downregulate NbAGO2 expression by 1ABHel. This mutation in the GFLV genome resulted in a non-infectious virus. Mutating W to A in GW of proteins 1BHel and 1ABHel reduced their ability to suppress systemic RNA silencing and abolished the downregulation of NbDCL2, NbDCL4,, and NbRDR6 expression by 1BHel. This mutation in the GFLV genome delayed infection at the local level and inhibited systemic infection in planta. Double mutations of W to A in WG and GW of protein 1ABHel abolished its ability to induce RNA silencing suppression, limit siRNA accumulation, and downregulate NbDCL2 and NbRDR6 expression. Finally, in silico protein structure prediction indicated that a W to A substitution potentially modifies the structure and physicochemical properties of the three GFLV VSRs. Together, this study provided insights into the specific roles of WG/GW not only in GFLV VSR functions but also in GFLV biology.Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine (Vitis spp.), were recently identified. GFLV VSRs include the RNA1-encoded protein 1A and the putative helicase protein 1BHel, as well as their fused form (1ABHel). Key characteristics underlying the suppression function of the GFLV VSRs are unknown. In this study, we explored the role of the conserved tryptophan-glycine (WG) motif in protein 1A and glycine-tryptophan (GW) motif in protein 1BHel in their systemic RNA silencing suppression ability by co-infiltrating Nicotiana benthamiana 16c line plants with a GFP silencing construct and a wildtype or a mutant GFLV VSR. We analyzed and compared wildtype and mutant GFLV VSRs for their (i) efficiency at suppressing RNA silencing, (ii) ability to limit siRNA accumulation, (iii) modulation of the expression of six host genes involved in RNA silencing, (iv) impact on virus infectivity in planta, and (v) variations in predicted protein structures using molecular and biochemical assays, as well as bioinformatics tools such as AlphaFold2. Mutating W to alanine (A) in WG of proteins 1A and 1ABHel abolished their ability to induce systemic RNA silencing suppression, limit siRNA accumulation, and downregulate NbAGO2 expression by 1ABHel. This mutation in the GFLV genome resulted in a non-infectious virus. Mutating W to A in GW of proteins 1BHel and 1ABHel reduced their ability to suppress systemic RNA silencing and abolished the downregulation of NbDCL2, NbDCL4,, and NbRDR6 expression by 1BHel. This mutation in the GFLV genome delayed infection at the local level and inhibited systemic infection in planta. Double mutations of W to A in WG and GW of protein 1ABHel abolished its ability to induce RNA silencing suppression, limit siRNA accumulation, and downregulate NbDCL2 and NbRDR6 expression. Finally, in silico protein structure prediction indicated that a W to A substitution potentially modifies the structure and physicochemical properties of the three GFLV VSRs. Together, this study provided insights into the specific roles of WG/GW not only in GFLV VSR functions but also in GFLV biology.
Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine (Vitis spp.), were recently identified. GFLV VSRs include the RNA1-encoded protein 1A and the putative helicase protein 1BHel, as well as their fused form (1ABHel). Key characteristics underlying the suppression function of the GFLV VSRs are unknown. In this study, we explored the role of the conserved tryptophan-glycine (WG) motif in protein 1A and glycine-tryptophan (GW) motif in protein 1BHel in their systemic RNA silencing suppression ability by co-infiltrating Nicotiana benthamiana 16c line plants with a GFP silencing construct and a wildtype or a mutant GFLV VSR. We analyzed and compared wildtype and mutant GFLV VSRs for their (i) efficiency at suppressing RNA silencing, (ii) ability to limit siRNA accumulation, (iii) modulation of the expression of six host genes involved in RNA silencing, (iv) impact on virus infectivity in planta, and (v) variations in predicted protein structures using molecular and biochemical assays, as well as bioinformatics tools such as AlphaFold2. Mutating W to alanine (A) in WG of proteins 1A and 1ABHel abolished their ability to induce systemic RNA silencing suppression, limit siRNA accumulation, and downregulate NbAGO2 expression by 1ABHel. This mutation in the GFLV genome resulted in a non-infectious virus. Mutating W to A in GW of proteins 1BHel and 1ABHel reduced their ability to suppress systemic RNA silencing and abolished the downregulation of NbDCL2, NbDCL4,, and NbRDR6 expression by 1BHel. This mutation in the GFLV genome delayed infection at the local level and inhibited systemic infection in planta. Double mutations of W to A in WG and GW of protein 1ABHel abolished its ability to induce RNA silencing suppression, limit siRNA accumulation, and downregulate NbDCL2 and NbRDR6 expression. Finally, in silico protein structure prediction indicated that a W to A substitution potentially modifies the structure and physicochemical properties of the three GFLV VSRs. Together, this study provided insights into the specific roles of WG/GW not only in GFLV VSR functions but also in GFLV biology.
Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine ( spp.), were recently identified. GFLV VSRs include the RNA1-encoded protein 1A and the putative helicase protein 1B , as well as their fused form (1AB ). Key characteristics underlying the suppression function of the GFLV VSRs are unknown. In this study, we explored the role of the conserved tryptophan-glycine (WG) motif in protein 1A and glycine-tryptophan (GW) motif in protein 1B in their systemic RNA silencing suppression ability by co-infiltrating 16c line plants with a silencing construct and a wildtype or a mutant GFLV VSR. We analyzed and compared wildtype and mutant GFLV VSRs for their (i) efficiency at suppressing RNA silencing, (ii) ability to limit siRNA accumulation, (iii) modulation of the expression of six host genes involved in RNA silencing, (iv) impact on virus infectivity , and (v) variations in predicted protein structures using molecular and biochemical assays, as well as bioinformatics tools such as AlphaFold2. Mutating W to alanine (A) in WG of proteins 1A and 1AB abolished their ability to induce systemic RNA silencing suppression, limit siRNA accumulation, and downregulate expression by 1AB . This mutation in the GFLV genome resulted in a non-infectious virus. Mutating W to A in GW of proteins 1BHel and 1ABHel reduced their ability to suppress systemic RNA silencing and abolished the downregulation of , , and expression by 1B . This mutation in the GFLV genome delayed infection at the local level and inhibited systemic infection . Double mutations of W to A in WG and GW of protein 1ABHel abolished its ability to induce RNA silencing suppression, limit siRNA accumulation, and downregulate and expression. Finally, protein structure prediction indicated that a W to A substitution potentially modifies the structure and physicochemical properties of the three GFLV VSRs. Together, this study provided insights into the specific roles of WG/GW not only in GFLV VSR functions but also in GFLV biology.
Author Choi, Jiyeong
Schmitt-Keichinger, Corinne
Browning, Scottie
Fuchs, Marc
AuthorAffiliation 3 INRAE, SVQV UMR 1131, Université de Strasbourg , Colmar , France
2 CNRS, IBMP UPR 2357, Université de Strasbourg , Strasbourg , France
1 Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science College of Agriculture and Life Sciences, Cornell University, Cornell AgriTech at the New York State Agricultural Experiment Station , Geneva, NY , United States
AuthorAffiliation_xml – name: 1 Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science College of Agriculture and Life Sciences, Cornell University, Cornell AgriTech at the New York State Agricultural Experiment Station , Geneva, NY , United States
– name: 2 CNRS, IBMP UPR 2357, Université de Strasbourg , Strasbourg , France
– name: 3 INRAE, SVQV UMR 1131, Université de Strasbourg , Colmar , France
Author_xml – sequence: 1
  givenname: Jiyeong
  surname: Choi
  fullname: Choi, Jiyeong
– sequence: 2
  givenname: Scottie
  surname: Browning
  fullname: Browning, Scottie
– sequence: 3
  givenname: Corinne
  surname: Schmitt-Keichinger
  fullname: Schmitt-Keichinger, Corinne
– sequence: 4
  givenname: Marc
  surname: Fuchs
  fullname: Fuchs, Marc
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39188317$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04696148$$DView record in HAL
BookMark eNpdkstuEzEUhkeoiF7oC7BAXsIiwbcZe1YoqkpaKYCEQGVneTxnElcTO9ieSHkk3hJPkkYtXvhy_J_v-PJfFmfOOyiKdwRPGZP1p25tTTOlmPIp4SWhsnxVXJCq4hOG6e-zZ_Pz4jrGR5wbxzT3b4pzVhMpGREXxd-vQ9LJeheRdSitAD3MkXYtmj-gtU-2i8h3-3haBQD049sMRduDM9YtURw2mwAx-rCXLYPewNY6QJ12PegObW0YItJ9gjBCbEBxFxPks59yc22kG9vbtNsX1l0HJh0zrRsXdps33xavO91HuD6OV8WvL7c_b-4mi-_z-5vZYmJ4ydNEA2EtBlrxpmRaCNpK3EgiWtwCNS3TLF9dNESzppG41YZTECBEVRJZUVGxq-L-wG29flSbYNc67JTXVu0DPiyVDsmaHlSuwkoicI0143WJ65rVmScN1YArOrI-H1iboVlDa8CloPsX0Jc7zq7U0m8VISx_KpOZ8PFAWP2XdzdbqDGGeVVXhMstydoPx2rB_xkgJrW20UDfawd-iIrhWvCa5QfI0vfPD3YiPxkjC-hBYIKPMUB3khCsRgOqvQHVaEB1NCD7B_7M0KA
Cites_doi 10.1105/tpc.112.105643
10.1038/emboj.2010.215
10.1111/mpp.12558
10.3389/fpls.2022.786489
10.1038/embor.2009.31
10.3390/v14020432
10.1104/pp.17.01828
10.1016/S1046-2023(03)00036-7
10.1091/mbc.01-11-0544
10.1002/pro.3290
10.4161/psb.24918
10.1101/gad.1424106
10.1016/j.tig.2006.03.003
10.1094/MPMI-01-23-0008-R
10.1007/978-1-61779-123-9_10
10.1126/science.abl4546
10.1105/tpc.109.073056
10.1371/journal.ppat.1000996
10.1016/j.jviromet.2018.04.006
10.1007/978-3-319-57706-7_4
10.1073/pnas.1308510110
10.1038/39215
10.1099/vir.0.057646-0
10.1094/MPMI-06-19-0161-FI
10.1021/acs.jproteome.3c00069
10.3390/cryst11091032
10.1038/nature02123
10.1038/nature02129
10.13005/bbra/2837
10.1093/nar/gkq162
10.1002/pro.3943
10.1134/S1021443721040142
10.1006/bbrc.1996.1573
10.1186/1746-4811-3-12
10.1007/s10059-013-2203-2
10.1016/S0968-0004(02)02184-9
10.1038/nbt0102-87
10.1128/JVI.00864-10
10.1101/gad.1495506
10.1128/mmbr.00035-22
10.1186/1472-6807-9-23
10.3390/s18041204
10.1016/S0021-9258(19)77210-X
10.1038/nmeth1062
10.1038/nrg3965
10.1007/978-94-011-0137-0_24
10.1038/s41580-022-00496-5
10.1042/BST20130047
10.3389/fpls.2020.579376
10.3390/v11050472
10.1094/MPMI-04-14-0099-R
10.1094/MPMI-04-21-0078-R
10.1093/bioinformatics/btg430
10.1371/journal.pone.0046451
10.1111/j.1365-313X.2009.03850.x
10.3390/v11070673
10.1111/mpp.12525
10.1038/s41592-022-01488-1
10.1038/nature03462
10.1126/science.abj8754
10.1016/j.pbi.2015.06.013
10.1371/journal.ppat.1008965
10.1371/journal.pone.0014639
10.1101/gad.1908710
10.1016/j.cub.2005.10.048
10.1093/plcell/koab214
10.1128/jvi.00497-12
10.3389/fpls.2022.928729
10.1074/jbc.M114.593707
10.3390/biom14010062
10.1099/jgv.0.001807
10.1016/j.molcel.2012.07.028
10.1002/bip.360320914
10.1038/nbt.3988
10.1093/nar/gki524
10.1111/j.1365-313X.2005.02617.x
10.1038/s41477-018-0288-5
10.1016/j.virol.2015.02.028
10.1093/bioinformatics/btq066
10.1099/0022-1317-74-2-169
10.1038/nature03514
10.1016/j.pbiomolbio.2003.09.003
10.1111/j.1364-3703.2010.00634.x
10.1006/meth.2001.1262
10.1128/JVI.76.17.8808-8819.2002
10.1371/journal.ppat.1004755
10.1002/pro.3235
10.1101/gad.451207
10.1002/prot.20264
10.1002/pro.543
10.1038/nsmb777
10.1016/j.jmb.2009.05.015
10.1128/JVI.00627-12
10.1002/pro.4792
10.1016/j.cell.2013.04.005
ContentType Journal Article
Copyright Copyright © 2024 Choi, Browning, Schmitt-Keichinger and Fuchs.
Attribution
Copyright © 2024 Choi, Browning, Schmitt-Keichinger and Fuchs. 2024 Choi, Browning, Schmitt-Keichinger and Fuchs
Copyright_xml – notice: Copyright © 2024 Choi, Browning, Schmitt-Keichinger and Fuchs.
– notice: Attribution
– notice: Copyright © 2024 Choi, Browning, Schmitt-Keichinger and Fuchs. 2024 Choi, Browning, Schmitt-Keichinger and Fuchs
DBID AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.3389/fmicb.2024.1451285
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_e263517090a349509939c428c2ae0626
PMC11345138
oai:HAL:hal-04696148v1
39188317
10_3389_fmicb_2024_1451285
Genre Journal Article
GrantInformation_xml – fundername: California Department of Food and Agriculture Pierce’s Disease & Glassy-Winged Sharpshooter Board Research & Outreach Program
  grantid: 21-0269-000-SA; 22-0550-000-SA; 23-0132-000-SA
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
ACXDI
IPNFZ
NPM
RIG
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c454t-ae13d0e264b53a772d80b817d0de2cd3a31887b1a3bb80dac42e7e77651862763
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001297210100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1664-302X
IngestDate Fri Oct 03 12:48:19 EDT 2025
Tue Sep 30 17:07:52 EDT 2025
Tue Oct 14 20:55:16 EDT 2025
Sun Aug 24 03:58:43 EDT 2025
Thu Apr 03 07:01:54 EDT 2025
Sat Nov 29 03:36:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords WG/GW
nepovirus
AlphaFold2
plant-virus interaction
RNA silencing
silencing suppressor
virus infectivity
Language English
License Copyright © 2024 Choi, Browning, Schmitt-Keichinger and Fuchs.
Attribution: http://creativecommons.org/licenses/by
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-ae13d0e264b53a772d80b817d0de2cd3a31887b1a3bb80dac42e7e77651862763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Juan Jose Lopez-Moya, Spanish National Research Council (CSIC), Spain
Edited by: Adrian Alejandro Valli, Spanish National Research Council (CSIC), Spain
Andreas Voloudakis, Agricultural University of Athens, Greece
ORCID 0000-0003-1642-0221
OpenAccessLink https://doaj.org/article/e263517090a349509939c428c2ae0626
PMID 39188317
PQID 3097493318
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_e263517090a349509939c428c2ae0626
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11345138
hal_primary_oai_HAL_hal_04696148v1
proquest_miscellaneous_3097493318
pubmed_primary_39188317
crossref_primary_10_3389_fmicb_2024_1451285
PublicationCentury 2000
PublicationDate 2024-08-12
PublicationDateYYYYMMDD 2024-08-12
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-12
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2024
Publisher Frontiers Media
Frontiers Media S.A
Publisher_xml – name: Frontiers Media
– name: Frontiers Media S.A
References Liu (ref45) 2018; 4
Ren (ref69) 2010; 84
Ma (ref50) 2005; 434
Osterbaan (ref60) 2018; 257
Livak (ref47) 2001; 25
Roy (ref73) 2023; 22
Chiu (ref11) 2010; 11
Xu (ref88) 2020; 33
Fuchs (ref23) 2017
Clamp (ref13) 2004; 20
Várallyay (ref82) 2010; 29
Garcia-Ruiz (ref26) 2015; 11
El-Shami (ref18) 2007; 21
de Felippes (ref16) 2020; 11
Pérez-Cañamás (ref62) 2015; 290
Karlowski (ref38) 2010; 38
Li (ref41) 2013; 153
Tarquini (ref80) 2021; 34
Azevedo (ref3) 2010; 24
Brodersen (ref7) 2006; 22
Gaffar (ref24) 2019; 11
Martin (ref52) 2009; 59
Martin (ref53) 2018; 19
Lingel (ref43) 2003; 426
Yan (ref91) 2022; 13
Schrödinger (ref76) 2020
Zhang (ref93) 1996; 227
Varkonyi-Gasic (ref83) 2011
Yan (ref92) 2003; 426
Fan (ref21) 2022; 13
Liu (ref46) 2023; 87
Liu (ref9002) 2012; 7
Holliday (ref34) 2009; 390
Gromiha (ref30) 2004; 86
Xu (ref89) 2010; 26
Ritzenthaler (ref70) 2002; 76
Baek (ref4) 2021; 373
Meng (ref55) 2023; 32
Sievers (ref77) 2018; 27
Li (ref42) 2018; 19
Nozaki (ref59) 1971; 246
Parker (ref61) 2005; 434
Karran (ref39) 2014; 27
Khemaissa (ref40) 2021; 11
Garcia (ref25) 2012; 48
Meister (ref54) 2005; 15
Harmoko (ref32) 2013; 35
Turner (ref81) 2013; 8
Luan (ref49) 1992; 32
Lingel (ref44) 2004; 11
Lopez-Gomollon (ref48) 2022; 23
Chen (ref9) 2018; 176
Yamashita (ref90) 2011; 20
Steinegger (ref78) 2017; 35
Wang (ref87) 2021; 374
Incarbone (ref35) 2021; 33
Giner (ref28) 2010; 6
Harvey (ref33) 2011; 6
Sadovskaya (ref74) 2021; 68
Mirdita (ref57) 2022; 19
Goddard (ref29) 2018; 27
Zhang (ref95) 2005; 33
Szabó (ref79) 2012; 86
Schmitt-Keichinger (ref75) 2017
Earley (ref17) 2006; 45
Voinnet (ref86) 1997; 389
Pfaff (ref65) 2013; 41
Martelli (ref51) 2019
Vigne (ref84) 2013; 94
Roy (ref72) 2024; 14
Chernov (ref10) 1995
Robertson (ref71) 2002; 27
Zhang (ref97) 2012; 86
Varkonyi-Gasic (ref9003) 2007; 3
Garcia-Ruiz (ref27) 2010; 22
Pollari (ref66) 2020; 16
Zhang (ref96) 2006; 20
Poulsen (ref67) 2013; 25
Bies-Etheve (ref6) 2009; 10
Csaba (ref14) 2009; 9
Zhang (ref94) 2004; 57
Carbonell (ref8) 2015; 27
Helliwell (ref9001) 2003; 30
Atef (ref2) 2020; 17
(ref68) 2023
Jin (ref36) 2022; 14
Andret-Link (ref1) 2004; 86
Behm-Ansmant (ref5) 2006; 20
Faccio (ref20) 2018; 18
Pettersen (ref63) 2021; 30
Merzlyak (ref56) 2007; 4
Nagai (ref58) 2002; 20
Fuchs (ref22) 2022; 103
Choi (ref12) 2023; 36
Csorba (ref15) 2015
Gupta (ref31) 2019; 11
Eystathioy (ref19) 2002; 13
Viry (ref85) 1993; 74
Jonas (ref37) 2015; 16
Pfaff (ref64) 2013; 110
References_xml – volume: 25
  start-page: 22
  year: 2013
  ident: ref67
  article-title: Lessons on RNA silencing mechanisms in plants from eukaryotic Argonaute structures
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.105643
– volume: 29
  start-page: 3507
  year: 2010
  ident: ref82
  article-title: Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation
  publication-title: EMBO J.
  doi: 10.1038/emboj.2010.215
– volume: 19
  start-page: 731
  year: 2018
  ident: ref53
  article-title: The 50 distal amino acids of the 2AHP homing protein of grapevine fanleaf virus elicit a hypersensitive reaction on Nicotiana occidentalis: 2AHP of GFLV-F13 is an avirulence factor
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12558
– volume: 13
  start-page: 786489
  year: 2022
  ident: ref21
  article-title: Identification of silencing suppressor protein encoded by strawberry mottle virus
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.786489
– volume: 10
  start-page: 649
  year: 2009
  ident: ref6
  article-title: RNA-directed DNA methylation requires an AGO4-interacting member of the SPT5 elongation factor family
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2009.31
– volume: 14
  start-page: 432
  year: 2022
  ident: ref36
  article-title: RNAi-based antiviral innate immunity in plants
  publication-title: Viruses
  doi: 10.3390/v14020432
– volume: 176
  start-page: 2700
  year: 2018
  ident: ref9
  article-title: A genetic network for systemic RNA silencing in plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.01828
– volume: 30
  start-page: 289
  year: 2003
  ident: ref9001
  article-title: Constructs and methods for high-throughput gene silencing in plants
  publication-title: Methods
  doi: 10.1016/S1046-2023(03)00036-7
– volume: 13
  start-page: 1338
  year: 2002
  ident: ref19
  article-title: A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.01-11-0544
– volume: 27
  start-page: 135
  year: 2018
  ident: ref77
  article-title: Clustal omega for making accurate alignments of many protein sequences
  publication-title: Prot. Sci. Publ. Prot. Soc.
  doi: 10.1002/pro.3290
– volume: 8
  start-page: e24918
  year: 2013
  ident: ref81
  article-title: Optimizing stem-loop qPCR assays through multiplexed cDNA synthesis of U6 and miRNAs
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.24918
– volume: 20
  start-page: 1885
  year: 2006
  ident: ref5
  article-title: mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes
  publication-title: Genes Dev.
  doi: 10.1101/gad.1424106
– volume: 22
  start-page: 268
  year: 2006
  ident: ref7
  article-title: The diversity of RNA silencing pathways in plants
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2006.03.003
– volume: 36
  start-page: 558
  year: 2023
  ident: ref12
  article-title: Grapevine fanleaf virus RNA1-encoded proteins 1A and 1B Hel suppress RNA silencing
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-01-23-0008-R
– start-page: 145
  volume-title: RNAi and plant gene function analysis: Methods and protocols
  year: 2011
  ident: ref83
  article-title: Quantitative stem-loop RT-PCR for detection of microRNAs
  doi: 10.1007/978-1-61779-123-9_10
– volume: 374
  start-page: 1152
  year: 2021
  ident: ref87
  article-title: Mechanism of siRNA production by a plant dicer-RNA complex in dicing-competent conformation
  publication-title: Science
  doi: 10.1126/science.abl4546
– volume: 22
  start-page: 481
  year: 2010
  ident: ref27
  article-title: Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during turnip mosaic virus infection
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.073056
– volume: 6
  start-page: e1000996
  year: 2010
  ident: ref28
  article-title: Viral protein inhibits RISC activity by Argonaute binding through conserved WG/GW motifs
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000996
– volume: 257
  start-page: 16
  year: 2018
  ident: ref60
  article-title: Optimal systemic grapevine fanleaf virus infection in Nicotiana benthamiana following agroinoculation
  publication-title: J. Virol. Methods
  doi: 10.1016/j.jviromet.2018.04.006
– start-page: 83
  volume-title: Grapevine viruses: Molecular biology, diagnostics and management
  year: 2017
  ident: ref75
  article-title: Molecular, cellular, and structural biology of grapevine fanleaf virus
  doi: 10.1007/978-3-319-57706-7_4
– volume: 110
  start-page: E3770
  year: 2013
  ident: ref64
  article-title: Structural features of Argonaute–GW182 protein interactions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1308510110
– volume: 389
  start-page: 553
  year: 1997
  ident: ref86
  article-title: Systemic signalling in gene silencing
  publication-title: Nature
  doi: 10.1038/39215
– volume: 94
  start-page: 2803
  year: 2013
  ident: ref84
  article-title: A strain-specific segment of the RNA-dependent RNA polymerase of grapevine fanleaf virus determines symptoms in Nicotiana species
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.057646-0
– volume: 33
  start-page: 40
  year: 2020
  ident: ref88
  article-title: Cellular RNA hubs: friends and foes of plant viruses
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-06-19-0161-FI
– volume: 22
  start-page: 1997
  year: 2023
  ident: ref73
  article-title: Profiling plant proteome and transcriptome changes during grapevine fanleaf virus infection
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.3c00069
– volume: 11
  start-page: 1032
  year: 2021
  ident: ref40
  article-title: Tryptophan, an amino-acid endowed with unique properties and its many roles in membrane proteins
  publication-title: Crystals
  doi: 10.3390/cryst11091032
– volume: 426
  start-page: 465
  year: 2003
  ident: ref43
  article-title: Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain
  publication-title: Nature
  doi: 10.1038/nature02123
– volume: 426
  start-page: 469
  year: 2003
  ident: ref92
  article-title: Structure and conserved RNA binding of the PAZ domain
  publication-title: Nature
  doi: 10.1038/nature02129
– volume: 17
  start-page: 341
  year: 2020
  ident: ref2
  article-title: Modification of Paraburkholderia TALE-like protein to activate transcription of target genes in plant
  publication-title: Biosci. Biotechnol. Res. Asia
  doi: 10.13005/bbra/2837
– volume: 38
  start-page: 4231
  year: 2010
  ident: ref38
  article-title: Genome-wide computational identification of WG/GW Argonaute-binding proteins in Arabidopsis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq162
– volume: 30
  start-page: 70
  year: 2021
  ident: ref63
  article-title: UCSF ChimeraX: structure visualization for researchers, educators, and developers
  publication-title: Protein Sci.
  doi: 10.1002/pro.3943
– volume: 68
  start-page: 633
  year: 2021
  ident: ref74
  article-title: JetGene: internet resource for analysis of regulatory regions or nucleotide contexts in differentially translated plant transcripts
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443721040142
– volume: 227
  start-page: 707
  year: 1996
  ident: ref93
  article-title: An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.1996.1573
– start-page: 1
  volume-title: eLS
  year: 2019
  ident: ref51
  article-title: Virus diseases of grapevine
– volume: 3
  start-page: 12
  year: 2007
  ident: ref9003
  article-title: Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-3-12
– year: 2020
  ident: ref76
– volume: 35
  start-page: 202
  year: 2013
  ident: ref32
  article-title: RNA-dependent RNA polymerase 6 is required for efficient hpRNA-induced gene silencing in plants
  publication-title: Mol. Cell
  doi: 10.1007/s10059-013-2203-2
– volume: 27
  start-page: 521
  year: 2002
  ident: ref71
  article-title: Intramolecular interactions at protein surfaces and their impact on protein function
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(02)02184-9
– volume: 20
  start-page: 87
  year: 2002
  ident: ref58
  article-title: A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0102-87
– volume: 84
  start-page: 12914
  year: 2010
  ident: ref69
  article-title: Multiple functions of rice dwarf phytoreovirus Pns10 in suppressing systemic RNA silencing
  publication-title: J. Virol.
  doi: 10.1128/JVI.00864-10
– volume: 20
  start-page: 3255
  year: 2006
  ident: ref96
  article-title: Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense
  publication-title: Genes Dev.
  doi: 10.1101/gad.1495506
– volume: 87
  start-page: e0003522
  year: 2023
  ident: ref46
  article-title: Infection defects of RNA and DNA viruses induced by antiviral RNA interference
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/mmbr.00035-22
– volume: 9
  start-page: 23
  year: 2009
  ident: ref14
  article-title: Systematic comparison of SCOP and CATH: a new gold standard for protein structure analysis
  publication-title: BMC Struct. Biol.
  doi: 10.1186/1472-6807-9-23
– volume: 18
  start-page: 1204
  year: 2018
  ident: ref20
  article-title: From protein features to sensing surfaces
  publication-title: Sensors
  doi: 10.3390/s18041204
– volume: 246
  start-page: 2211
  year: 1971
  ident: ref59
  article-title: The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions: establishment of a hydrophobicity scale
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)77210-X
– volume: 4
  start-page: 555
  year: 2007
  ident: ref56
  article-title: Bright monomeric red fluorescent protein with an extended fluorescence lifetime
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1062
– volume: 16
  start-page: 421
  year: 2015
  ident: ref37
  article-title: Towards a molecular understanding of microRNA-mediated gene silencing
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3965
– start-page: 329
  volume-title: Science and Technology of Crystal Growth
  year: 1995
  ident: ref10
  article-title: Principles of crystal growth in protein crystallization
  doi: 10.1007/978-94-011-0137-0_24
– volume: 23
  start-page: 645
  year: 2022
  ident: ref48
  article-title: Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-022-00496-5
– volume: 41
  start-page: 855
  year: 2013
  ident: ref65
  article-title: Argonaute and GW182 proteins: an effective alliance in gene silencing
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST20130047
– volume: 11
  start-page: 579376
  year: 2020
  ident: ref16
  article-title: The whys and wherefores of transitivity in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.579376
– volume: 11
  start-page: 472
  year: 2019
  ident: ref31
  article-title: Wheat streak mosaic virus P1 binds to dsRNAs without size and sequence specificity and a GW motif is crucial for suppression of RNA silencing
  publication-title: Viruses
  doi: 10.3390/v11050472
– volume: 27
  start-page: 933
  year: 2014
  ident: ref39
  article-title: Tomato ringspot virus coat protein binds to Argonaute1 and suppresses the translation repression of a reporter gene
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-04-14-0099-R
– volume: 34
  start-page: 1010
  year: 2021
  ident: ref80
  article-title: Trigger and suppression of antiviral defenses by grapevine pinot gris virus (gpgv): novel insights into virus-host interaction
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-04-21-0078-R
– volume: 20
  start-page: 426
  year: 2004
  ident: ref13
  article-title: The Jalview Java alignment editor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg430
– volume: 7
  start-page: e46451
  year: 2012
  ident: ref9002
  article-title: Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0046451
– volume: 59
  start-page: 150
  year: 2009
  ident: ref52
  article-title: Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2009.03850.x
– volume: 11
  start-page: 673
  year: 2019
  ident: ref24
  article-title: Catch me if you can! RNA silencing-based improvement of antiviral plant immunity
  publication-title: Viruses
  doi: 10.3390/v11070673
– volume: 19
  start-page: 355
  year: 2018
  ident: ref42
  article-title: Characterization of silencing suppressor p24 of grapevine leafroll-associated virus 2
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/mpp.12525
– volume: 19
  start-page: 679
  year: 2022
  ident: ref57
  article-title: ColabFold: making protein folding accessible to all
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01488-1
– volume: 434
  start-page: 663
  year: 2005
  ident: ref61
  article-title: Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex
  publication-title: Nature
  doi: 10.1038/nature03462
– volume: 373
  start-page: 871
  year: 2021
  ident: ref4
  article-title: Accurate prediction of protein structures and interactions using a three-track neural network
  publication-title: Science
  doi: 10.1126/science.abj8754
– volume: 27
  start-page: 111
  year: 2015
  ident: ref8
  article-title: Antiviral roles of plant Argonautes
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2015.06.013
– volume: 16
  start-page: e1008965
  year: 2020
  ident: ref66
  article-title: The potyviral silencing suppressor HCPro recruits and employs host Argonaute1 in pro-viral functions
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1008965
– volume: 6
  start-page: e14639
  year: 2011
  ident: ref33
  article-title: An antiviral defense role of AGO2 in plants
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014639
– volume: 24
  start-page: 904
  year: 2010
  ident: ref3
  article-title: Argonaute quenching and global changes in dicer homeostasis caused by a pathogen-encoded GW repeat protein
  publication-title: Genes Dev.
  doi: 10.1101/gad.1908710
– volume: 15
  start-page: 2149
  year: 2005
  ident: ref54
  article-title: Identification of novel Argonaute-associated proteins
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.10.048
– start-page: 61
  volume-title: Advances in virus research
  year: 2017
  ident: ref23
  article-title: A renaissance in nepovirus research provides new insights into their molecular interface with hosts and vectors
– volume: 86
  start-page: 183
  year: 2004
  ident: ref1
  article-title: Grapevine fanleaf virus: still a major threat to the grapevine industry
  publication-title: J. Plant Pathol.
– volume: 33
  start-page: 3402
  year: 2021
  ident: ref35
  article-title: Immunocapture of dsRNA-bound proteins provides insight into tobacco rattle virus replication complexes and reveals Arabidopsis DRB2 to be a wide-spectrum antiviral effector
  publication-title: Plant Cell
  doi: 10.1093/plcell/koab214
– volume: 86
  start-page: 6847
  year: 2012
  ident: ref97
  article-title: Temperature-dependent survival of turnip crinkle virus-infected Arabidopsis plants relies on an RNA silencing-based defense that requires DCL2, AGO2, and HEN1
  publication-title: J. Virol.
  doi: 10.1128/jvi.00497-12
– volume: 13
  start-page: 928729
  year: 2022
  ident: ref91
  article-title: The mobile small RNAs: important messengers for long-distance communication in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2022.928729
– volume: 290
  start-page: 3106
  year: 2015
  ident: ref62
  article-title: Key importance of small RNA binding for the activity of a glycine-tryptophan (GW) motif-containing viral suppressor of RNA silencing
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.593707
– volume: 14
  start-page: 62
  year: 2024
  ident: ref72
  article-title: Predictive modeling of proteins encoded by a plant virus sheds a new light on their structure and inherent multifunctionality
  publication-title: Biomol. Ther.
  doi: 10.3390/biom14010062
– volume: 103
  start-page: 001807
  year: 2022
  ident: ref22
  article-title: ICTV virus taxonomy profile: Secoviridae 2022
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.001807
– volume: 48
  start-page: 109
  year: 2012
  ident: ref25
  article-title: Ago hook and RNA helicase motifs underpin dual roles for SDE3 in antiviral defense and silencing of nonconserved intergenic regions
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.07.028
– volume: 32
  start-page: 1251
  year: 1992
  ident: ref49
  article-title: Hydrophobicity of amino acid residues: differential scanning calorimetry and synthesis of the aromatic analogues of the polypentapeptide of elastin
  publication-title: Biopolymers
  doi: 10.1002/bip.360320914
– volume: 35
  start-page: 1026
  year: 2017
  ident: ref78
  article-title: MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3988
– volume: 33
  start-page: 2302
  year: 2005
  ident: ref95
  article-title: TM-align: a protein structure alignment algorithm based on the TM-score
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki524
– volume: 45
  start-page: 616
  year: 2006
  ident: ref17
  article-title: Gateway-compatible vectors for plant functional genomics and proteomics
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02617.x
– volume: 4
  start-page: 869
  year: 2018
  ident: ref45
  article-title: Intercellular and systemic trafficking of RNAs in plants
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0288-5
– start-page: 85
  year: 2015
  ident: ref15
  article-title: Viral silencing suppressors: tools forged to fine-tune host-pathogen coexistence
  publication-title: Virology
  doi: 10.1016/j.virol.2015.02.028
– volume: 26
  start-page: 889
  year: 2010
  ident: ref89
  article-title: How significant is a protein structure similarity with TM-score = 0.5?
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq066
– volume: 74
  start-page: 169
  year: 1993
  ident: ref85
  article-title: Biologically active transcripts from cloned cDNA of genomic grapevine fanleaf nepovirus RNAs
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-74-2-169
– volume: 434
  start-page: 666
  year: 2005
  ident: ref50
  article-title: Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein
  publication-title: Nature
  doi: 10.1038/nature03514
– volume: 86
  start-page: 235
  year: 2004
  ident: ref30
  article-title: Inter-residue interactions in protein folding and stability
  publication-title: Prog. Biophys. Mol. Biol.
  doi: 10.1016/j.pbiomolbio.2003.09.003
– volume: 11
  start-page: 641
  year: 2010
  ident: ref11
  article-title: The silencing suppressor P25 of potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway
  publication-title: Mol. Plant Pathol.
  doi: 10.1111/j.1364-3703.2010.00634.x
– volume: 25
  start-page: 402
  year: 2001
  ident: ref47
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 76
  start-page: 8808
  year: 2002
  ident: ref70
  article-title: Grapevine fanleaf virus replication occurs on endoplasmic reticulum-derived membranes
  publication-title: J. Virol.
  doi: 10.1128/JVI.76.17.8808-8819.2002
– volume: 11
  start-page: e1004755
  year: 2015
  ident: ref26
  article-title: Roles and programming of Arabidopsis Argonaute proteins during turnip mosaic virus infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1004755
– volume: 27
  start-page: 14
  year: 2018
  ident: ref29
  article-title: UCSF ChimeraX: meeting modern challenges in visualization and analysis
  publication-title: Protein Sci.
  doi: 10.1002/pro.3235
– volume: 21
  start-page: 2539
  year: 2007
  ident: ref18
  article-title: Reiterated WG/GW motifs form functionally and evolutionarily conserved Argonaute-binding platforms in RNAi-related components
  publication-title: Genes Dev.
  doi: 10.1101/gad.451207
– volume: 57
  start-page: 702
  year: 2004
  ident: ref94
  article-title: Scoring function for automated assessment of protein structure template quality
  publication-title: Prot. Struct. Funct. Bioinform.
  doi: 10.1002/prot.20264
– volume: 20
  start-page: 118
  year: 2011
  ident: ref90
  article-title: Structures of the first and second double-stranded RNA-binding domains of human TAR RNA-binding protein
  publication-title: Protein Sci.
  doi: 10.1002/pro.543
– volume: 11
  start-page: 576
  year: 2004
  ident: ref44
  article-title: Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb777
– volume: 390
  start-page: 560
  year: 2009
  ident: ref34
  article-title: Understanding the functional roles of amino acid residues in enzyme catalysis
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2009.05.015
– year: 2023
  ident: ref68
– volume: 86
  start-page: 8324
  year: 2012
  ident: ref79
  article-title: Switching on RNA silencing suppressor activity by restoring Argonaute binding to a viral protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.00627-12
– volume: 32
  start-page: e4792
  year: 2023
  ident: ref55
  article-title: UCSF ChimeraX: tools for structure building and analysis
  publication-title: Protein Sci.
  doi: 10.1002/pro.4792
– volume: 153
  start-page: 562
  year: 2013
  ident: ref41
  article-title: MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.005
SSID ssj0000402000
Score 2.388152
Snippet Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine ( Vitis...
Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine ( spp.),...
Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine (Vitis...
Viral suppressors of RNA silencing (VSRs) encoded by grapevine fanleaf virus (GFLV), one of the most economically consequential viruses of grapevine ( Vitis...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1451285
SubjectTerms Biochemistry, Molecular Biology
Genomics
Life Sciences
Microbiology
Microbiology and Parasitology
nepovirus
Phytopathology and phytopharmacy
plant-virus interaction
RNA silencing
silencing suppressor
Vegetal Biology
Virology
virus infectivity
WG/GW
Title Mutations in the WG and GW motifs of the three RNA silencing suppressors of grapevine fanleaf virus alter their systemic suppression ability and affect virus infectivity
URI https://www.ncbi.nlm.nih.gov/pubmed/39188317
https://www.proquest.com/docview/3097493318
https://hal.science/hal-04696148
https://pubmed.ncbi.nlm.nih.gov/PMC11345138
https://doaj.org/article/e263517090a349509939c428c2ae0626
Volume 15
WOSCitedRecordID wos001297210100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-302X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000402000
  issn: 1664-302X
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgBRIXxJvwWBnEDQXsOA_7WNA-DmyFEGh7s_yKNtIqXTVNpb3wf_iXzNjZqoUDFy49uEmc-Bt7vokn3xDyrpbB1tKGPACfyMtS2Vy1MPGsMNYVtSmYs7HYRDOfy8VCfd0p9YU5YUkeOA3cx4BqKbxhihkBZB4IjVAOOLMrTGDAxnH1BdazE0zFNRjDIsbSVzIQhSmAqXMW4sGi_IDFaQssnrzjiaJgP_iXC0yH_Jtr_pkyueODjh-Q-xN5pLN00w_JrdA_IndTOcnrx-TX2Zg21gfa9RSYHT0_oab39OScYs5dO9BlG9vXgGCg3-YzOnT41RH4LzqMVzEpdrmKh6GSNTjNPtDW9JfBtHTTrcaBxu11GvcXaJKB7tz2XOibJuHv69ixidki05lT3hcWq3hCfhwfff98mk-lGHJXVuU6N4ELzwCL0lbCACP3klnJG898KJwXBpYG2VhuhLWSeQMIhSY0TV1xCJlgDXtKDvplH54TysuirYMqmOGm5N4p4WtX-dpKV5VNbTPy_gYWfZUUNzREKgiijiBqBFFPIGbkEyK3PRLVsmMD2JCebEj_y4Yy8hZw37vG6eyLxjZ8fYBaqRuekTc3ZqFhCuK-iunDchy0YBCUKQFDkJFnyUy21xIKBgY4WkbkngHtdbb_T99dRJlvzgU8o5Av_scjviT3cNjwbTgvXpGD9WoMr8kdt1l3w-qQ3G4W8jBOIfg9-3n0Gyq0IRc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutations+in+the+WG+and+GW+motifs+of+the+three+RNA+silencing+suppressors+of+grapevine+fanleaf+virus+alter+their+systemic+suppression+ability+and+affect+virus+infectivity&rft.jtitle=Frontiers+in+microbiology&rft.au=Choi%2C+Jiyeong&rft.au=Browning%2C+Scottie&rft.au=Schmitt-Keichinger%2C+Corinne&rft.au=Fuchs%2C+Marc&rft.date=2024-08-12&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-302X&rft.volume=15&rft_id=info:doi/10.3389%2Ffmicb.2024.1451285&rft.externalDocID=PMC11345138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon