Medical Image Segmentation Using Automatic Optimized U-Net Architecture Based on Genetic Algorithm

Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care. Consequently, biomedical image segmentation has become a prominent research area in the field of computer vision. With the advent of deep learning,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of personalized medicine Vol. 13; no. 9; p. 1298
Main Authors: Khouy, Mohammed, Jabrane, Younes, Ameur, Mustapha, Hajjam El Hassani, Amir
Format: Journal Article
Language:English
Published: Basel MDPI AG 25.08.2023
MDPI
Subjects:
ISSN:2075-4426, 2075-4426
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care. Consequently, biomedical image segmentation has become a prominent research area in the field of computer vision. With the advent of deep learning, many manual design-based methods have been proposed and have shown promising results in achieving state-of-the-art performance in biomedical image segmentation. However, these methods often require significant expert knowledge and have an enormous number of parameters, necessitating substantial computational resources. Thus, this paper proposes a new approach called GA-UNet, which employs genetic algorithms to automatically design a U-shape convolution neural network with good performance while minimizing the complexity of its architecture-based parameters, thereby addressing the above challenges. The proposed GA-UNet is evaluated on three datasets: lung image segmentation, cell nuclei segmentation in microscope images (DSB 2018), and liver image segmentation. Interestingly, our experimental results demonstrate that the proposed method achieves competitive performance with a smaller architecture and fewer parameters than the original U-Net model. It achieves an accuracy of 98.78% for lung image segmentation, 95.96% for cell nuclei segmentation in microscope images (DSB 2018), and 98.58% for liver image segmentation by using merely 0.24%, 0.48%, and 0.67% of the number of parameters in the original U-Net architecture for the lung image segmentation dataset, the DSB 2018 dataset, and the liver image segmentation dataset, respectively. This reduction in complexity makes our proposed approach, GA-UNet, a more viable option for deployment in resource-limited environments or real-world implementations that demand more efficient and faster inference times.
AbstractList Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care. Consequently, biomedical image segmentation has become a prominent research area in the field of computer vision. With the advent of deep learning, many manual design-based methods have been proposed and have shown promising results in achieving state-of-the-art performance in biomedical image segmentation. However, these methods often require significant expert knowledge and have an enormous number of parameters, necessitating substantial computational resources. Thus, this paper proposes a new approach called GA-UNet, which employs genetic algorithms to automatically design a U-shape convolution neural network with good performance while minimizing the complexity of its architecture-based parameters, thereby addressing the above challenges. The proposed GA-UNet is evaluated on three datasets: lung image segmentation, cell nuclei segmentation in microscope images (DSB 2018), and liver image segmentation. Interestingly, our experimental results demonstrate that the proposed method achieves competitive performance with a smaller architecture and fewer parameters than the original U-Net model. It achieves an accuracy of 98.78% for lung image segmentation, 95.96% for cell nuclei segmentation in microscope images (DSB 2018), and 98.58% for liver image segmentation by using merely 0.24%, 0.48%, and 0.67% of the number of parameters in the original U-Net architecture for the lung image segmentation dataset, the DSB 2018 dataset, and the liver image segmentation dataset, respectively. This reduction in complexity makes our proposed approach, GA-UNet, a more viable option for deployment in resource-limited environments or real-world implementations that demand more efficient and faster inference times.
Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care. Consequently, biomedical image segmentation has become a prominent research area in the field of computer vision. With the advent of deep learning, many manual design-based methods have been proposed and have shown promising results in achieving state-of-the-art performance in biomedical image segmentation. However, these methods often require significant expert knowledge and have an enormous number of parameters, necessitating substantial computational resources. Thus, this paper proposes a new approach called GA-UNet, which employs genetic algorithms to automatically design a U-shape convolution neural network with good performance while minimizing the complexity of its architecture-based parameters, thereby addressing the above challenges. The proposed GA-UNet is evaluated on three datasets: lung image segmentation, cell nuclei segmentation in microscope images (DSB 2018), and liver image segmentation. Interestingly, our experimental results demonstrate that the proposed method achieves competitive performance with a smaller architecture and fewer parameters than the original U-Net model. It achieves an accuracy of 98.78% for lung image segmentation, 95.96% for cell nuclei segmentation in microscope images (DSB 2018), and 98.58% for liver image segmentation by using merely 0.24%, 0.48%, and 0.67% of the number of parameters in the original U-Net architecture for the lung image segmentation dataset, the DSB 2018 dataset, and the liver image segmentation dataset, respectively. This reduction in complexity makes our proposed approach, GA-UNet, a more viable option for deployment in resource-limited environments or real-world implementations that demand more efficient and faster inference times.Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care. Consequently, biomedical image segmentation has become a prominent research area in the field of computer vision. With the advent of deep learning, many manual design-based methods have been proposed and have shown promising results in achieving state-of-the-art performance in biomedical image segmentation. However, these methods often require significant expert knowledge and have an enormous number of parameters, necessitating substantial computational resources. Thus, this paper proposes a new approach called GA-UNet, which employs genetic algorithms to automatically design a U-shape convolution neural network with good performance while minimizing the complexity of its architecture-based parameters, thereby addressing the above challenges. The proposed GA-UNet is evaluated on three datasets: lung image segmentation, cell nuclei segmentation in microscope images (DSB 2018), and liver image segmentation. Interestingly, our experimental results demonstrate that the proposed method achieves competitive performance with a smaller architecture and fewer parameters than the original U-Net model. It achieves an accuracy of 98.78% for lung image segmentation, 95.96% for cell nuclei segmentation in microscope images (DSB 2018), and 98.58% for liver image segmentation by using merely 0.24%, 0.48%, and 0.67% of the number of parameters in the original U-Net architecture for the lung image segmentation dataset, the DSB 2018 dataset, and the liver image segmentation dataset, respectively. This reduction in complexity makes our proposed approach, GA-UNet, a more viable option for deployment in resource-limited environments or real-world implementations that demand more efficient and faster inference times.
Audience Academic
Author Khouy, Mohammed
Hajjam El Hassani, Amir
Ameur, Mustapha
Jabrane, Younes
AuthorAffiliation 2 Nanomedicine Imagery & Therapeutics Laboratory, EA4662—Bourgogne-Franche-Comté University, University of Technologie of Belfort Montbéliard, CEDEX, 90010 Belfort, France
1 MSC Laboratory, Cadi Ayyad University, Marrakech 40000, Morocco; mohammed.khouy@ced.uca.ma (M.K.); y.jabrane@uca.ma (Y.J.); m.ameur@uca.ma (M.A.)
AuthorAffiliation_xml – name: 1 MSC Laboratory, Cadi Ayyad University, Marrakech 40000, Morocco; mohammed.khouy@ced.uca.ma (M.K.); y.jabrane@uca.ma (Y.J.); m.ameur@uca.ma (M.A.)
– name: 2 Nanomedicine Imagery & Therapeutics Laboratory, EA4662—Bourgogne-Franche-Comté University, University of Technologie of Belfort Montbéliard, CEDEX, 90010 Belfort, France
Author_xml – sequence: 1
  givenname: Mohammed
  surname: Khouy
  fullname: Khouy, Mohammed
– sequence: 2
  givenname: Younes
  orcidid: 0000-0002-5067-6784
  surname: Jabrane
  fullname: Jabrane, Younes
– sequence: 3
  givenname: Mustapha
  surname: Ameur
  fullname: Ameur, Mustapha
– sequence: 4
  givenname: Amir
  orcidid: 0000-0002-8470-806X
  surname: Hajjam El Hassani
  fullname: Hajjam El Hassani, Amir
BookMark eNptkkFvFSEQx4mpibX25BfYxIuJ2QrL7gInszZam1R70HcmFGb38bLAE9gm-ullfTW2TeHAZOb3HxhmXqIjHzwg9JrgM0oFfr_bO0KxII3gz9Bxg1lXt23TH92zX6DTlHa4LN41TY-P0c1XMFarubp0aoLqO0wOfFbZBl9tkvVTNSw5uOLQ1fU-W2d_g6k29TfI1RD11mbQeYlQfVSpBIrqAjys9DBPIdq8da_Q81HNCU7vzhO0-fzpx_mX-ur64vJ8uKp127W5FgKoaQwRIx2BiHY0QDXjSjHOR276YgjOO7IixdVgQzTrDGs5BmV6Rk_Qh0Pe_XLjwOhSR1Sz3EfrVPwlg7LyYcTbrZzCrSS4oxSztmR4e5chhp8LpCydTRrmWXkIS5INZ5hQ3v9F3zxCd2GJvtRXqF5Q0TEm_lOTmkFaP4ZysV6TyqHEGRU9XR9-9gRVtgFndWnyaIv_gYAcBDqGlCKMUttDz4rQzqUguU6EvDcRRfPukebfxzxF_wGR1rg4
CitedBy_id crossref_primary_10_1016_j_compmedimag_2024_102441
crossref_primary_10_1007_s11760_025_04103_w
crossref_primary_10_1371_journal_pone_0310203
crossref_primary_10_1055_s_0045_1806844
crossref_primary_10_3389_froh_2025_1592428
crossref_primary_10_3390_diagnostics15182301
crossref_primary_10_1109_ACCESS_2024_3413038
crossref_primary_10_1016_j_oceaneng_2025_121943
crossref_primary_10_1038_s41598_025_08116_w
crossref_primary_10_3389_fmed_2024_1416169
Cites_doi 10.7717/peerj-cs.607
10.1049/ip-vis:19952007
10.1007/978-0-387-68343-0
10.1109/TMI.2016.2553401
10.1109/NAECON.2018.8556686
10.1109/CVPR.2015.7298965
10.1016/j.media.2017.07.005
10.3390/s21010268
10.1109/TCYB.2020.2983860
10.1109/ICCV.2001.937505
10.1109/ACCESS.2020.3003638
10.1109/ACCESS.2021.3086020
10.1109/5.726791
10.1109/TMI.2021.3111679
10.1109/ICCVW.2019.00052
10.2307/1932409
10.1109/CVPR.2016.90
10.1007/s11042-019-08133-8
10.1016/j.neunet.2019.08.025
10.7551/mitpress/1090.001.0001
10.1155/2020/9756518
10.1016/j.procs.2016.05.192
10.1016/j.neunet.2023.05.025
10.1016/j.media.2019.03.004
10.1109/CIBCB48159.2020.9277638
10.1016/j.ins.2021.09.051
10.1109/3DV.2016.79
10.1007/978-3-319-46723-8_49
10.3390/su13031224
10.1007/s11265-008-0200-z
10.1111/j.1469-8137.1912.tb05611.x
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/jpm13091298
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4426
ExternalDocumentID PMC10533074
A779739637
10_3390_jpm13091298
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ADBBV
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EMOBN
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c454t-99e3d2d19f3fe194fde3c78aa788f8d6aa7988512d1978820d1c75d7480ead673
IEDL.DBID M7P
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001073777100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-4426
IngestDate Tue Nov 04 02:06:29 EST 2025
Sun Nov 09 11:55:15 EST 2025
Fri Jul 25 10:36:29 EDT 2025
Tue Nov 11 11:12:56 EST 2025
Tue Nov 04 18:28:30 EST 2025
Tue Nov 18 21:55:56 EST 2025
Sat Nov 29 07:16:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-99e3d2d19f3fe194fde3c78aa788f8d6aa7988512d1978820d1c75d7480ead673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5067-6784
0000-0002-8470-806X
OpenAccessLink https://www.proquest.com/docview/2869395779?pq-origsite=%requestingapplication%
PQID 2869395779
PQPubID 2032376
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10533074
proquest_miscellaneous_2870138674
proquest_journals_2869395779
gale_infotracmisc_A779739637
gale_infotracacademiconefile_A779739637
crossref_citationtrail_10_3390_jpm13091298
crossref_primary_10_3390_jpm13091298
PublicationCentury 2000
PublicationDate 20230825
PublicationDateYYYYMMDD 2023-08-25
PublicationDate_xml – month: 8
  year: 2023
  text: 20230825
  day: 25
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of personalized medicine
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Greenspan (ref_7) 2016; 35
Abedalla (ref_10) 2021; 7
ref_14
Lau (ref_23) 2020; 8
Fateh (ref_31) 2021; 581
ref_13
ref_12
ref_11
Wei (ref_18) 2021; 41
ref_32
ref_19
Parcham (ref_30) 2023; 165
ref_17
ref_39
ref_38
Ameur (ref_33) 2019; 78
Ramesh (ref_4) 1995; 142
ref_25
Duchi (ref_40) 2011; 12
ref_24
Sun (ref_37) 2020; 50
ref_22
ref_21
Nagarajan (ref_35) 2016; 85
ref_20
ref_42
Boykov (ref_5) 2001; Volume 1
Siddique (ref_16) 2021; 9
ref_41
ref_1
Liu (ref_34) 2019; 54
ref_3
Dice (ref_43) 1945; 26
Lecun (ref_8) 1998; 86
(ref_36) 2009; 54
ref_28
Litjens (ref_2) 2017; 42
ref_27
ref_26
Jaccard (ref_44) 1912; 11
ref_9
Ozsahin (ref_29) 2020; 2020
Ibtehaz (ref_15) 2020; 121
ref_6
References_xml – volume: 7
  start-page: e607
  year: 2021
  ident: ref_10
  article-title: Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures
  publication-title: PeerJ. Comput. Sci.
  doi: 10.7717/peerj-cs.607
– volume: 12
  start-page: 2121
  year: 2011
  ident: ref_40
  article-title: Adaptive Subgradient Methods for Online Learning and Stochastic Optimization
  publication-title: J. Mach. Learn. Res.
– volume: 142
  start-page: 271
  year: 1995
  ident: ref_4
  article-title: Thresholding based on histogram approximation
  publication-title: IEE Proc. Vis. Image Signal Process.
  doi: 10.1049/ip-vis:19952007
– ident: ref_3
  doi: 10.1007/978-0-387-68343-0
– volume: 35
  start-page: 1153
  year: 2016
  ident: ref_7
  article-title: Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2553401
– ident: ref_9
  doi: 10.1109/NAECON.2018.8556686
– ident: ref_26
– ident: ref_11
  doi: 10.1109/CVPR.2015.7298965
– volume: 42
  start-page: 60
  year: 2017
  ident: ref_2
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: ref_25
  doi: 10.3390/s21010268
– volume: 50
  start-page: 3840
  year: 2020
  ident: ref_37
  article-title: Automatically designing CNN architectures using the genetic algorithm for image classification
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2983860
– ident: ref_39
– volume: Volume 1
  start-page: 105
  year: 2001
  ident: ref_5
  article-title: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images
  publication-title: Proceedings of the Eighth IEEE International Conference on Computer Vision (ICCV)
  doi: 10.1109/ICCV.2001.937505
– ident: ref_22
  doi: 10.1109/NAECON.2018.8556686
– volume: 8
  start-page: 114892
  year: 2020
  ident: ref_23
  article-title: Automated pavement crack segmentation using u-net-based convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3003638
– volume: 9
  start-page: 82031
  year: 2021
  ident: ref_16
  article-title: U-Net and its variants for medical image segmentation: A review of theory and applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3086020
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_8
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: ref_14
– volume: 41
  start-page: 292
  year: 2021
  ident: ref_18
  article-title: Genetic U-Net: Automatically designed deep networks for retinal vessel segmentation using a genetic algorithm
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3111679
– ident: ref_24
  doi: 10.1109/ICCVW.2019.00052
– ident: ref_21
– volume: 26
  start-page: 297
  year: 1945
  ident: ref_43
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– ident: ref_17
  doi: 10.1109/CVPR.2016.90
– ident: ref_6
– volume: 78
  start-page: 34353
  year: 2019
  ident: ref_33
  article-title: A comparative study of nature inspired optimization algorithms on multilevel thresholding image segmentation
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-08133-8
– volume: 121
  start-page: 74
  year: 2020
  ident: ref_15
  article-title: MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.08.025
– ident: ref_12
– ident: ref_32
  doi: 10.7551/mitpress/1090.001.0001
– volume: 2020
  start-page: 9756518
  year: 2020
  ident: ref_29
  article-title: Review on diagnosis of COVID-19 from chest CT images using artificial intelligence
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2020/9756518
– volume: 85
  start-page: 455
  year: 2016
  ident: ref_35
  article-title: Hybrid genetic algorithm for medical image feature extraction and selection
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.05.192
– ident: ref_41
– volume: 165
  start-page: 77
  year: 2023
  ident: ref_30
  article-title: HybridBranchNet: A novel structure for branch hybrid convolutional neural networks architecture
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.05.025
– volume: 54
  start-page: 306
  year: 2019
  ident: ref_34
  article-title: Deep evolutionary networks with expedited genetic algorithms for medical image denoising
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.03.004
– ident: ref_42
  doi: 10.1109/CIBCB48159.2020.9277638
– ident: ref_13
– volume: 581
  start-page: 479
  year: 2021
  ident: ref_31
  article-title: Multilingual handwritten numeral recognition using a robust deep network joint with transfer learning
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.09.051
– ident: ref_38
– ident: ref_27
  doi: 10.1109/3DV.2016.79
– ident: ref_19
– ident: ref_28
  doi: 10.1007/978-3-319-46723-8_49
– ident: ref_20
– ident: ref_1
  doi: 10.3390/su13031224
– volume: 54
  start-page: 231
  year: 2009
  ident: ref_36
  article-title: Edge-based segmentation using robust evolutionary algorithm applied to medical images
  publication-title: J. Signal. Process. Syst.
  doi: 10.1007/s11265-008-0200-z
– volume: 11
  start-page: 37
  year: 1912
  ident: ref_44
  article-title: The distribution of the flora in the alpine zone
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1912.tb05611.x
SSID ssj0000852260
Score 2.3688262
Snippet Image segmentation is a crucial aspect of clinical decision making in medicine, and as such, it has greatly enhanced the sustainability of medical care....
SourceID pubmedcentral
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1298
SubjectTerms Accuracy
Algorithms
Automation
Datasets
Decision making
Deep learning
Design
Genetic algorithms
Genetic research
Image processing
Literature reviews
Liver
Machine learning
Machine vision
Medical imaging
Medical imaging equipment
Medical research
Mutation
Neural networks
Optimization
Precision medicine
Semantics
Title Medical Image Segmentation Using Automatic Optimized U-Net Architecture Based on Genetic Algorithm
URI https://www.proquest.com/docview/2869395779
https://www.proquest.com/docview/2870138674
https://pubmed.ncbi.nlm.nih.gov/PMC10533074
Volume 13
WOSCitedRecordID wos001073777100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9Mw8MQ2hHjhG5ExKiNNQkKK1sRObD-hDG1iEisRMFSeosx2tqIl7daUB349d6lbmgnxwlsSn5NTzr473yfAvhaJUzqNQ6tUGYrYyVCX5yaMnDalTblIugy5bx_laKTGY517g9vch1WueGLHqO3UkI38IFapJp-S1O9m1yF1jSLvqm-hsQU7VCUh7kL38rWNBdUJ1C6Gy7Q8jqf7gx-zGpm2RiGneoLoNju-HSK5IXOOH_4vto_ggdc2WbZcHo_hjmuewL1T709_CufeT8NOauQr7Iu7qH0uUsO6YAKWLdppV9WVfULmUk9-OcvOwpFrWbbhgmCHKAwtw1lUxpqgs6sLxKe9rJ_B2fHR1_cfQt91ITQiEW2oteM2tpGueOUiLSrruJGqLPGwXCmb4oVWqKcRCD6KhzYyMrFSqCGuylTy57DdTBv3AphKpE1sqfnQVAJ_hooFj6MUJaB2pNsF8HZFgsL4kuTUGeOqwKMJ0avYoFcA-2vg2bISx9_B3hAtC9qf-C5T-jQDxIgqXRUZ0kRyZDsygL0eJO4r0x9ekbbw-3pe_KFrAK_XwzSTYtUaN10QjCT3bypFAKq3itZ4U03v_kgzuexqe0eUG41q3e6_v_4S7lPfezJux8kebLc3C_cK7pqf7WR-M4AtOVYD2Dk8GuWfB92ewLv85DT__hu4xRaL
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHYK9cEcEBhhpCAkpWuJcbD8gFC7TqrWlEhsaTyGzna3TkpY1BcGP4jdyTpqWZkK87YG3KD5OfPl8zrHPxQBbKoysVDF3jZSZG3IrXJUdade3SmcmDsKojpD71BODgTw8VMM1-LWIhSG3ygVPrBm1GWs6I9_mMlZkUxLq9eSrS7dGkXV1cYXGHBZ79sd33LJNX3Xf4fw-53zn_f7bXbe5VcDVYRRWrlI2MNz4Kg9yi1v43NhAC5lluBnMpYnxQUnUQ4gEX3HP-FpERoTSw1GPRYDfvQLrIYG9A-vDbn_4eXmqgwoM6jPePBAwCJS3fTopUEwoFKuyJfouCoCLTpkrUm7n5v82PrfgRqNPs2S-AG7Dmi3vwLV-4zFwF44aSxTrFsg52Ud7XDTRViWr3SVYMqvGdd5a9gHZZzH6aQ07cAe2YsmKkYW9QXFvGNaiRN1EnZwdY_-rk-IeHFxKD-9DpxyX9gEwGQkTmUwFns5DHHzJw4D7Mcp4ZUl7deDlYspT3SRdp7s_zlLcfBE-0hV8OLC1JJ7Mc438newFYSclDoTf0lkTSIEtolxeaYIYEAEyVuHAZosSOYduFy-glDaca5r-wZEDz5bFVJO88Uo7nhGNIAN3LEIHZAu1y3ZT1vJ2STk6qbOX-xT9jYrrw3___Slc393v99Jed7D3CDY46pZ0lM-jTehU5zP7GK7qb9Voev6kWYMMvlw2rH8DJgRwgQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHZp44Y7oGGCkISSkqIlzsf2AUGBUVNtKJRjankJmO1unJS1rCoKfxq_jnDQpzYR42wNvUXySOPGXcz77XAywrYLQShVxx0iZOgG3wlHpsXY8q3RqIj8Iqwy5z3tiOJSHh2q0Br-aXBgKq2x0YqWozUTTGnmPy0iRT0moXlaHRYx2-q-nXx3aQYo8rc12GguI7Nof33H6Nns12MGxfs55_92nt--deocBRwdhUDpKWd9w46nMzyxO5zNjfS1kmuLEMJMmwgMlkZOQCJ7irvG0CI0IpIsjEAkf73sN1pGSB7wD66PB_uhoucKDZAa5jbtICvR95fbOpjmaDIUmVrbM4GVjcDlAc8Xi9W_9z9_qNtyseTaLFz_GHVizxV3Y2K8jCe7Bce2hYoMcNSr7aE_yOgurYFUYBYvn5aSqZ8s-oFrNxz-tYQfO0JYsXnG-sDdIAwzDq6iAN0nH5yf4_uVpfh8OruQNH0CnmBT2ITAZChOaVPmuzgIcCMkDn3sR2n5lidV24WUz_Imui7HTniDnCU7KCCvJCla6sL0Uni5qkPxd7AXhKCHNhPfSaZ1ggT2iGl9JjHgQPipc0YWtliRqFN1ubmCV1BptlvzBVBeeLZvpSorSK-xkTjKCHN-RCLogWwhe9puqmbdbivFpVdXco6xwJLSb_376U9hALCd7g-HuI7jBkXLSCj8Pt6BTXsztY7iuv5Xj2cWT-ndk8OWqUf0bHsR5QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+Image+Segmentation+Using+Automatic+Optimized+U-Net+Architecture+Based+on+Genetic+Algorithm&rft.jtitle=Journal+of+personalized+medicine&rft.au=Khouy%2C+Mohammed&rft.au=Jabrane%2C+Younes&rft.au=Ameur%2C+Mustapha&rft.au=Hajjam+El+Hassani%2C+Amir&rft.date=2023-08-25&rft.pub=MDPI&rft.eissn=2075-4426&rft.volume=13&rft.issue=9&rft_id=info:doi/10.3390%2Fjpm13091298&rft.externalDocID=PMC10533074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon