Cross entropy-based importance sampling using Gaussian densities revisited
•We compare two distributions as sampling densities in the cross entropy method.•A modified expectation-maximization algorithm is proposed for fitting the parameters.•The DBSCAN algorithm is used to estimate the number of Gaussians in the mixture.•We compare the performance of the two densities in t...
Saved in:
| Published in: | Structural safety Vol. 76; pp. 15 - 27 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier Ltd
01.01.2019
Elsevier BV |
| Subjects: | |
| ISSN: | 0167-4730, 1879-3355 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •We compare two distributions as sampling densities in the cross entropy method.•A modified expectation-maximization algorithm is proposed for fitting the parameters.•The DBSCAN algorithm is used to estimate the number of Gaussians in the mixture.•We compare the performance of the two densities in the cross entropy method.
The computation of the probability of a rare (failure) event is a common task in structural reliability analysis. In most applications, the numerical model defining the rare event is nonlinear and the resulting failure domain often multimodal. One strategy for estimating the probability of failure in this context is the importance sampling method. The efficiency of importance sampling depends on the choice of the importance sampling density. A near-optimal sampling density can be found through application of the cross entropy method. The cross entropy method is an adaptive sampling approach that determines the sampling density through minimizing the Kullback-Leibler divergence between the theoretically optimal importance sampling density and a chosen parametric family of distributions. In this paper, we investigate the suitability of the multivariate normal distribution and the Gaussian mixture model as importance sampling densities within the cross entropy method. Moreover, we compare the performance of the cross entropy method to sequential importance sampling, another recently proposed adaptive sampling approach, which uses the Gaussian mixture distribution as a proposal distribution within a Markov Chain Monte Carlo algorithm. For the parameter updating of the Gaussian mixture within the cross entropy method, we propose a modified version of the expectation-maximization algorithm that works with weighted samples. To estimate the number of distributions in the mixture, the density-based spatial clustering of applications with noise (DBSCAN) algorithm is adapted to the use of weighted samples. We compare the performance of the different methods in several examples, including component reliability problems, system reliability problems and reliability in varying dimensions. The results show that the cross entropy method using a single Gaussian outperforms the cross entropy method using Gaussian mixture and that both distribution types are not suitable for high dimensional reliability problems. |
|---|---|
| AbstractList | The computation of the probability of a rare (failure) event is a common task in structural reliability analysis. In most applications, the numerical model defining the rare event is nonlinear and the resulting failure domain often multimodal. One strategy for estimating the probability of failure in this context is the importance sampling method. The efficiency of importance sampling depends on the choice of the importance sampling density. A near-optimal sampling density can be found through application of the cross entropy method. The cross entropy method is an adaptive sampling approach that determines the sampling density through minimizing the Kullback-Leibler divergence between the theoretically optimal importance sampling density and a chosen parametric family of distributions. In this paper, we investigate the suitability of the multivariate normal distribution and the Gaussian mixture model as importance sampling densities within the cross entropy method. Moreover, we compare the performance of the cross entropy method to sequential importance sampling, another recently proposed adaptive sampling approach, which uses the Gaussian mixture distribution as a proposal distribution within a Markov Chain Monte Carlo algorithm. For the parameter updating of the Gaussian mixture within the cross entropy method, we propose a modified version of the expectation-maximization algorithm that works with weighted samples. To estimate the number of distributions in the mixture, the density-based spatial clustering of applications with noise (DBSCAN) algorithm is adapted to the use of weighted samples. We compare the performance of the different methods in several examples, including component reliability problems, system reliability problems and reliability in varying dimensions. The results show that the cross entropy method using a single Gaussian outperforms the cross entropy method using Gaussian mixture and that both distribution types are not suitable for high dimensional reliability problems. •We compare two distributions as sampling densities in the cross entropy method.•A modified expectation-maximization algorithm is proposed for fitting the parameters.•The DBSCAN algorithm is used to estimate the number of Gaussians in the mixture.•We compare the performance of the two densities in the cross entropy method. The computation of the probability of a rare (failure) event is a common task in structural reliability analysis. In most applications, the numerical model defining the rare event is nonlinear and the resulting failure domain often multimodal. One strategy for estimating the probability of failure in this context is the importance sampling method. The efficiency of importance sampling depends on the choice of the importance sampling density. A near-optimal sampling density can be found through application of the cross entropy method. The cross entropy method is an adaptive sampling approach that determines the sampling density through minimizing the Kullback-Leibler divergence between the theoretically optimal importance sampling density and a chosen parametric family of distributions. In this paper, we investigate the suitability of the multivariate normal distribution and the Gaussian mixture model as importance sampling densities within the cross entropy method. Moreover, we compare the performance of the cross entropy method to sequential importance sampling, another recently proposed adaptive sampling approach, which uses the Gaussian mixture distribution as a proposal distribution within a Markov Chain Monte Carlo algorithm. For the parameter updating of the Gaussian mixture within the cross entropy method, we propose a modified version of the expectation-maximization algorithm that works with weighted samples. To estimate the number of distributions in the mixture, the density-based spatial clustering of applications with noise (DBSCAN) algorithm is adapted to the use of weighted samples. We compare the performance of the different methods in several examples, including component reliability problems, system reliability problems and reliability in varying dimensions. The results show that the cross entropy method using a single Gaussian outperforms the cross entropy method using Gaussian mixture and that both distribution types are not suitable for high dimensional reliability problems. |
| Author | Straub, Daniel Geyer, Sebastian Papaioannou, Iason |
| Author_xml | – sequence: 1 givenname: Sebastian orcidid: 0000-0002-7005-865X surname: Geyer fullname: Geyer, Sebastian email: s.geyer@tum.de – sequence: 2 givenname: Iason surname: Papaioannou fullname: Papaioannou, Iason – sequence: 3 givenname: Daniel surname: Straub fullname: Straub, Daniel |
| BookMark | eNqFkDFPwzAQhS1UJFrgL6BIzAl2nNiJxACqoIAqscBsnZ0LctUmwXYq9d_jqLCwdLm74b13et-CzLq-Q0JuGM0YZeJuk_ngRg8tZjllVUZlRik7I3NWyTrlvCxnZB6FMi0kpxdk4f2GUlpWeTUnb0vXe59gF1w_HFINHpvE7obeBegMJh52w9Z2X8nop7mC0XsLXdJg522w6BOHextPbK7IeQtbj9e_-5J8Pj99LF_S9fvqdfm4Tk1RFiGVFCXTotEGscaSArSSlRxB61bURphSMMg1MKFzWXFRaK5zVmpsapDAgV-S22Pu4PrvEX1Qm350XXypoo6LvKa8iKr7o8pMBR22ytgAwfaxKditYlRN9NRG_dFTEz1FpYr0ol38sw_O7sAdThsfjkaMCPYWnfLGYkTZWIcmqKa3pyJ-AL8OkpI |
| CitedBy_id | crossref_primary_10_1007_s00158_024_03865_0 crossref_primary_10_1061__ASCE_EM_1943_7889_0002015 crossref_primary_10_1016_j_strusafe_2023_102325 crossref_primary_10_1016_j_seta_2021_101792 crossref_primary_10_1016_j_ress_2023_109729 crossref_primary_10_1016_j_probengmech_2022_103291 crossref_primary_10_1016_j_jcp_2022_111746 crossref_primary_10_1016_j_ress_2024_110609 crossref_primary_10_1007_s10458_023_09606_9 crossref_primary_10_1038_s41598_024_82816_7 crossref_primary_10_1214_24_AAP2136 crossref_primary_10_1016_j_probengmech_2025_103819 crossref_primary_10_1002_eqe_4362 crossref_primary_10_1088_1748_9326_ada397 crossref_primary_10_1016_j_engappai_2025_110506 crossref_primary_10_1016_j_probengmech_2024_103615 crossref_primary_10_1007_s00158_022_03229_6 crossref_primary_10_1016_j_strusafe_2021_102174 crossref_primary_10_1016_j_ymssp_2024_112182 crossref_primary_10_1016_j_ress_2024_110373 crossref_primary_10_1016_j_advengsoft_2024_103693 crossref_primary_10_1061_JBENF2_BEENG_7422 crossref_primary_10_1016_j_strusafe_2025_102574 crossref_primary_10_1016_j_probengmech_2023_103485 crossref_primary_10_1016_j_ress_2025_111322 crossref_primary_10_1016_j_strusafe_2021_102090 crossref_primary_10_1016_j_eswa_2023_119687 crossref_primary_10_1007_s11222_023_10270_y crossref_primary_10_1016_j_ress_2022_108946 crossref_primary_10_1017_dce_2023_13 crossref_primary_10_1016_j_cma_2020_113051 crossref_primary_10_1016_j_ress_2021_107991 crossref_primary_10_1049_rpg2_12180 crossref_primary_10_1109_LSP_2021_3139572 crossref_primary_10_1155_2023_7353489 crossref_primary_10_1016_j_ress_2019_106526 crossref_primary_10_1016_j_ress_2025_111602 crossref_primary_10_1007_s00366_023_01790_2 crossref_primary_10_1016_j_ijepes_2025_110535 crossref_primary_10_1016_j_ress_2023_109097 crossref_primary_10_1016_j_cma_2021_113826 crossref_primary_10_1016_j_ress_2019_106564 crossref_primary_10_1049_gtd2_12116 crossref_primary_10_1016_j_cma_2024_117006 crossref_primary_10_1016_j_strusafe_2023_102344 crossref_primary_10_1016_j_coastaleng_2024_104618 crossref_primary_10_1016_j_strusafe_2024_102545 crossref_primary_10_1016_j_engstruct_2025_121258 crossref_primary_10_1016_j_strusafe_2025_102621 crossref_primary_10_1016_j_strusafe_2019_101877 crossref_primary_10_1109_TASE_2025_3548325 crossref_primary_10_1016_j_fss_2024_109250 crossref_primary_10_1016_j_ins_2022_11_023 crossref_primary_10_1016_j_ress_2025_111272 crossref_primary_10_1016_j_engstruct_2019_109912 crossref_primary_10_1016_j_ymssp_2023_110424 crossref_primary_10_1016_j_ress_2020_107124 crossref_primary_10_1016_j_apm_2019_06_037 crossref_primary_10_1002_nag_3337 crossref_primary_10_1016_j_aap_2023_107391 crossref_primary_10_1016_j_engstruct_2021_113157 crossref_primary_10_3390_mca27060099 crossref_primary_10_1016_j_ress_2024_110103 crossref_primary_10_1016_j_probengmech_2023_103479 crossref_primary_10_1016_j_probengmech_2025_103759 crossref_primary_10_1016_j_ress_2025_110947 crossref_primary_10_1007_s00158_019_02290_y crossref_primary_10_1016_j_strusafe_2023_102398 crossref_primary_10_1080_15732479_2022_2119582 crossref_primary_10_1007_s10479_023_05174_z crossref_primary_10_1016_j_strusafe_2022_102259 crossref_primary_10_1016_j_ress_2024_110432 crossref_primary_10_3390_sym14061219 crossref_primary_10_1016_j_cma_2025_118066 crossref_primary_10_1016_j_aap_2025_108044 crossref_primary_10_1016_j_coastaleng_2023_104287 crossref_primary_10_1137_19M1289601 crossref_primary_10_1016_j_strusafe_2023_102393 crossref_primary_10_1016_j_compstruc_2022_106860 crossref_primary_10_1016_j_ress_2021_108306 crossref_primary_10_1016_j_ymssp_2024_111300 crossref_primary_10_1016_j_strusafe_2021_102117 crossref_primary_10_1016_j_strusafe_2022_102216 crossref_primary_10_1016_j_ress_2022_109014 crossref_primary_10_1016_j_strusafe_2024_102539 |
| Cites_doi | 10.1111/j.2517-6161.1977.tb01600.x 10.1016/S0167-4730(97)00026-X 10.1016/S0167-4730(99)00014-4 10.1007/s10479-005-5724-z 10.1016/S0167-4730(02)00009-7 10.1061/(ASCE)0733-9399(1994)120:11(2405) 10.1016/S0266-8920(01)00019-4 10.1016/j.strusafe.2013.01.006 10.1016/0167-4730(93)90056-7 10.1016/j.probengmech.2004.05.001 10.1016/j.strusafe.2016.06.002 10.1016/0167-4730(87)90004-X 10.1061/(ASCE)0733-9399(1988)114:12(2195) 10.1016/j.strusafe.2016.12.006 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV 2019 |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV 2019 |
| DBID | AAYXX CITATION 7QF 7QQ 7SC 7SE 7SP 7SR 7T2 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.strusafe.2018.07.001 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Health and Safety Science Abstracts (Full archive) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Health & Safety Science Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3355 |
| EndPage | 27 |
| ExternalDocumentID | 10_1016_j_strusafe_2018_07_001 S0167473017303429 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QF 7QQ 7SC 7SE 7SP 7SR 7T2 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c454t-70e71b6dbcee9e50aaf7153eabbf69c6c561a2ba16b278364b3b215bed9a7a3a3 |
| ISICitedReferencesCount | 102 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451488200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-4730 |
| IngestDate | Wed Aug 13 08:46:23 EDT 2025 Sat Nov 29 02:11:16 EST 2025 Tue Nov 18 22:14:55 EST 2025 Fri Feb 23 02:33:35 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sequential importance sampling Simulation Cross entropy method Expectation maximization Reliability analysis Gaussian mixture Importance sampling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c454t-70e71b6dbcee9e50aaf7153eabbf69c6c561a2ba16b278364b3b215bed9a7a3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7005-865X |
| OpenAccessLink | http://mediatum.ub.tum.de/node?id=1456133 |
| PQID | 2153629034 |
| PQPubID | 2045395 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2153629034 crossref_citationtrail_10_1016_j_strusafe_2018_07_001 crossref_primary_10_1016_j_strusafe_2018_07_001 elsevier_sciencedirect_doi_10_1016_j_strusafe_2018_07_001 |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Structural safety |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Fujita, Rackwitz (b0080) 1988; 5 Waarts (b0120) 2000 Der Kiureghian, Dakessian (b0115) 1998; 20 Hohenbichler, Rackwitz (b0045) 1988; 114 Baez JC, Fritz T. A bayesian characterization of relative entropy. CoRR abs/1402.3067. MacQueen (b0095) 1967 Rubinstein, Kroese (b0020) 2017 Papaioannou, Papadimitriou, Straub (b0030) 2016; 62 Schuëller, Stix (b0135) 1987; 4 Engelund, Rackwitz (b0125) 1993; 12 Yang, Teng, Frangopol (b0060) 2017; 66 Lemaire, Chateauneuf, Mitteau (b0005) 2009 Biondini (b0065) 2015; vol. 33 Kroese, Rubinstein, Glynn (b0070) 2013; vol. 31 Au, Beck (b0025) 2001; 16 Ester, Kriegel, Sander, Xu (b0110) 1996 Dempster, Laird, Rubin (b0085) 1977; 39 Gebru ID, Alameda-Pineda X, Forbes F, Horaud R. EM algorithms for weighted-data clustering with application to audio-visual scene analysis. CoRR abs/1509.01509. Katsuki, Frangopol (b0130) 1994; 120 Rackwitz (b0010) 2001; 23 de Boer, Kroese, Mannor, Rubinstein (b0055) 2005; 134 Chen, Gupta (b0090) 2010 Au, Beck (b0040) 1999; 21 Koutsourelakis, Pradlwarter, Schuëller (b0050) 2004; 19 Der Kiureghian (b0015) 2005 Arthur, Vassilvitskii (b0100) 2006 Kurtz, Song (b0035) 2013; 42 Ester (10.1016/j.strusafe.2018.07.001_b0110) 1996 Arthur (10.1016/j.strusafe.2018.07.001_b0100) 2006 Kurtz (10.1016/j.strusafe.2018.07.001_b0035) 2013; 42 Rackwitz (10.1016/j.strusafe.2018.07.001_b0010) 2001; 23 Koutsourelakis (10.1016/j.strusafe.2018.07.001_b0050) 2004; 19 Papaioannou (10.1016/j.strusafe.2018.07.001_b0030) 2016; 62 Yang (10.1016/j.strusafe.2018.07.001_b0060) 2017; 66 Rubinstein (10.1016/j.strusafe.2018.07.001_b0020) 2017 10.1016/j.strusafe.2018.07.001_b0075 Hohenbichler (10.1016/j.strusafe.2018.07.001_b0045) 1988; 114 Fujita (10.1016/j.strusafe.2018.07.001_b0080) 1988; 5 Der Kiureghian (10.1016/j.strusafe.2018.07.001_b0115) 1998; 20 Der Kiureghian (10.1016/j.strusafe.2018.07.001_b0015) 2005 Lemaire (10.1016/j.strusafe.2018.07.001_b0005) 2009 Dempster (10.1016/j.strusafe.2018.07.001_b0085) 1977; 39 Kroese (10.1016/j.strusafe.2018.07.001_b0070) 2013; vol. 31 Au (10.1016/j.strusafe.2018.07.001_b0040) 1999; 21 10.1016/j.strusafe.2018.07.001_b0105 Engelund (10.1016/j.strusafe.2018.07.001_b0125) 1993; 12 MacQueen (10.1016/j.strusafe.2018.07.001_b0095) 1967 Au (10.1016/j.strusafe.2018.07.001_b0025) 2001; 16 Schuëller (10.1016/j.strusafe.2018.07.001_b0135) 1987; 4 de Boer (10.1016/j.strusafe.2018.07.001_b0055) 2005; 134 Biondini (10.1016/j.strusafe.2018.07.001_b0065) 2015; vol. 33 Waarts (10.1016/j.strusafe.2018.07.001_b0120) 2000 Katsuki (10.1016/j.strusafe.2018.07.001_b0130) 1994; 120 Chen (10.1016/j.strusafe.2018.07.001_b0090) 2010 |
| References_xml | – volume: 66 start-page: 38 year: 2017 end-page: 50 ident: b0060 article-title: Cross-entropy-based adaptive importance sampling for time-dependent reliability analysis of deteriorating structures publication-title: Struct Saf – start-page: 226 year: 1996 end-page: 231 ident: b0110 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of the second international conference on knowledge discovery and data mining – volume: 23 start-page: 365 year: 2001 end-page: 395 ident: b0010 article-title: Reliability analysis – a review and some perspectives publication-title: Struct Saf – volume: 16 start-page: 263 year: 2001 end-page: 277 ident: b0025 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probab Eng Mech – year: 2009 ident: b0005 article-title: Structural reliability – volume: 21 start-page: 135 year: 1999 end-page: 158 ident: b0040 article-title: A new adaptive importance sampling scheme for reliability calculations publication-title: Struct Saf – volume: 114 start-page: 2195 year: 1988 end-page: 2199 ident: b0045 article-title: Improvement of second-order reliability estimates by importance sampling publication-title: J Eng Mech – volume: 5 start-page: 31 year: 1988 end-page: 37 ident: b0080 article-title: Updating first- and second-order reliability estimates by importance sampling publication-title: Struct Eng/Earthq Eng – year: 2000 ident: b0120 article-title: Structural reliability using finite element analysis; an appraisal of DARS: directional adaptive response surface sampling – reference: Baez JC, Fritz T. A bayesian characterization of relative entropy. CoRR abs/1402.3067. – volume: vol. 33 start-page: 29 year: 2015 end-page: 68 ident: b0065 article-title: An introduction to rare event simulation and importance sampling publication-title: Big data analytics – volume: 20 start-page: 37 year: 1998 end-page: 49 ident: b0115 article-title: Multiple design points in first and second-order reliability publication-title: Struct Saf – volume: vol. 31 start-page: 19 year: 2013 end-page: 34 ident: b0070 article-title: Chapter 2 – The cross-entropy method for estimation publication-title: Handbook of statistics: machine learning: theory and applications – year: 2006 ident: b0100 article-title: k-means++: The advantages of careful seeding, Technical Report 2006–13 – volume: 12 start-page: 255 year: 1993 end-page: 276 ident: b0125 article-title: A benchmark study on importance sampling techniques in structural reliability publication-title: Struct Saf – volume: 134 start-page: 19 year: 2005 end-page: 67 ident: b0055 article-title: A tutorial on the cross-entropy method publication-title: Ann Oper Res – year: 2010 ident: b0090 article-title: EM demystified: an expectation-maximization tutorial – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: b0085 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B (Methodological) – volume: 120 start-page: 2405 year: 1994 end-page: 2427 ident: b0130 article-title: Hyperspace division method for structural reliability publication-title: J Eng Mech – volume: 4 start-page: 293 year: 1987 end-page: 309 ident: b0135 article-title: A critical appraisal of methods to determine failure probabilities publication-title: Struct Saf – volume: 19 start-page: 409 year: 2004 end-page: 417 ident: b0050 article-title: Reliability of structures in high dimensions, Part I: algorithms and applications publication-title: Probab Eng Mech – year: 2017 ident: b0020 article-title: Simulation and the Monte Carlo method – reference: Gebru ID, Alameda-Pineda X, Forbes F, Horaud R. EM algorithms for weighted-data clustering with application to audio-visual scene analysis. CoRR abs/1509.01509. – start-page: 281 year: 1967 end-page: 297 ident: b0095 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Volume 1: statistics – year: 2005 ident: b0015 article-title: First- and second-order reliability methods publication-title: Engineering design reliability handbook – volume: 42 start-page: 35 year: 2013 end-page: 44 ident: b0035 article-title: Cross-entropy-based adaptive importance sampling using Gaussian mixture publication-title: Struct Saf – volume: 62 start-page: 66 year: 2016 end-page: 75 ident: b0030 article-title: Sequential importance sampling for structural reliability analysis publication-title: Struct Saf – volume: vol. 31 start-page: 19 year: 2013 ident: 10.1016/j.strusafe.2018.07.001_b0070 article-title: Chapter 2 – The cross-entropy method for estimation – volume: vol. 33 start-page: 29 year: 2015 ident: 10.1016/j.strusafe.2018.07.001_b0065 article-title: An introduction to rare event simulation and importance sampling – volume: 39 start-page: 1 issue: 1 year: 1977 ident: 10.1016/j.strusafe.2018.07.001_b0085 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B (Methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 20 start-page: 37 issue: 1 year: 1998 ident: 10.1016/j.strusafe.2018.07.001_b0115 article-title: Multiple design points in first and second-order reliability publication-title: Struct Saf doi: 10.1016/S0167-4730(97)00026-X – year: 2005 ident: 10.1016/j.strusafe.2018.07.001_b0015 article-title: First- and second-order reliability methods – year: 2000 ident: 10.1016/j.strusafe.2018.07.001_b0120 – ident: 10.1016/j.strusafe.2018.07.001_b0075 – volume: 21 start-page: 135 issue: 2 year: 1999 ident: 10.1016/j.strusafe.2018.07.001_b0040 article-title: A new adaptive importance sampling scheme for reliability calculations publication-title: Struct Saf doi: 10.1016/S0167-4730(99)00014-4 – volume: 134 start-page: 19 issue: 1 year: 2005 ident: 10.1016/j.strusafe.2018.07.001_b0055 article-title: A tutorial on the cross-entropy method publication-title: Ann Oper Res doi: 10.1007/s10479-005-5724-z – start-page: 226 year: 1996 ident: 10.1016/j.strusafe.2018.07.001_b0110 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – year: 2009 ident: 10.1016/j.strusafe.2018.07.001_b0005 – volume: 23 start-page: 365 issue: 4 year: 2001 ident: 10.1016/j.strusafe.2018.07.001_b0010 article-title: Reliability analysis – a review and some perspectives publication-title: Struct Saf doi: 10.1016/S0167-4730(02)00009-7 – volume: 120 start-page: 2405 issue: 11 year: 1994 ident: 10.1016/j.strusafe.2018.07.001_b0130 article-title: Hyperspace division method for structural reliability publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(1994)120:11(2405) – volume: 16 start-page: 263 issue: 4 year: 2001 ident: 10.1016/j.strusafe.2018.07.001_b0025 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probab Eng Mech doi: 10.1016/S0266-8920(01)00019-4 – volume: 42 start-page: 35 year: 2013 ident: 10.1016/j.strusafe.2018.07.001_b0035 article-title: Cross-entropy-based adaptive importance sampling using Gaussian mixture publication-title: Struct Saf doi: 10.1016/j.strusafe.2013.01.006 – year: 2010 ident: 10.1016/j.strusafe.2018.07.001_b0090 – year: 2006 ident: 10.1016/j.strusafe.2018.07.001_b0100 – volume: 5 start-page: 31 issue: 1 year: 1988 ident: 10.1016/j.strusafe.2018.07.001_b0080 article-title: Updating first- and second-order reliability estimates by importance sampling publication-title: Struct Eng/Earthq Eng – volume: 12 start-page: 255 issue: 4 year: 1993 ident: 10.1016/j.strusafe.2018.07.001_b0125 article-title: A benchmark study on importance sampling techniques in structural reliability publication-title: Struct Saf doi: 10.1016/0167-4730(93)90056-7 – year: 2017 ident: 10.1016/j.strusafe.2018.07.001_b0020 – volume: 19 start-page: 409 issue: 4 year: 2004 ident: 10.1016/j.strusafe.2018.07.001_b0050 article-title: Reliability of structures in high dimensions, Part I: algorithms and applications publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2004.05.001 – volume: 62 start-page: 66 year: 2016 ident: 10.1016/j.strusafe.2018.07.001_b0030 article-title: Sequential importance sampling for structural reliability analysis publication-title: Struct Saf doi: 10.1016/j.strusafe.2016.06.002 – volume: 4 start-page: 293 issue: 4 year: 1987 ident: 10.1016/j.strusafe.2018.07.001_b0135 article-title: A critical appraisal of methods to determine failure probabilities publication-title: Struct Saf doi: 10.1016/0167-4730(87)90004-X – ident: 10.1016/j.strusafe.2018.07.001_b0105 – volume: 114 start-page: 2195 issue: 12 year: 1988 ident: 10.1016/j.strusafe.2018.07.001_b0045 article-title: Improvement of second-order reliability estimates by importance sampling publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(1988)114:12(2195) – volume: 66 start-page: 38 year: 2017 ident: 10.1016/j.strusafe.2018.07.001_b0060 article-title: Cross-entropy-based adaptive importance sampling for time-dependent reliability analysis of deteriorating structures publication-title: Struct Saf doi: 10.1016/j.strusafe.2016.12.006 – start-page: 281 year: 1967 ident: 10.1016/j.strusafe.2018.07.001_b0095 article-title: Some methods for classification and analysis of multivariate observations |
| SSID | ssj0005828 |
| Score | 2.5616734 |
| Snippet | •We compare two distributions as sampling densities in the cross entropy method.•A modified expectation-maximization algorithm is proposed for fitting the... The computation of the probability of a rare (failure) event is a common task in structural reliability analysis. In most applications, the numerical model... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 15 |
| SubjectTerms | Adaptive sampling Algorithms Clustering Component reliability Computer simulation Cross entropy method Density Divergence Entropy Entropy (Information theory) Expectation maximization Failure analysis Gaussian mixture Importance sampling Markov chains Mathematical models Normal distribution Optimization Probabilistic models Probability Reliability analysis Reliability engineering Sampling Sequential importance sampling Simulation Statistical analysis Structural reliability System reliability |
| Title | Cross entropy-based importance sampling using Gaussian densities revisited |
| URI | https://dx.doi.org/10.1016/j.strusafe.2018.07.001 https://www.proquest.com/docview/2153629034 |
| Volume | 76 |
| WOSCitedRecordID | wos000451488200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3355 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005828 issn: 0167-4730 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDBaydIftUOyJde0GHXYrvDmRbUnHougePRQF2gG5CaKlDC0KJ6iTov33I2X5kT3QDcMOMQLD8kP8RNI0-ZGxd7kup54CVaAkJJlIIbHgRSInAMKVuP6cC80m5MmJms306Wg0b2thbq5kVanbW738r6LGfShsKp39C3F3J8Ud-B-FjlsUO27_SPCHZPf2KWi7WN4lZKUc1UKSmx34ZC3lkFff9tchSvDJrutQR-kok53YVUM1S91VPUXH9SzwzAaOjtrOI3lISNzxd7F3l8drrQZoO0U7fLGwVbVYB01k6_6TP5HirqGvcR8GH6jeaSP40FXF9ClIIUhJXOoyfm_xjWJVUidCNJS8reaVQ9XZVHVGI9zwBfyk3ptIw-V74talh6XUPBXIV-NNbVJnn4UaC9Jh-BNoeR-wranMtRqzrYMvR7PjPhlIhS683Z0Pasl_fbXfuTE_GPTgpZw_Ydvx9YIfNLB4yka-esYeD0gnn7PjABC-ARDeA4S3AOEBILwFCO8AwjuAvGBfPx6dH35OYkeNpMzybJXI1OMiLByga6R9nlo7l2jyvAWYF7osSvSm7RTspADqwFJkIAB9QvBOW2mFFS_ZuFpU_hXjoZWjLlyqtMqyzFkLuc2m4EqN76igd1jeTpApI908dT25Mm1e4aVpJ9bQxJqUMiEmO-xDN27ZEK7cO0K382-i29i4gwZhc-_YvVZgJq7h2uATo1unETGv_-HUu-xRv2L22BgP8W_Yw_JmdVFfv40A_A7CyaTE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross+entropy-based+importance+sampling+using+Gaussian+densities+revisited&rft.jtitle=Structural+safety&rft.au=Geyer%2C+Sebastian&rft.au=Papaioannou%2C+Iason&rft.au=Straub%2C+Daniel&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0167-4730&rft.eissn=1879-3355&rft.volume=76&rft.spage=15&rft.epage=27&rft_id=info:doi/10.1016%2Fj.strusafe.2018.07.001&rft.externalDocID=S0167473017303429 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4730&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4730&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4730&client=summon |