Cross entropy-based importance sampling using Gaussian densities revisited

•We compare two distributions as sampling densities in the cross entropy method.•A modified expectation-maximization algorithm is proposed for fitting the parameters.•The DBSCAN algorithm is used to estimate the number of Gaussians in the mixture.•We compare the performance of the two densities in t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Structural safety Ročník 76; s. 15 - 27
Hlavní autori: Geyer, Sebastian, Papaioannou, Iason, Straub, Daniel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Ltd 01.01.2019
Elsevier BV
Predmet:
ISSN:0167-4730, 1879-3355
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •We compare two distributions as sampling densities in the cross entropy method.•A modified expectation-maximization algorithm is proposed for fitting the parameters.•The DBSCAN algorithm is used to estimate the number of Gaussians in the mixture.•We compare the performance of the two densities in the cross entropy method. The computation of the probability of a rare (failure) event is a common task in structural reliability analysis. In most applications, the numerical model defining the rare event is nonlinear and the resulting failure domain often multimodal. One strategy for estimating the probability of failure in this context is the importance sampling method. The efficiency of importance sampling depends on the choice of the importance sampling density. A near-optimal sampling density can be found through application of the cross entropy method. The cross entropy method is an adaptive sampling approach that determines the sampling density through minimizing the Kullback-Leibler divergence between the theoretically optimal importance sampling density and a chosen parametric family of distributions. In this paper, we investigate the suitability of the multivariate normal distribution and the Gaussian mixture model as importance sampling densities within the cross entropy method. Moreover, we compare the performance of the cross entropy method to sequential importance sampling, another recently proposed adaptive sampling approach, which uses the Gaussian mixture distribution as a proposal distribution within a Markov Chain Monte Carlo algorithm. For the parameter updating of the Gaussian mixture within the cross entropy method, we propose a modified version of the expectation-maximization algorithm that works with weighted samples. To estimate the number of distributions in the mixture, the density-based spatial clustering of applications with noise (DBSCAN) algorithm is adapted to the use of weighted samples. We compare the performance of the different methods in several examples, including component reliability problems, system reliability problems and reliability in varying dimensions. The results show that the cross entropy method using a single Gaussian outperforms the cross entropy method using Gaussian mixture and that both distribution types are not suitable for high dimensional reliability problems.
AbstractList The computation of the probability of a rare (failure) event is a common task in structural reliability analysis. In most applications, the numerical model defining the rare event is nonlinear and the resulting failure domain often multimodal. One strategy for estimating the probability of failure in this context is the importance sampling method. The efficiency of importance sampling depends on the choice of the importance sampling density. A near-optimal sampling density can be found through application of the cross entropy method. The cross entropy method is an adaptive sampling approach that determines the sampling density through minimizing the Kullback-Leibler divergence between the theoretically optimal importance sampling density and a chosen parametric family of distributions. In this paper, we investigate the suitability of the multivariate normal distribution and the Gaussian mixture model as importance sampling densities within the cross entropy method. Moreover, we compare the performance of the cross entropy method to sequential importance sampling, another recently proposed adaptive sampling approach, which uses the Gaussian mixture distribution as a proposal distribution within a Markov Chain Monte Carlo algorithm. For the parameter updating of the Gaussian mixture within the cross entropy method, we propose a modified version of the expectation-maximization algorithm that works with weighted samples. To estimate the number of distributions in the mixture, the density-based spatial clustering of applications with noise (DBSCAN) algorithm is adapted to the use of weighted samples. We compare the performance of the different methods in several examples, including component reliability problems, system reliability problems and reliability in varying dimensions. The results show that the cross entropy method using a single Gaussian outperforms the cross entropy method using Gaussian mixture and that both distribution types are not suitable for high dimensional reliability problems.
•We compare two distributions as sampling densities in the cross entropy method.•A modified expectation-maximization algorithm is proposed for fitting the parameters.•The DBSCAN algorithm is used to estimate the number of Gaussians in the mixture.•We compare the performance of the two densities in the cross entropy method. The computation of the probability of a rare (failure) event is a common task in structural reliability analysis. In most applications, the numerical model defining the rare event is nonlinear and the resulting failure domain often multimodal. One strategy for estimating the probability of failure in this context is the importance sampling method. The efficiency of importance sampling depends on the choice of the importance sampling density. A near-optimal sampling density can be found through application of the cross entropy method. The cross entropy method is an adaptive sampling approach that determines the sampling density through minimizing the Kullback-Leibler divergence between the theoretically optimal importance sampling density and a chosen parametric family of distributions. In this paper, we investigate the suitability of the multivariate normal distribution and the Gaussian mixture model as importance sampling densities within the cross entropy method. Moreover, we compare the performance of the cross entropy method to sequential importance sampling, another recently proposed adaptive sampling approach, which uses the Gaussian mixture distribution as a proposal distribution within a Markov Chain Monte Carlo algorithm. For the parameter updating of the Gaussian mixture within the cross entropy method, we propose a modified version of the expectation-maximization algorithm that works with weighted samples. To estimate the number of distributions in the mixture, the density-based spatial clustering of applications with noise (DBSCAN) algorithm is adapted to the use of weighted samples. We compare the performance of the different methods in several examples, including component reliability problems, system reliability problems and reliability in varying dimensions. The results show that the cross entropy method using a single Gaussian outperforms the cross entropy method using Gaussian mixture and that both distribution types are not suitable for high dimensional reliability problems.
Author Straub, Daniel
Geyer, Sebastian
Papaioannou, Iason
Author_xml – sequence: 1
  givenname: Sebastian
  orcidid: 0000-0002-7005-865X
  surname: Geyer
  fullname: Geyer, Sebastian
  email: s.geyer@tum.de
– sequence: 2
  givenname: Iason
  surname: Papaioannou
  fullname: Papaioannou, Iason
– sequence: 3
  givenname: Daniel
  surname: Straub
  fullname: Straub, Daniel
BookMark eNqFkDFPwzAQhS1UJFrgL6BIzAl2nNiJxACqoIAqscBsnZ0LctUmwXYq9d_jqLCwdLm74b13et-CzLq-Q0JuGM0YZeJuk_ngRg8tZjllVUZlRik7I3NWyTrlvCxnZB6FMi0kpxdk4f2GUlpWeTUnb0vXe59gF1w_HFINHpvE7obeBegMJh52w9Z2X8nop7mC0XsLXdJg522w6BOHextPbK7IeQtbj9e_-5J8Pj99LF_S9fvqdfm4Tk1RFiGVFCXTotEGscaSArSSlRxB61bURphSMMg1MKFzWXFRaK5zVmpsapDAgV-S22Pu4PrvEX1Qm350XXypoo6LvKa8iKr7o8pMBR22ytgAwfaxKditYlRN9NRG_dFTEz1FpYr0ol38sw_O7sAdThsfjkaMCPYWnfLGYkTZWIcmqKa3pyJ-AL8OkpI
CitedBy_id crossref_primary_10_1007_s00158_024_03865_0
crossref_primary_10_1061__ASCE_EM_1943_7889_0002015
crossref_primary_10_1016_j_strusafe_2023_102325
crossref_primary_10_1016_j_seta_2021_101792
crossref_primary_10_1016_j_ress_2023_109729
crossref_primary_10_1016_j_probengmech_2022_103291
crossref_primary_10_1016_j_jcp_2022_111746
crossref_primary_10_1016_j_ress_2024_110609
crossref_primary_10_1007_s10458_023_09606_9
crossref_primary_10_1038_s41598_024_82816_7
crossref_primary_10_1214_24_AAP2136
crossref_primary_10_1016_j_probengmech_2025_103819
crossref_primary_10_1002_eqe_4362
crossref_primary_10_1088_1748_9326_ada397
crossref_primary_10_1016_j_engappai_2025_110506
crossref_primary_10_1016_j_probengmech_2024_103615
crossref_primary_10_1007_s00158_022_03229_6
crossref_primary_10_1016_j_strusafe_2021_102174
crossref_primary_10_1016_j_ymssp_2024_112182
crossref_primary_10_1016_j_ress_2024_110373
crossref_primary_10_1016_j_advengsoft_2024_103693
crossref_primary_10_1061_JBENF2_BEENG_7422
crossref_primary_10_1016_j_strusafe_2025_102574
crossref_primary_10_1016_j_probengmech_2023_103485
crossref_primary_10_1016_j_ress_2025_111322
crossref_primary_10_1016_j_strusafe_2021_102090
crossref_primary_10_1016_j_eswa_2023_119687
crossref_primary_10_1007_s11222_023_10270_y
crossref_primary_10_1016_j_ress_2022_108946
crossref_primary_10_1017_dce_2023_13
crossref_primary_10_1016_j_cma_2020_113051
crossref_primary_10_1016_j_ress_2021_107991
crossref_primary_10_1049_rpg2_12180
crossref_primary_10_1109_LSP_2021_3139572
crossref_primary_10_1155_2023_7353489
crossref_primary_10_1016_j_ress_2019_106526
crossref_primary_10_1016_j_ress_2025_111602
crossref_primary_10_1007_s00366_023_01790_2
crossref_primary_10_1016_j_ijepes_2025_110535
crossref_primary_10_1016_j_ress_2023_109097
crossref_primary_10_1016_j_cma_2021_113826
crossref_primary_10_1016_j_ress_2019_106564
crossref_primary_10_1049_gtd2_12116
crossref_primary_10_1016_j_cma_2024_117006
crossref_primary_10_1016_j_strusafe_2023_102344
crossref_primary_10_1016_j_coastaleng_2024_104618
crossref_primary_10_1016_j_strusafe_2024_102545
crossref_primary_10_1016_j_engstruct_2025_121258
crossref_primary_10_1016_j_strusafe_2025_102621
crossref_primary_10_1016_j_strusafe_2019_101877
crossref_primary_10_1109_TASE_2025_3548325
crossref_primary_10_1016_j_fss_2024_109250
crossref_primary_10_1016_j_ins_2022_11_023
crossref_primary_10_1016_j_ress_2025_111272
crossref_primary_10_1016_j_engstruct_2019_109912
crossref_primary_10_1016_j_ymssp_2023_110424
crossref_primary_10_1016_j_ress_2020_107124
crossref_primary_10_1016_j_apm_2019_06_037
crossref_primary_10_1002_nag_3337
crossref_primary_10_1016_j_aap_2023_107391
crossref_primary_10_1016_j_engstruct_2021_113157
crossref_primary_10_3390_mca27060099
crossref_primary_10_1016_j_ress_2024_110103
crossref_primary_10_1016_j_probengmech_2023_103479
crossref_primary_10_1016_j_probengmech_2025_103759
crossref_primary_10_1016_j_ress_2025_110947
crossref_primary_10_1007_s00158_019_02290_y
crossref_primary_10_1016_j_strusafe_2023_102398
crossref_primary_10_1080_15732479_2022_2119582
crossref_primary_10_1007_s10479_023_05174_z
crossref_primary_10_1016_j_strusafe_2022_102259
crossref_primary_10_1016_j_ress_2024_110432
crossref_primary_10_3390_sym14061219
crossref_primary_10_1016_j_cma_2025_118066
crossref_primary_10_1016_j_aap_2025_108044
crossref_primary_10_1016_j_coastaleng_2023_104287
crossref_primary_10_1137_19M1289601
crossref_primary_10_1016_j_strusafe_2023_102393
crossref_primary_10_1016_j_compstruc_2022_106860
crossref_primary_10_1016_j_ress_2021_108306
crossref_primary_10_1016_j_ymssp_2024_111300
crossref_primary_10_1016_j_strusafe_2021_102117
crossref_primary_10_1016_j_strusafe_2022_102216
crossref_primary_10_1016_j_ress_2022_109014
crossref_primary_10_1016_j_strusafe_2024_102539
Cites_doi 10.1111/j.2517-6161.1977.tb01600.x
10.1016/S0167-4730(97)00026-X
10.1016/S0167-4730(99)00014-4
10.1007/s10479-005-5724-z
10.1016/S0167-4730(02)00009-7
10.1061/(ASCE)0733-9399(1994)120:11(2405)
10.1016/S0266-8920(01)00019-4
10.1016/j.strusafe.2013.01.006
10.1016/0167-4730(93)90056-7
10.1016/j.probengmech.2004.05.001
10.1016/j.strusafe.2016.06.002
10.1016/0167-4730(87)90004-X
10.1061/(ASCE)0733-9399(1988)114:12(2195)
10.1016/j.strusafe.2016.12.006
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV 2019
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV 2019
DBID AAYXX
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.strusafe.2018.07.001
DatabaseName CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Health and Safety Science Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Health & Safety Science Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3355
EndPage 27
ExternalDocumentID 10_1016_j_strusafe_2018_07_001
S0167473017303429
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c454t-70e71b6dbcee9e50aaf7153eabbf69c6c561a2ba16b278364b3b215bed9a7a3a3
ISICitedReferencesCount 102
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451488200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-4730
IngestDate Wed Aug 13 08:46:23 EDT 2025
Sat Nov 29 02:11:16 EST 2025
Tue Nov 18 22:14:55 EST 2025
Fri Feb 23 02:33:35 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sequential importance sampling
Simulation
Cross entropy method
Expectation maximization
Reliability analysis
Gaussian mixture
Importance sampling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c454t-70e71b6dbcee9e50aaf7153eabbf69c6c561a2ba16b278364b3b215bed9a7a3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7005-865X
OpenAccessLink http://mediatum.ub.tum.de/node?id=1456133
PQID 2153629034
PQPubID 2045395
PageCount 13
ParticipantIDs proquest_journals_2153629034
crossref_citationtrail_10_1016_j_strusafe_2018_07_001
crossref_primary_10_1016_j_strusafe_2018_07_001
elsevier_sciencedirect_doi_10_1016_j_strusafe_2018_07_001
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Structural safety
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Fujita, Rackwitz (b0080) 1988; 5
Waarts (b0120) 2000
Der Kiureghian, Dakessian (b0115) 1998; 20
Hohenbichler, Rackwitz (b0045) 1988; 114
Baez JC, Fritz T. A bayesian characterization of relative entropy. CoRR abs/1402.3067.
MacQueen (b0095) 1967
Rubinstein, Kroese (b0020) 2017
Papaioannou, Papadimitriou, Straub (b0030) 2016; 62
Schuëller, Stix (b0135) 1987; 4
Engelund, Rackwitz (b0125) 1993; 12
Yang, Teng, Frangopol (b0060) 2017; 66
Lemaire, Chateauneuf, Mitteau (b0005) 2009
Biondini (b0065) 2015; vol. 33
Kroese, Rubinstein, Glynn (b0070) 2013; vol. 31
Au, Beck (b0025) 2001; 16
Ester, Kriegel, Sander, Xu (b0110) 1996
Dempster, Laird, Rubin (b0085) 1977; 39
Gebru ID, Alameda-Pineda X, Forbes F, Horaud R. EM algorithms for weighted-data clustering with application to audio-visual scene analysis. CoRR abs/1509.01509.
Katsuki, Frangopol (b0130) 1994; 120
Rackwitz (b0010) 2001; 23
de Boer, Kroese, Mannor, Rubinstein (b0055) 2005; 134
Chen, Gupta (b0090) 2010
Au, Beck (b0040) 1999; 21
Koutsourelakis, Pradlwarter, Schuëller (b0050) 2004; 19
Der Kiureghian (b0015) 2005
Arthur, Vassilvitskii (b0100) 2006
Kurtz, Song (b0035) 2013; 42
Ester (10.1016/j.strusafe.2018.07.001_b0110) 1996
Arthur (10.1016/j.strusafe.2018.07.001_b0100) 2006
Kurtz (10.1016/j.strusafe.2018.07.001_b0035) 2013; 42
Rackwitz (10.1016/j.strusafe.2018.07.001_b0010) 2001; 23
Koutsourelakis (10.1016/j.strusafe.2018.07.001_b0050) 2004; 19
Papaioannou (10.1016/j.strusafe.2018.07.001_b0030) 2016; 62
Yang (10.1016/j.strusafe.2018.07.001_b0060) 2017; 66
Rubinstein (10.1016/j.strusafe.2018.07.001_b0020) 2017
10.1016/j.strusafe.2018.07.001_b0075
Hohenbichler (10.1016/j.strusafe.2018.07.001_b0045) 1988; 114
Fujita (10.1016/j.strusafe.2018.07.001_b0080) 1988; 5
Der Kiureghian (10.1016/j.strusafe.2018.07.001_b0115) 1998; 20
Der Kiureghian (10.1016/j.strusafe.2018.07.001_b0015) 2005
Lemaire (10.1016/j.strusafe.2018.07.001_b0005) 2009
Dempster (10.1016/j.strusafe.2018.07.001_b0085) 1977; 39
Kroese (10.1016/j.strusafe.2018.07.001_b0070) 2013; vol. 31
Au (10.1016/j.strusafe.2018.07.001_b0040) 1999; 21
10.1016/j.strusafe.2018.07.001_b0105
Engelund (10.1016/j.strusafe.2018.07.001_b0125) 1993; 12
MacQueen (10.1016/j.strusafe.2018.07.001_b0095) 1967
Au (10.1016/j.strusafe.2018.07.001_b0025) 2001; 16
Schuëller (10.1016/j.strusafe.2018.07.001_b0135) 1987; 4
de Boer (10.1016/j.strusafe.2018.07.001_b0055) 2005; 134
Biondini (10.1016/j.strusafe.2018.07.001_b0065) 2015; vol. 33
Waarts (10.1016/j.strusafe.2018.07.001_b0120) 2000
Katsuki (10.1016/j.strusafe.2018.07.001_b0130) 1994; 120
Chen (10.1016/j.strusafe.2018.07.001_b0090) 2010
References_xml – volume: 66
  start-page: 38
  year: 2017
  end-page: 50
  ident: b0060
  article-title: Cross-entropy-based adaptive importance sampling for time-dependent reliability analysis of deteriorating structures
  publication-title: Struct Saf
– start-page: 226
  year: 1996
  end-page: 231
  ident: b0110
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the second international conference on knowledge discovery and data mining
– volume: 23
  start-page: 365
  year: 2001
  end-page: 395
  ident: b0010
  article-title: Reliability analysis – a review and some perspectives
  publication-title: Struct Saf
– volume: 16
  start-page: 263
  year: 2001
  end-page: 277
  ident: b0025
  article-title: Estimation of small failure probabilities in high dimensions by subset simulation
  publication-title: Probab Eng Mech
– year: 2009
  ident: b0005
  article-title: Structural reliability
– volume: 21
  start-page: 135
  year: 1999
  end-page: 158
  ident: b0040
  article-title: A new adaptive importance sampling scheme for reliability calculations
  publication-title: Struct Saf
– volume: 114
  start-page: 2195
  year: 1988
  end-page: 2199
  ident: b0045
  article-title: Improvement of second-order reliability estimates by importance sampling
  publication-title: J Eng Mech
– volume: 5
  start-page: 31
  year: 1988
  end-page: 37
  ident: b0080
  article-title: Updating first- and second-order reliability estimates by importance sampling
  publication-title: Struct Eng/Earthq Eng
– year: 2000
  ident: b0120
  article-title: Structural reliability using finite element analysis; an appraisal of DARS: directional adaptive response surface sampling
– reference: Baez JC, Fritz T. A bayesian characterization of relative entropy. CoRR abs/1402.3067.
– volume: vol. 33
  start-page: 29
  year: 2015
  end-page: 68
  ident: b0065
  article-title: An introduction to rare event simulation and importance sampling
  publication-title: Big data analytics
– volume: 20
  start-page: 37
  year: 1998
  end-page: 49
  ident: b0115
  article-title: Multiple design points in first and second-order reliability
  publication-title: Struct Saf
– volume: vol. 31
  start-page: 19
  year: 2013
  end-page: 34
  ident: b0070
  article-title: Chapter 2 – The cross-entropy method for estimation
  publication-title: Handbook of statistics: machine learning: theory and applications
– year: 2006
  ident: b0100
  article-title: k-means++: The advantages of careful seeding, Technical Report 2006–13
– volume: 12
  start-page: 255
  year: 1993
  end-page: 276
  ident: b0125
  article-title: A benchmark study on importance sampling techniques in structural reliability
  publication-title: Struct Saf
– volume: 134
  start-page: 19
  year: 2005
  end-page: 67
  ident: b0055
  article-title: A tutorial on the cross-entropy method
  publication-title: Ann Oper Res
– year: 2010
  ident: b0090
  article-title: EM demystified: an expectation-maximization tutorial
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: b0085
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B (Methodological)
– volume: 120
  start-page: 2405
  year: 1994
  end-page: 2427
  ident: b0130
  article-title: Hyperspace division method for structural reliability
  publication-title: J Eng Mech
– volume: 4
  start-page: 293
  year: 1987
  end-page: 309
  ident: b0135
  article-title: A critical appraisal of methods to determine failure probabilities
  publication-title: Struct Saf
– volume: 19
  start-page: 409
  year: 2004
  end-page: 417
  ident: b0050
  article-title: Reliability of structures in high dimensions, Part I: algorithms and applications
  publication-title: Probab Eng Mech
– year: 2017
  ident: b0020
  article-title: Simulation and the Monte Carlo method
– reference: Gebru ID, Alameda-Pineda X, Forbes F, Horaud R. EM algorithms for weighted-data clustering with application to audio-visual scene analysis. CoRR abs/1509.01509.
– start-page: 281
  year: 1967
  end-page: 297
  ident: b0095
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Volume 1: statistics
– year: 2005
  ident: b0015
  article-title: First- and second-order reliability methods
  publication-title: Engineering design reliability handbook
– volume: 42
  start-page: 35
  year: 2013
  end-page: 44
  ident: b0035
  article-title: Cross-entropy-based adaptive importance sampling using Gaussian mixture
  publication-title: Struct Saf
– volume: 62
  start-page: 66
  year: 2016
  end-page: 75
  ident: b0030
  article-title: Sequential importance sampling for structural reliability analysis
  publication-title: Struct Saf
– volume: vol. 31
  start-page: 19
  year: 2013
  ident: 10.1016/j.strusafe.2018.07.001_b0070
  article-title: Chapter 2 – The cross-entropy method for estimation
– volume: vol. 33
  start-page: 29
  year: 2015
  ident: 10.1016/j.strusafe.2018.07.001_b0065
  article-title: An introduction to rare event simulation and importance sampling
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.strusafe.2018.07.001_b0085
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 20
  start-page: 37
  issue: 1
  year: 1998
  ident: 10.1016/j.strusafe.2018.07.001_b0115
  article-title: Multiple design points in first and second-order reliability
  publication-title: Struct Saf
  doi: 10.1016/S0167-4730(97)00026-X
– year: 2005
  ident: 10.1016/j.strusafe.2018.07.001_b0015
  article-title: First- and second-order reliability methods
– year: 2000
  ident: 10.1016/j.strusafe.2018.07.001_b0120
– ident: 10.1016/j.strusafe.2018.07.001_b0075
– volume: 21
  start-page: 135
  issue: 2
  year: 1999
  ident: 10.1016/j.strusafe.2018.07.001_b0040
  article-title: A new adaptive importance sampling scheme for reliability calculations
  publication-title: Struct Saf
  doi: 10.1016/S0167-4730(99)00014-4
– volume: 134
  start-page: 19
  issue: 1
  year: 2005
  ident: 10.1016/j.strusafe.2018.07.001_b0055
  article-title: A tutorial on the cross-entropy method
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-005-5724-z
– start-page: 226
  year: 1996
  ident: 10.1016/j.strusafe.2018.07.001_b0110
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– year: 2009
  ident: 10.1016/j.strusafe.2018.07.001_b0005
– volume: 23
  start-page: 365
  issue: 4
  year: 2001
  ident: 10.1016/j.strusafe.2018.07.001_b0010
  article-title: Reliability analysis – a review and some perspectives
  publication-title: Struct Saf
  doi: 10.1016/S0167-4730(02)00009-7
– volume: 120
  start-page: 2405
  issue: 11
  year: 1994
  ident: 10.1016/j.strusafe.2018.07.001_b0130
  article-title: Hyperspace division method for structural reliability
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(1994)120:11(2405)
– volume: 16
  start-page: 263
  issue: 4
  year: 2001
  ident: 10.1016/j.strusafe.2018.07.001_b0025
  article-title: Estimation of small failure probabilities in high dimensions by subset simulation
  publication-title: Probab Eng Mech
  doi: 10.1016/S0266-8920(01)00019-4
– volume: 42
  start-page: 35
  year: 2013
  ident: 10.1016/j.strusafe.2018.07.001_b0035
  article-title: Cross-entropy-based adaptive importance sampling using Gaussian mixture
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2013.01.006
– year: 2010
  ident: 10.1016/j.strusafe.2018.07.001_b0090
– year: 2006
  ident: 10.1016/j.strusafe.2018.07.001_b0100
– volume: 5
  start-page: 31
  issue: 1
  year: 1988
  ident: 10.1016/j.strusafe.2018.07.001_b0080
  article-title: Updating first- and second-order reliability estimates by importance sampling
  publication-title: Struct Eng/Earthq Eng
– volume: 12
  start-page: 255
  issue: 4
  year: 1993
  ident: 10.1016/j.strusafe.2018.07.001_b0125
  article-title: A benchmark study on importance sampling techniques in structural reliability
  publication-title: Struct Saf
  doi: 10.1016/0167-4730(93)90056-7
– year: 2017
  ident: 10.1016/j.strusafe.2018.07.001_b0020
– volume: 19
  start-page: 409
  issue: 4
  year: 2004
  ident: 10.1016/j.strusafe.2018.07.001_b0050
  article-title: Reliability of structures in high dimensions, Part I: algorithms and applications
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2004.05.001
– volume: 62
  start-page: 66
  year: 2016
  ident: 10.1016/j.strusafe.2018.07.001_b0030
  article-title: Sequential importance sampling for structural reliability analysis
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2016.06.002
– volume: 4
  start-page: 293
  issue: 4
  year: 1987
  ident: 10.1016/j.strusafe.2018.07.001_b0135
  article-title: A critical appraisal of methods to determine failure probabilities
  publication-title: Struct Saf
  doi: 10.1016/0167-4730(87)90004-X
– ident: 10.1016/j.strusafe.2018.07.001_b0105
– volume: 114
  start-page: 2195
  issue: 12
  year: 1988
  ident: 10.1016/j.strusafe.2018.07.001_b0045
  article-title: Improvement of second-order reliability estimates by importance sampling
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(1988)114:12(2195)
– volume: 66
  start-page: 38
  year: 2017
  ident: 10.1016/j.strusafe.2018.07.001_b0060
  article-title: Cross-entropy-based adaptive importance sampling for time-dependent reliability analysis of deteriorating structures
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2016.12.006
– start-page: 281
  year: 1967
  ident: 10.1016/j.strusafe.2018.07.001_b0095
  article-title: Some methods for classification and analysis of multivariate observations
SSID ssj0005828
Score 2.5617366
Snippet •We compare two distributions as sampling densities in the cross entropy method.•A modified expectation-maximization algorithm is proposed for fitting the...
The computation of the probability of a rare (failure) event is a common task in structural reliability analysis. In most applications, the numerical model...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Adaptive sampling
Algorithms
Clustering
Component reliability
Computer simulation
Cross entropy method
Density
Divergence
Entropy
Entropy (Information theory)
Expectation maximization
Failure analysis
Gaussian mixture
Importance sampling
Markov chains
Mathematical models
Normal distribution
Optimization
Probabilistic models
Probability
Reliability analysis
Reliability engineering
Sampling
Sequential importance sampling
Simulation
Statistical analysis
Structural reliability
System reliability
Title Cross entropy-based importance sampling using Gaussian densities revisited
URI https://dx.doi.org/10.1016/j.strusafe.2018.07.001
https://www.proquest.com/docview/2153629034
Volume 76
WOSCitedRecordID wos000451488200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3355
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005828
  issn: 0167-4730
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbQwqE9VKWlKoUiH3pDgezm4fiIEC1wQEil0t6s8SMVqMqumt0K_j0zjvOAtjwOXKIoip0489kzGc98w9gXqoFkjbFRkjkXpeXE4Drokigl7iooQY9T64tNiLOzYjqV5yHctvblBERVFdfXcv6iosZrKGxKnX2GuLtO8QKeo9DxiGLH45MEf0h6b5ectrP5TURaylIuJJnZnk8WKIa8-rm79F6Cb7CsfR6lpUh2Ylf12Sx1l_UUDNfvnmfWc3TUUAbyEB-4425C7S6Hz1oM0HaOevhyBlU1W_qVCOp-y59IcZe6z3EfOh8o36lzPgR_JNGmi7C1EhZUMVwRm2TNoFsbGoC_Vu3GgXC1R5S5NAaKuCs8p2p41h2a7HvqqwsqbOPVrlTbj6J-VEw77PiDvDoRmSxGbPXg5Gh62scBFb4AbzeSQRr5v9_ofxbMPV3uDZSLt-xN-LPgBw0i1tmKq96x1wO-yffs1GOD38EG77HBW2xwjw3eYoN32OAdNjbYj69HF4fHUSimEZk0SxeRiJ0Y69xqtIqky2KAUqC2c6B1mUuTGzSkYaJhnGsqvpKnOtFoDmpnJQhIIPnARtWsch8ZN7QXTxnT4wnO5MICxMZKDdIlaVw4scmy9gMpE5jmqeDJL_WwiDbZftdu3nCtPNpCtt9fBYuxsQQVQuvRttutwFSYvrXCEaNFJ-Mk_fTsl9lir_opss1GeIv7zNbMn8Vl_XsnwO4WaJegkg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross+entropy-based+importance+sampling+using+Gaussian+densities+revisited&rft.jtitle=Structural+safety&rft.au=Geyer%2C+Sebastian&rft.au=Papaioannou%2C+Iason&rft.au=Straub%2C+Daniel&rft.date=2019-01-01&rft.issn=0167-4730&rft.volume=76&rft.spage=15&rft.epage=27&rft_id=info:doi/10.1016%2Fj.strusafe.2018.07.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_strusafe_2018_07_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4730&client=summon