Medical Image Segmentation Using Automatic Optimized U-Net Architecture Based on Genetic Algorithm
Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care. Consequently, biomedical image segmentation has become a prominent research area in the field of computer vision. With the advent of deep learning,...
Saved in:
| Published in: | Journal of personalized medicine Vol. 13; no. 9; p. 1298 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
25.08.2023
MDPI |
| Subjects: | |
| ISSN: | 2075-4426, 2075-4426 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care. Consequently, biomedical image segmentation has become a prominent research area in the field of computer vision. With the advent of deep learning, many manual design-based methods have been proposed and have shown promising results in achieving state-of-the-art performance in biomedical image segmentation. However, these methods often require significant expert knowledge and have an enormous number of parameters, necessitating substantial computational resources. Thus, this paper proposes a new approach called GA-UNet, which employs genetic algorithms to automatically design a U-shape convolution neural network with good performance while minimizing the complexity of its architecture-based parameters, thereby addressing the above challenges. The proposed GA-UNet is evaluated on three datasets: lung image segmentation, cell nuclei segmentation in microscope images (DSB 2018), and liver image segmentation. Interestingly, our experimental results demonstrate that the proposed method achieves competitive performance with a smaller architecture and fewer parameters than the original U-Net model. It achieves an accuracy of 98.78% for lung image segmentation, 95.96% for cell nuclei segmentation in microscope images (DSB 2018), and 98.58% for liver image segmentation by using merely 0.24%, 0.48%, and 0.67% of the number of parameters in the original U-Net architecture for the lung image segmentation dataset, the DSB 2018 dataset, and the liver image segmentation dataset, respectively. This reduction in complexity makes our proposed approach, GA-UNet, a more viable option for deployment in resource-limited environments or real-world implementations that demand more efficient and faster inference times. |
|---|---|
| AbstractList | Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care. Consequently, biomedical image segmentation has become a prominent research area in the field of computer vision. With the advent of deep learning, many manual design-based methods have been proposed and have shown promising results in achieving state-of-the-art performance in biomedical image segmentation. However, these methods often require significant expert knowledge and have an enormous number of parameters, necessitating substantial computational resources. Thus, this paper proposes a new approach called GA-UNet, which employs genetic algorithms to automatically design a U-shape convolution neural network with good performance while minimizing the complexity of its architecture-based parameters, thereby addressing the above challenges. The proposed GA-UNet is evaluated on three datasets: lung image segmentation, cell nuclei segmentation in microscope images (DSB 2018), and liver image segmentation. Interestingly, our experimental results demonstrate that the proposed method achieves competitive performance with a smaller architecture and fewer parameters than the original U-Net model. It achieves an accuracy of 98.78% for lung image segmentation, 95.96% for cell nuclei segmentation in microscope images (DSB 2018), and 98.58% for liver image segmentation by using merely 0.24%, 0.48%, and 0.67% of the number of parameters in the original U-Net architecture for the lung image segmentation dataset, the DSB 2018 dataset, and the liver image segmentation dataset, respectively. This reduction in complexity makes our proposed approach, GA-UNet, a more viable option for deployment in resource-limited environments or real-world implementations that demand more efficient and faster inference times. Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care. Consequently, biomedical image segmentation has become a prominent research area in the field of computer vision. With the advent of deep learning, many manual design-based methods have been proposed and have shown promising results in achieving state-of-the-art performance in biomedical image segmentation. However, these methods often require significant expert knowledge and have an enormous number of parameters, necessitating substantial computational resources. Thus, this paper proposes a new approach called GA-UNet, which employs genetic algorithms to automatically design a U-shape convolution neural network with good performance while minimizing the complexity of its architecture-based parameters, thereby addressing the above challenges. The proposed GA-UNet is evaluated on three datasets: lung image segmentation, cell nuclei segmentation in microscope images (DSB 2018), and liver image segmentation. Interestingly, our experimental results demonstrate that the proposed method achieves competitive performance with a smaller architecture and fewer parameters than the original U-Net model. It achieves an accuracy of 98.78% for lung image segmentation, 95.96% for cell nuclei segmentation in microscope images (DSB 2018), and 98.58% for liver image segmentation by using merely 0.24%, 0.48%, and 0.67% of the number of parameters in the original U-Net architecture for the lung image segmentation dataset, the DSB 2018 dataset, and the liver image segmentation dataset, respectively. This reduction in complexity makes our proposed approach, GA-UNet, a more viable option for deployment in resource-limited environments or real-world implementations that demand more efficient and faster inference times.Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care. Consequently, biomedical image segmentation has become a prominent research area in the field of computer vision. With the advent of deep learning, many manual design-based methods have been proposed and have shown promising results in achieving state-of-the-art performance in biomedical image segmentation. However, these methods often require significant expert knowledge and have an enormous number of parameters, necessitating substantial computational resources. Thus, this paper proposes a new approach called GA-UNet, which employs genetic algorithms to automatically design a U-shape convolution neural network with good performance while minimizing the complexity of its architecture-based parameters, thereby addressing the above challenges. The proposed GA-UNet is evaluated on three datasets: lung image segmentation, cell nuclei segmentation in microscope images (DSB 2018), and liver image segmentation. Interestingly, our experimental results demonstrate that the proposed method achieves competitive performance with a smaller architecture and fewer parameters than the original U-Net model. It achieves an accuracy of 98.78% for lung image segmentation, 95.96% for cell nuclei segmentation in microscope images (DSB 2018), and 98.58% for liver image segmentation by using merely 0.24%, 0.48%, and 0.67% of the number of parameters in the original U-Net architecture for the lung image segmentation dataset, the DSB 2018 dataset, and the liver image segmentation dataset, respectively. This reduction in complexity makes our proposed approach, GA-UNet, a more viable option for deployment in resource-limited environments or real-world implementations that demand more efficient and faster inference times. |
| Audience | Academic |
| Author | Khouy, Mohammed Hajjam El Hassani, Amir Ameur, Mustapha Jabrane, Younes |
| AuthorAffiliation | 2 Nanomedicine Imagery & Therapeutics Laboratory, EA4662—Bourgogne-Franche-Comté University, University of Technologie of Belfort Montbéliard, CEDEX, 90010 Belfort, France 1 MSC Laboratory, Cadi Ayyad University, Marrakech 40000, Morocco; mohammed.khouy@ced.uca.ma (M.K.); y.jabrane@uca.ma (Y.J.); m.ameur@uca.ma (M.A.) |
| AuthorAffiliation_xml | – name: 1 MSC Laboratory, Cadi Ayyad University, Marrakech 40000, Morocco; mohammed.khouy@ced.uca.ma (M.K.); y.jabrane@uca.ma (Y.J.); m.ameur@uca.ma (M.A.) – name: 2 Nanomedicine Imagery & Therapeutics Laboratory, EA4662—Bourgogne-Franche-Comté University, University of Technologie of Belfort Montbéliard, CEDEX, 90010 Belfort, France |
| Author_xml | – sequence: 1 givenname: Mohammed surname: Khouy fullname: Khouy, Mohammed – sequence: 2 givenname: Younes orcidid: 0000-0002-5067-6784 surname: Jabrane fullname: Jabrane, Younes – sequence: 3 givenname: Mustapha surname: Ameur fullname: Ameur, Mustapha – sequence: 4 givenname: Amir orcidid: 0000-0002-8470-806X surname: Hajjam El Hassani fullname: Hajjam El Hassani, Amir |
| BookMark | eNptkkFvFSEQx4mpibX25BfYxIuJ2QrL7gInszZam1R70HcmFGb38bLAE9gm-ullfTW2TeHAZOb3HxhmXqIjHzwg9JrgM0oFfr_bO0KxII3gz9Bxg1lXt23TH92zX6DTlHa4LN41TY-P0c1XMFarubp0aoLqO0wOfFbZBl9tkvVTNSw5uOLQ1fU-W2d_g6k29TfI1RD11mbQeYlQfVSpBIrqAjys9DBPIdq8da_Q81HNCU7vzhO0-fzpx_mX-ur64vJ8uKp127W5FgKoaQwRIx2BiHY0QDXjSjHOR276YgjOO7IixdVgQzTrDGs5BmV6Rk_Qh0Pe_XLjwOhSR1Sz3EfrVPwlg7LyYcTbrZzCrSS4oxSztmR4e5chhp8LpCydTRrmWXkIS5INZ5hQ3v9F3zxCd2GJvtRXqF5Q0TEm_lOTmkFaP4ZysV6TyqHEGRU9XR9-9gRVtgFndWnyaIv_gYAcBDqGlCKMUttDz4rQzqUguU6EvDcRRfPukebfxzxF_wGR1rg4 |
| CitedBy_id | crossref_primary_10_1016_j_compmedimag_2024_102441 crossref_primary_10_1007_s11760_025_04103_w crossref_primary_10_1371_journal_pone_0310203 crossref_primary_10_1055_s_0045_1806844 crossref_primary_10_3389_froh_2025_1592428 crossref_primary_10_3390_diagnostics15182301 crossref_primary_10_1109_ACCESS_2024_3413038 crossref_primary_10_1016_j_oceaneng_2025_121943 crossref_primary_10_1038_s41598_025_08116_w crossref_primary_10_3389_fmed_2024_1416169 |
| Cites_doi | 10.7717/peerj-cs.607 10.1049/ip-vis:19952007 10.1007/978-0-387-68343-0 10.1109/TMI.2016.2553401 10.1109/NAECON.2018.8556686 10.1109/CVPR.2015.7298965 10.1016/j.media.2017.07.005 10.3390/s21010268 10.1109/TCYB.2020.2983860 10.1109/ICCV.2001.937505 10.1109/ACCESS.2020.3003638 10.1109/ACCESS.2021.3086020 10.1109/5.726791 10.1109/TMI.2021.3111679 10.1109/ICCVW.2019.00052 10.2307/1932409 10.1109/CVPR.2016.90 10.1007/s11042-019-08133-8 10.1016/j.neunet.2019.08.025 10.7551/mitpress/1090.001.0001 10.1155/2020/9756518 10.1016/j.procs.2016.05.192 10.1016/j.neunet.2023.05.025 10.1016/j.media.2019.03.004 10.1109/CIBCB48159.2020.9277638 10.1016/j.ins.2021.09.051 10.1109/3DV.2016.79 10.1007/978-3-319-46723-8_49 10.3390/su13031224 10.1007/s11265-008-0200-z 10.1111/j.1469-8137.1912.tb05611.x |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.3390/jpm13091298 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2075-4426 |
| ExternalDocumentID | PMC10533074 A779739637 10_3390_jpm13091298 |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ADBBV AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI CCPQU CITATION DIK EMOBN GX1 HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM ABUWG AZQEC COVID DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c454t-99e3d2d19f3fe194fde3c78aa788f8d6aa7988512d1978820d1c75d7480ead673 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073777100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2075-4426 |
| IngestDate | Tue Nov 04 02:06:29 EST 2025 Sun Nov 09 11:55:15 EST 2025 Fri Jul 25 10:36:29 EDT 2025 Tue Nov 11 11:12:56 EST 2025 Tue Nov 04 18:28:30 EST 2025 Tue Nov 18 21:55:56 EST 2025 Sat Nov 29 07:16:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c454t-99e3d2d19f3fe194fde3c78aa788f8d6aa7988512d1978820d1c75d7480ead673 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5067-6784 0000-0002-8470-806X |
| OpenAccessLink | https://www.proquest.com/docview/2869395779?pq-origsite=%requestingapplication% |
| PQID | 2869395779 |
| PQPubID | 2032376 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10533074 proquest_miscellaneous_2870138674 proquest_journals_2869395779 gale_infotracmisc_A779739637 gale_infotracacademiconefile_A779739637 crossref_citationtrail_10_3390_jpm13091298 crossref_primary_10_3390_jpm13091298 |
| PublicationCentury | 2000 |
| PublicationDate | 20230825 |
| PublicationDateYYYYMMDD | 2023-08-25 |
| PublicationDate_xml | – month: 8 year: 2023 text: 20230825 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Journal of personalized medicine |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Greenspan (ref_7) 2016; 35 Abedalla (ref_10) 2021; 7 ref_14 Lau (ref_23) 2020; 8 Fateh (ref_31) 2021; 581 ref_13 ref_12 ref_11 Wei (ref_18) 2021; 41 ref_32 ref_19 Parcham (ref_30) 2023; 165 ref_17 ref_39 ref_38 Ameur (ref_33) 2019; 78 Ramesh (ref_4) 1995; 142 ref_25 Duchi (ref_40) 2011; 12 ref_24 Sun (ref_37) 2020; 50 ref_22 ref_21 Nagarajan (ref_35) 2016; 85 ref_20 ref_42 Boykov (ref_5) 2001; Volume 1 Siddique (ref_16) 2021; 9 ref_41 ref_1 Liu (ref_34) 2019; 54 ref_3 Dice (ref_43) 1945; 26 Lecun (ref_8) 1998; 86 (ref_36) 2009; 54 ref_28 Litjens (ref_2) 2017; 42 ref_27 ref_26 Jaccard (ref_44) 1912; 11 ref_9 Ozsahin (ref_29) 2020; 2020 Ibtehaz (ref_15) 2020; 121 ref_6 |
| References_xml | – volume: 7 start-page: e607 year: 2021 ident: ref_10 article-title: Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures publication-title: PeerJ. Comput. Sci. doi: 10.7717/peerj-cs.607 – volume: 12 start-page: 2121 year: 2011 ident: ref_40 article-title: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization publication-title: J. Mach. Learn. Res. – volume: 142 start-page: 271 year: 1995 ident: ref_4 article-title: Thresholding based on histogram approximation publication-title: IEE Proc. Vis. Image Signal Process. doi: 10.1049/ip-vis:19952007 – ident: ref_3 doi: 10.1007/978-0-387-68343-0 – volume: 35 start-page: 1153 year: 2016 ident: ref_7 article-title: Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2553401 – ident: ref_9 doi: 10.1109/NAECON.2018.8556686 – ident: ref_26 – ident: ref_11 doi: 10.1109/CVPR.2015.7298965 – volume: 42 start-page: 60 year: 2017 ident: ref_2 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – ident: ref_25 doi: 10.3390/s21010268 – volume: 50 start-page: 3840 year: 2020 ident: ref_37 article-title: Automatically designing CNN architectures using the genetic algorithm for image classification publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2983860 – ident: ref_39 – volume: Volume 1 start-page: 105 year: 2001 ident: ref_5 article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images publication-title: Proceedings of the Eighth IEEE International Conference on Computer Vision (ICCV) doi: 10.1109/ICCV.2001.937505 – ident: ref_22 doi: 10.1109/NAECON.2018.8556686 – volume: 8 start-page: 114892 year: 2020 ident: ref_23 article-title: Automated pavement crack segmentation using u-net-based convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3003638 – volume: 9 start-page: 82031 year: 2021 ident: ref_16 article-title: U-Net and its variants for medical image segmentation: A review of theory and applications publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3086020 – volume: 86 start-page: 2278 year: 1998 ident: ref_8 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: ref_14 – volume: 41 start-page: 292 year: 2021 ident: ref_18 article-title: Genetic U-Net: Automatically designed deep networks for retinal vessel segmentation using a genetic algorithm publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3111679 – ident: ref_24 doi: 10.1109/ICCVW.2019.00052 – ident: ref_21 – volume: 26 start-page: 297 year: 1945 ident: ref_43 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – ident: ref_17 doi: 10.1109/CVPR.2016.90 – ident: ref_6 – volume: 78 start-page: 34353 year: 2019 ident: ref_33 article-title: A comparative study of nature inspired optimization algorithms on multilevel thresholding image segmentation publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-08133-8 – volume: 121 start-page: 74 year: 2020 ident: ref_15 article-title: MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.08.025 – ident: ref_12 – ident: ref_32 doi: 10.7551/mitpress/1090.001.0001 – volume: 2020 start-page: 9756518 year: 2020 ident: ref_29 article-title: Review on diagnosis of COVID-19 from chest CT images using artificial intelligence publication-title: Comput. Math. Methods Med. doi: 10.1155/2020/9756518 – volume: 85 start-page: 455 year: 2016 ident: ref_35 article-title: Hybrid genetic algorithm for medical image feature extraction and selection publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.05.192 – ident: ref_41 – volume: 165 start-page: 77 year: 2023 ident: ref_30 article-title: HybridBranchNet: A novel structure for branch hybrid convolutional neural networks architecture publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.05.025 – volume: 54 start-page: 306 year: 2019 ident: ref_34 article-title: Deep evolutionary networks with expedited genetic algorithms for medical image denoising publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.03.004 – ident: ref_42 doi: 10.1109/CIBCB48159.2020.9277638 – ident: ref_13 – volume: 581 start-page: 479 year: 2021 ident: ref_31 article-title: Multilingual handwritten numeral recognition using a robust deep network joint with transfer learning publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.09.051 – ident: ref_38 – ident: ref_27 doi: 10.1109/3DV.2016.79 – ident: ref_19 – ident: ref_28 doi: 10.1007/978-3-319-46723-8_49 – ident: ref_20 – ident: ref_1 doi: 10.3390/su13031224 – volume: 54 start-page: 231 year: 2009 ident: ref_36 article-title: Edge-based segmentation using robust evolutionary algorithm applied to medical images publication-title: J. Signal. Process. Syst. doi: 10.1007/s11265-008-0200-z – volume: 11 start-page: 37 year: 1912 ident: ref_44 article-title: The distribution of the flora in the alpine zone publication-title: New Phytol. doi: 10.1111/j.1469-8137.1912.tb05611.x |
| SSID | ssj0000852260 |
| Score | 2.3688262 |
| Snippet | Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care.... |
| SourceID | pubmedcentral proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1298 |
| SubjectTerms | Accuracy Algorithms Automation Datasets Decision making Deep learning Design Genetic algorithms Genetic research Image processing Literature reviews Liver Machine learning Machine vision Medical imaging Medical imaging equipment Medical research Mutation Neural networks Optimization Precision medicine Semantics |
| Title | Medical Image Segmentation Using Automatic Optimized U-Net Architecture Based on Genetic Algorithm |
| URI | https://www.proquest.com/docview/2869395779 https://www.proquest.com/docview/2870138674 https://pubmed.ncbi.nlm.nih.gov/PMC10533074 |
| Volume | 13 |
| WOSCitedRecordID | wos001073777100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: M7P dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2075-4426 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852260 issn: 2075-4426 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8MQ2hHjhG5ExKiNNQkKK1sRObD-hDG1iEisRMFSeosx2tqIl7daUB349d6lbmgnxwlsSn5NTzr473yfAvhaJUzqNQ6tUGYrYyVCX5yaMnDalTblIugy5bx_laKTGY517g9vch1WueGLHqO3UkI38IFapJp-S1O9m1yF1jSLvqm-hsQU7VCUh7kL38rWNBdUJ1C6Gy7Q8jqf7gx-zGpm2RiGneoLoNju-HSK5IXOOH_4vto_ggdc2WbZcHo_hjmuewL1T709_CufeT8NOauQr7Iu7qH0uUsO6YAKWLdppV9WVfULmUk9-OcvOwpFrWbbhgmCHKAwtw1lUxpqgs6sLxKe9rJ_B2fHR1_cfQt91ITQiEW2oteM2tpGueOUiLSrruJGqLPGwXCmb4oVWqKcRCD6KhzYyMrFSqCGuylTy57DdTBv3AphKpE1sqfnQVAJ_hooFj6MUJaB2pNsF8HZFgsL4kuTUGeOqwKMJ0avYoFcA-2vg2bISx9_B3hAtC9qf-C5T-jQDxIgqXRUZ0kRyZDsygL0eJO4r0x9ekbbw-3pe_KFrAK_XwzSTYtUaN10QjCT3bypFAKq3itZ4U03v_kgzuexqe0eUG41q3e6_v_4S7lPfezJux8kebLc3C_cK7pqf7WR-M4AtOVYD2Dk8GuWfB92ewLv85DT__hu4xRaL |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHYK9cEcEBhhpCAkpWuJcbD8gFC7TqrWlEhsaTyGzna3TkpY1BcGP4jdyTpqWZkK87YG3KD5OfPl8zrHPxQBbKoysVDF3jZSZG3IrXJUdade3SmcmDsKojpD71BODgTw8VMM1-LWIhSG3ygVPrBm1GWs6I9_mMlZkUxLq9eSrS7dGkXV1cYXGHBZ79sd33LJNX3Xf4fw-53zn_f7bXbe5VcDVYRRWrlI2MNz4Kg9yi1v43NhAC5lluBnMpYnxQUnUQ4gEX3HP-FpERoTSw1GPRYDfvQLrIYG9A-vDbn_4eXmqgwoM6jPePBAwCJS3fTopUEwoFKuyJfouCoCLTpkrUm7n5v82PrfgRqNPs2S-AG7Dmi3vwLV-4zFwF44aSxTrFsg52Ud7XDTRViWr3SVYMqvGdd5a9gHZZzH6aQ07cAe2YsmKkYW9QXFvGNaiRN1EnZwdY_-rk-IeHFxKD-9DpxyX9gEwGQkTmUwFns5DHHzJw4D7Mcp4ZUl7deDlYspT3SRdp7s_zlLcfBE-0hV8OLC1JJ7Mc438newFYSclDoTf0lkTSIEtolxeaYIYEAEyVuHAZosSOYduFy-glDaca5r-wZEDz5bFVJO88Uo7nhGNIAN3LEIHZAu1y3ZT1vJ2STk6qbOX-xT9jYrrw3___Slc393v99Jed7D3CDY46pZ0lM-jTehU5zP7GK7qb9Voev6kWYMMvlw2rH8DJgRwgQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHZp44Y7oGGCkISSkqIlzsf2AUGBUVNtKJRjankJmO1unJS1rCoKfxq_jnDQpzYR42wNvUXySOPGXcz77XAywrYLQShVxx0iZOgG3wlHpsXY8q3RqIj8Iqwy5z3tiOJSHh2q0Br-aXBgKq2x0YqWozUTTGnmPy0iRT0moXlaHRYx2-q-nXx3aQYo8rc12GguI7Nof33H6Nns12MGxfs55_92nt--deocBRwdhUDpKWd9w46nMzyxO5zNjfS1kmuLEMJMmwgMlkZOQCJ7irvG0CI0IpIsjEAkf73sN1pGSB7wD66PB_uhoucKDZAa5jbtICvR95fbOpjmaDIUmVrbM4GVjcDlAc8Xi9W_9z9_qNtyseTaLFz_GHVizxV3Y2K8jCe7Bce2hYoMcNSr7aE_yOgurYFUYBYvn5aSqZ8s-oFrNxz-tYQfO0JYsXnG-sDdIAwzDq6iAN0nH5yf4_uVpfh8OruQNH0CnmBT2ITAZChOaVPmuzgIcCMkDn3sR2n5lidV24WUz_Imui7HTniDnCU7KCCvJCla6sL0Uni5qkPxd7AXhKCHNhPfSaZ1ggT2iGl9JjHgQPipc0YWtliRqFN1ubmCV1BptlvzBVBeeLZvpSorSK-xkTjKCHN-RCLogWwhe9puqmbdbivFpVdXco6xwJLSb_376U9hALCd7g-HuI7jBkXLSCj8Pt6BTXsztY7iuv5Xj2cWT-ndk8OWqUf0bHsR5QQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Image+Segmentation+Using+Automatic+Optimized+U-Net+Architecture+Based+on+Genetic+Algorithm&rft.jtitle=Journal+of+personalized+medicine&rft.au=Khouy%2C+Mohammed&rft.au=Jabrane%2C+Younes&rft.au=Ameur%2C+Mustapha&rft.au=Hajjam+El+Hassani%2C+Amir&rft.date=2023-08-25&rft.pub=MDPI&rft.eissn=2075-4426&rft.volume=13&rft.issue=9&rft_id=info:doi/10.3390%2Fjpm13091298&rft.externalDocID=PMC10533074 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon |