Extreme learning machine: algorithm, theory and applications

Extreme learning machine (ELM) is a new learning algorithm for the single hidden layer feedforward neural networks. Compared with the conventional neural network learning algorithm it overcomes the slow training speed and over-fitting problems. ELM is based on empirical risk minimization theory and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review Jg. 44; H. 1; S. 103 - 115
Hauptverfasser: Ding, Shifei, Zhao, Han, Zhang, Yanan, Xu, Xinzheng, Nie, Ru
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.06.2015
Springer
Springer Nature B.V
Schlagworte:
ISSN:0269-2821, 1573-7462
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Extreme learning machine (ELM) is a new learning algorithm for the single hidden layer feedforward neural networks. Compared with the conventional neural network learning algorithm it overcomes the slow training speed and over-fitting problems. ELM is based on empirical risk minimization theory and its learning process needs only a single iteration. The algorithm avoids multiple iterations and local minimization. It has been used in various fields and applications because of better generalization ability, robustness, and controllability and fast learning rate. In this paper, we make a review of ELM latest research progress about the algorithms, theory and applications. It first analyzes the theory and the algorithm ideas of ELM, then tracking describes the latest progress of ELM in recent years, including the model and specific applications of ELM, finally points out the research and development prospects of ELM in the future.
AbstractList Extreme learning machine (ELM) is a new learning algorithm for the single hidden layer feedforward neural networks. Compared with the conventional neural network learning algorithm it overcomes the slow training speed and over-fitting problems. ELM is based on empirical risk minimization theory and its learning process needs only a single iteration. The algorithm avoids multiple iterations and local minimization. It has been used in various fields and applications because of better generalization ability, robustness, and controllability and fast learning rate. In this paper, we make a review of ELM latest research progress about the algorithms, theory and applications. It first analyzes the theory and the algorithm ideas of ELM, then tracking describes the latest progress of ELM in recent years, including the model and specific applications of ELM, finally points out the research and development prospects of ELM in the future.
Audience Academic
Author Zhang, Yanan
Xu, Xinzheng
Ding, Shifei
Zhao, Han
Nie, Ru
Author_xml – sequence: 1
  givenname: Shifei
  surname: Ding
  fullname: Ding, Shifei
  email: dingsf@cumt.edu.cn
  organization: School of Computer Science and Technology, China University of Mining and Technology, Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Science
– sequence: 2
  givenname: Han
  surname: Zhao
  fullname: Zhao, Han
  organization: School of Computer Science and Technology, China University of Mining and Technology
– sequence: 3
  givenname: Yanan
  surname: Zhang
  fullname: Zhang, Yanan
  organization: School of Computer Science and Technology, China University of Mining and Technology
– sequence: 4
  givenname: Xinzheng
  surname: Xu
  fullname: Xu, Xinzheng
  organization: School of Computer Science and Technology, China University of Mining and Technology
– sequence: 5
  givenname: Ru
  surname: Nie
  fullname: Nie, Ru
  organization: School of Computer Science and Technology, China University of Mining and Technology
BookMark eNp9kE1LAzEQhoNUsK3-AG8LXt2aycdmV7yUUj-g4EXPIZvNtim72ZqsYPvrTV0PIihzGBjeZ4Z5JmjkOmcQugQ8A4zFTQDMMpJioGnBME8PJ2gMXNBUxPEIjTHJipTkBM7QJIQtxpgTRsfobvnRe9OapDHKO-vWSav0xjpzm6hm3Xnbb9rrpN-Yzu8T5apE7XaN1aq3nQvn6LRWTTAX332KXu-XL4vHdPX88LSYr1LNOOtTXpScCZpXQkDNdK7qHFRV5MBLSiqalxpnlBQlaJrRyjCuABvIKkMBV8CATtHVsHfnu7d3E3q57d69iyclZDnOeCGgiKnZkFqrxkjr6q73SseqTGt11FXbOJ8LiBaIwEdADID2XQje1FLb_uuzCNpGApZHt3JwK6NbeXQrD5GEX-TO21b5_b8MGZgQs25t_I8n_oQ-ARnmjLs
CitedBy_id crossref_primary_10_1371_journal_pone_0240362
crossref_primary_10_3390_s20030644
crossref_primary_10_1061_JOEEDU_EEENG_7766
crossref_primary_10_1109_LCOMM_2020_3031195
crossref_primary_10_1016_j_ipm_2018_01_010
crossref_primary_10_1016_j_jfranklin_2020_04_033
crossref_primary_10_1016_j_imu_2016_02_001
crossref_primary_10_1016_j_chemer_2024_126156
crossref_primary_10_1109_TNNLS_2021_3090503
crossref_primary_10_1109_ACCESS_2023_3258549
crossref_primary_10_1016_j_conbuildmat_2024_136201
crossref_primary_10_3390_buildings15162937
crossref_primary_10_1016_j_jobe_2024_111471
crossref_primary_10_1016_j_neucom_2021_11_026
crossref_primary_10_3390_a11100158
crossref_primary_10_1016_j_ecoenv_2025_118134
crossref_primary_10_1007_s11063_022_11021_2
crossref_primary_10_1109_TCPMT_2022_3167638
crossref_primary_10_1007_s11831_025_10284_x
crossref_primary_10_1016_j_renene_2023_119773
crossref_primary_10_1007_s12065_019_00295_6
crossref_primary_10_1007_s13042_020_01158_8
crossref_primary_10_1016_j_bspc_2024_106469
crossref_primary_10_3390_met9020155
crossref_primary_10_1016_j_psep_2024_03_014
crossref_primary_10_1016_j_solener_2017_07_052
crossref_primary_10_1103_PhysRevApplied_23_044024
crossref_primary_10_1007_s12652_020_02345_9
crossref_primary_10_1016_j_mineng_2023_108410
crossref_primary_10_1016_j_energy_2022_125820
crossref_primary_10_1007_s10845_016_1292_0
crossref_primary_10_1016_j_artmed_2019_07_003
crossref_primary_10_1016_j_procs_2019_08_140
crossref_primary_10_1109_TIM_2025_3548206
crossref_primary_10_3390_s20133643
crossref_primary_10_1109_JSTARS_2021_3096195
crossref_primary_10_1038_s41598_020_77765_w
crossref_primary_10_1007_s00170_023_12191_6
crossref_primary_10_1155_2019_7456031
crossref_primary_10_1007_s12530_016_9162_8
crossref_primary_10_1016_j_undsp_2024_11_004
crossref_primary_10_3390_agriculture13020357
crossref_primary_10_1016_j_compag_2020_105231
crossref_primary_10_1016_j_isprsjprs_2017_10_011
crossref_primary_10_1016_j_neucom_2016_04_076
crossref_primary_10_1680_jgeen_19_00297
crossref_primary_10_3390_f14081624
crossref_primary_10_1016_j_eswa_2024_125938
crossref_primary_10_3390_sym13071158
crossref_primary_10_3390_foods13111783
crossref_primary_10_3390_math11020375
crossref_primary_10_3233_JIFS_192071
crossref_primary_10_1007_s11269_020_02659_5
crossref_primary_10_1016_j_compeleceng_2022_108042
crossref_primary_10_1016_j_eswa_2022_118006
crossref_primary_10_1016_j_jneumeth_2024_110136
crossref_primary_10_1016_j_jenvman_2025_124035
crossref_primary_10_3390_sym16091230
crossref_primary_10_1007_s00500_021_06620_5
crossref_primary_10_1016_j_icheatmasstransfer_2024_107455
crossref_primary_10_1155_2016_7927286
crossref_primary_10_1016_j_eswa_2019_05_039
crossref_primary_10_1109_ACCESS_2020_3031647
crossref_primary_10_1016_j_scitotenv_2018_06_319
crossref_primary_10_1109_ACCESS_2020_2982196
crossref_primary_10_1016_j_sna_2023_114872
crossref_primary_10_1016_j_psep_2021_10_047
crossref_primary_10_1108_EC_01_2020_0049
crossref_primary_10_1109_ACCESS_2024_3432490
crossref_primary_10_1177_1729881420983219
crossref_primary_10_1016_j_energy_2023_127376
crossref_primary_10_2118_228327_PA
crossref_primary_10_1016_j_cageo_2019_01_004
crossref_primary_10_1016_j_egyr_2022_11_208
crossref_primary_10_1080_15567036_2018_1495782
crossref_primary_10_3390_s25165045
crossref_primary_10_1080_09720529_2021_1877409
crossref_primary_10_1109_JSTSP_2019_2906465
crossref_primary_10_1016_j_conbuildmat_2022_127490
crossref_primary_10_1007_s10586_017_1334_1
crossref_primary_10_3390_app10144965
crossref_primary_10_1109_TII_2017_2666841
crossref_primary_10_1007_s10064_022_03047_6
crossref_primary_10_1016_j_csi_2022_103621
crossref_primary_10_1364_AO_428856
crossref_primary_10_3390_act12050187
crossref_primary_10_1016_j_eswa_2023_122474
crossref_primary_10_1007_s11071_017_3966_3
crossref_primary_10_1155_2024_1335666
crossref_primary_10_1186_s40537_024_01050_0
crossref_primary_10_1016_j_chemolab_2024_105106
crossref_primary_10_1007_s13042_019_00924_7
crossref_primary_10_1016_j_vibspec_2022_103380
crossref_primary_10_1007_s11063_020_10263_2
crossref_primary_10_1049_iet_com_2016_0080
crossref_primary_10_3390_economies10060129
crossref_primary_10_1016_j_mechmachtheory_2019_03_036
crossref_primary_10_1016_j_infrared_2020_103412
crossref_primary_10_1016_j_measurement_2024_116608
crossref_primary_10_1111_exsy_13176
crossref_primary_10_3390_math12193110
crossref_primary_10_1016_j_trac_2024_117974
crossref_primary_10_1109_TR_2020_2996261
crossref_primary_10_1016_j_smhl_2024_100502
crossref_primary_10_1016_j_neucom_2016_09_119
crossref_primary_10_1038_s41598_017_04501_2
crossref_primary_10_1109_ACCESS_2024_3360330
crossref_primary_10_1016_j_neucom_2020_04_158
crossref_primary_10_1007_s11277_022_09481_9
crossref_primary_10_1007_s13369_022_07057_0
crossref_primary_10_1016_j_pecs_2021_100967
crossref_primary_10_1016_j_eswa_2024_124178
crossref_primary_10_1016_j_fm_2025_104743
crossref_primary_10_1007_s13369_019_04289_5
crossref_primary_10_1016_j_renene_2024_120292
crossref_primary_10_1016_j_ijhydene_2024_02_099
crossref_primary_10_3389_fpls_2022_821365
crossref_primary_10_1007_s12559_018_9604_7
crossref_primary_10_1016_j_ifacol_2020_11_008
crossref_primary_10_3390_app12189392
crossref_primary_10_1016_j_neucom_2023_126704
crossref_primary_10_1016_j_sab_2021_106077
crossref_primary_10_3390_bioengineering12060639
crossref_primary_10_1016_j_measurement_2020_108153
crossref_primary_10_1016_j_cam_2025_116635
crossref_primary_10_1038_s41598_017_13184_8
crossref_primary_10_1016_j_engappai_2023_107305
crossref_primary_10_1109_ACCESS_2021_3049941
crossref_primary_10_3390_w14192972
crossref_primary_10_1016_j_asoc_2023_110131
crossref_primary_10_1007_s00202_022_01526_3
crossref_primary_10_1155_2022_3854635
crossref_primary_10_1016_j_ast_2025_110311
crossref_primary_10_1017_S0263574724000146
crossref_primary_10_1016_j_oceaneng_2020_107073
crossref_primary_10_1089_big_2021_0257
crossref_primary_10_3389_feart_2023_1126394
crossref_primary_10_1016_j_microc_2022_107869
crossref_primary_10_1016_j_compbiomed_2024_108483
crossref_primary_10_1016_j_jprocont_2019_05_001
crossref_primary_10_1049_iet_sen_2020_0119
crossref_primary_10_1016_j_engstruct_2019_05_048
crossref_primary_10_1007_s10230_021_00793_z
crossref_primary_10_1111_exsy_12785
crossref_primary_10_1007_s13198_019_00935_1
crossref_primary_10_1016_j_bdr_2022_100356
crossref_primary_10_1007_s00477_022_02235_w
crossref_primary_10_1007_s12652_022_03820_1
crossref_primary_10_1016_j_fuel_2022_126795
crossref_primary_10_1371_journal_pone_0309741
crossref_primary_10_1007_s42484_025_00239_7
crossref_primary_10_1007_s11042_021_11528_1
crossref_primary_10_1016_j_flowmeasinst_2017_02_005
crossref_primary_10_3390_app10124125
crossref_primary_10_3390_en16114489
crossref_primary_10_1002_cjce_24246
crossref_primary_10_3390_s18061705
crossref_primary_10_1016_j_saa_2023_123176
crossref_primary_10_3390_electronics10050540
crossref_primary_10_1007_s11042_019_7543_2
crossref_primary_10_1007_s10462_016_9461_2
crossref_primary_10_3390_machines11010032
crossref_primary_10_1016_j_neucom_2020_03_034
crossref_primary_10_1109_ACCESS_2021_3103746
crossref_primary_10_1007_s43674_021_00030_8
crossref_primary_10_1016_j_compbiolchem_2018_11_017
crossref_primary_10_3390_polym15020308
crossref_primary_10_1109_ACCESS_2020_3012093
crossref_primary_10_1016_j_oceaneng_2020_107777
crossref_primary_10_2166_hydro_2015_020
crossref_primary_10_3390_pr11071936
crossref_primary_10_1016_j_apr_2022_101455
crossref_primary_10_1007_s11517_023_02883_2
crossref_primary_10_1016_j_cogsys_2018_08_018
crossref_primary_10_1016_j_neucom_2018_12_078
crossref_primary_10_3390_e23040440
crossref_primary_10_1049_iet_com_2017_1177
crossref_primary_10_1155_2014_829256
crossref_primary_10_1109_ACCESS_2019_2920688
crossref_primary_10_3390_su9050754
crossref_primary_10_1155_2020_7917353
crossref_primary_10_3390_electronics11203414
crossref_primary_10_1016_j_apenergy_2017_07_124
crossref_primary_10_1016_j_indcrop_2024_119032
crossref_primary_10_1007_s12559_020_09752_2
crossref_primary_10_1007_s40430_025_05763_y
crossref_primary_10_1016_j_physa_2019_122025
crossref_primary_10_3390_app142110011
crossref_primary_10_3390_pr11051346
crossref_primary_10_1016_j_still_2019_104449
crossref_primary_10_1016_j_petrol_2022_111042
crossref_primary_10_1155_2022_5792694
crossref_primary_10_1016_j_future_2021_07_020
crossref_primary_10_1109_TIM_2021_3072699
crossref_primary_10_1016_j_jenvman_2025_126155
crossref_primary_10_1007_s00521_020_04788_9
crossref_primary_10_1007_s10462_023_10478_4
crossref_primary_10_1016_j_trgeo_2023_101022
crossref_primary_10_1007_s11042_019_08248_y
crossref_primary_10_1007_s13369_018_3253_8
crossref_primary_10_3390_mca29030040
crossref_primary_10_1016_j_psep_2021_11_020
crossref_primary_10_3390_app13158796
crossref_primary_10_1016_j_engappai_2024_108674
crossref_primary_10_1007_s10462_022_10283_5
crossref_primary_10_1007_s11042_023_14869_1
crossref_primary_10_1016_j_knosys_2022_110024
crossref_primary_10_1080_10408398_2024_2329956
crossref_primary_10_1016_j_jclepro_2019_118225
crossref_primary_10_1177_1475921720962419
crossref_primary_10_3390_agriculture12050612
crossref_primary_10_1016_j_geomorph_2020_107333
crossref_primary_10_3390_app13064018
crossref_primary_10_3390_su12041489
crossref_primary_10_2196_55315
crossref_primary_10_3389_fenvs_2021_753028
crossref_primary_10_1007_s10661_021_09561_6
crossref_primary_10_1109_COMST_2020_3014304
crossref_primary_10_1016_j_asoc_2024_112055
crossref_primary_10_3390_sym17091515
crossref_primary_10_1007_s10973_024_13621_7
crossref_primary_10_1016_j_saa_2017_10_063
crossref_primary_10_1016_j_fuel_2025_135073
crossref_primary_10_1016_j_ast_2025_110350
crossref_primary_10_3390_en14227519
crossref_primary_10_1109_TPAMI_2021_3119334
crossref_primary_10_1016_j_apm_2020_10_028
crossref_primary_10_1155_2021_6656770
crossref_primary_10_4018_IJKSS_2019070103
crossref_primary_10_1007_s12665_019_8225_0
crossref_primary_10_1016_j_resourpol_2019_101414
crossref_primary_10_1007_s13042_018_0833_6
crossref_primary_10_1061__ASCE_HE_1943_5584_0002087
crossref_primary_10_1016_j_obmed_2020_100270
crossref_primary_10_1007_s00500_024_09918_2
crossref_primary_10_1016_j_infsof_2018_10_004
crossref_primary_10_1016_j_eswa_2021_114676
crossref_primary_10_1155_2022_3111200
crossref_primary_10_1016_j_engappai_2018_06_010
crossref_primary_10_1016_j_measurement_2020_108161
crossref_primary_10_1007_s00202_023_01974_5
crossref_primary_10_1007_s11269_021_02770_1
crossref_primary_10_3390_agriculture15101100
crossref_primary_10_1007_s00521_021_06125_0
crossref_primary_10_1016_j_measurement_2021_109445
crossref_primary_10_3390_math12233708
crossref_primary_10_1109_ACCESS_2022_3228441
crossref_primary_10_1016_j_energy_2022_123255
crossref_primary_10_1007_s12652_015_0333_4
crossref_primary_10_1007_s12667_023_00584_1
crossref_primary_10_1016_j_cscm_2025_e04647
crossref_primary_10_1016_j_measurement_2024_116350
crossref_primary_10_1155_2022_3123475
crossref_primary_10_1109_ACCESS_2020_3035398
crossref_primary_10_1016_j_energy_2024_134104
crossref_primary_10_1007_s42417_021_00379_7
crossref_primary_10_1007_s13748_025_00385_w
crossref_primary_10_1016_j_saa_2021_120186
crossref_primary_10_1007_s00170_025_15812_4
crossref_primary_10_1016_j_aei_2022_101615
crossref_primary_10_1155_2023_8048311
crossref_primary_10_1007_s11280_016_0418_9
crossref_primary_10_1007_s11063_023_11248_7
crossref_primary_10_3389_fnagi_2023_1191378
crossref_primary_10_1177_0391398819848003
crossref_primary_10_1016_j_compbiomed_2021_105137
crossref_primary_10_1186_s13634_017_0520_x
crossref_primary_10_1109_ACCESS_2020_3034624
crossref_primary_10_1371_journal_pone_0312016
crossref_primary_10_1016_j_undsp_2025_02_004
crossref_primary_10_1016_j_oregeorev_2023_105706
crossref_primary_10_3390_molecules25214987
crossref_primary_10_1016_j_enbuild_2017_12_042
crossref_primary_10_1016_j_neucom_2017_05_058
crossref_primary_10_1016_j_ijrmms_2023_105546
crossref_primary_10_1016_j_asoc_2020_106538
crossref_primary_10_1111_exsy_13335
crossref_primary_10_3390_min12060731
crossref_primary_10_1007_s11042_021_11562_z
crossref_primary_10_1016_j_engappai_2016_10_015
crossref_primary_10_1007_s13198_025_02792_7
crossref_primary_10_1016_j_compbiomed_2020_103847
crossref_primary_10_3390_math11041014
crossref_primary_10_3390_en13143555
crossref_primary_10_1016_j_ins_2021_07_066
crossref_primary_10_1038_s41598_023_40553_3
crossref_primary_10_1016_j_jestch_2018_04_013
crossref_primary_10_1016_j_eswa_2022_119439
crossref_primary_10_3389_fenrg_2023_1267275
crossref_primary_10_1016_j_procs_2016_05_509
crossref_primary_10_1177_0142331219849261
crossref_primary_10_1109_ACCESS_2025_3569213
crossref_primary_10_1155_2022_3424367
crossref_primary_10_1016_j_asoc_2021_108208
crossref_primary_10_1109_ACCESS_2019_2948059
crossref_primary_10_3390_rs12244015
crossref_primary_10_1007_s12652_022_04423_6
crossref_primary_10_1007_s13369_024_09689_w
crossref_primary_10_1155_2022_6571085
crossref_primary_10_1007_s13042_024_02164_w
crossref_primary_10_1088_1742_6596_2153_1_012014
crossref_primary_10_1016_j_ifacol_2022_10_284
crossref_primary_10_3390_e23111389
crossref_primary_10_1016_j_jhydrol_2020_124657
crossref_primary_10_1016_j_rineng_2025_107059
crossref_primary_10_1016_j_ces_2021_117273
crossref_primary_10_1016_j_egyr_2023_01_108
crossref_primary_10_1166_jmihi_2021_3675
crossref_primary_10_1016_j_compbiomed_2023_107135
crossref_primary_10_3390_ijms20092186
crossref_primary_10_1049_smt2_70028
crossref_primary_10_1155_2022_8077563
crossref_primary_10_3390_machines10080627
crossref_primary_10_1007_s00202_021_01243_3
crossref_primary_10_1007_s40820_024_01489_z
crossref_primary_10_3390_math10142538
crossref_primary_10_3390_s17092049
crossref_primary_10_1007_s11069_021_04651_7
crossref_primary_10_1109_ACCESS_2021_3123151
crossref_primary_10_1016_j_egyr_2022_12_044
crossref_primary_10_1016_j_asoc_2020_106756
crossref_primary_10_1016_j_apenergy_2024_124901
crossref_primary_10_1016_j_bdr_2017_07_002
crossref_primary_10_1007_s00521_021_05836_8
crossref_primary_10_3390_app131910827
crossref_primary_10_1016_j_rser_2020_110050
crossref_primary_10_1186_s13007_017_0190_6
crossref_primary_10_1155_2018_2308237
crossref_primary_10_3390_w16233349
crossref_primary_10_3233_JIFS_201832
crossref_primary_10_1016_j_physc_2023_1354430
crossref_primary_10_3390_s23146486
crossref_primary_10_1016_j_energy_2024_133699
crossref_primary_10_3390_diagnostics11020241
crossref_primary_10_1155_2020_1287306
crossref_primary_10_1016_j_infrared_2022_104118
crossref_primary_10_1016_j_engfailanal_2024_107998
crossref_primary_10_1007_s42979_024_03612_8
crossref_primary_10_1021_acsfoodscitech_5c00390
crossref_primary_10_3390_agriculture12091492
crossref_primary_10_1007_s11042_019_7381_2
crossref_primary_10_1109_ACCESS_2023_3286308
crossref_primary_10_3390_s22052046
crossref_primary_10_1007_s00521_018_3748_y
crossref_primary_10_1007_s11042_020_10234_8
crossref_primary_10_32604_cmc_2022_020583
crossref_primary_10_1038_s41598_024_63292_5
crossref_primary_10_3390_s21217034
crossref_primary_10_1155_2020_2549324
crossref_primary_10_1109_TTE_2023_3324822
crossref_primary_10_3390_app12189213
crossref_primary_10_3390_app9040794
Cites_doi 10.1007/s10462-011-9208-z
10.1016/j.neucom.2012.01.034
10.1109/TNN.2003.809401
10.1016/j.neucom.2011.06.013
10.1016/j.neunet.2011.08.005
10.1109/TNNLS.2012.2230451
10.1016/j.neucom.2010.11.030
10.1007/s11063-009-9118-0
10.1016/j.eswa.2007.11.024
10.1016/j.patcog.2011.03.013
10.1631/jzus.C1100176
10.1007/s00521-010-0416-2
10.1016/0893-6080(91)90009-T
10.1016/j.neucom.2010.11.032
10.1360/jos161577
10.1007/s11063-012-9241-1
10.1109/TSMCB.2008.2010506
10.1007/s13042-011-0019-y
10.1016/j.patcog.2005.03.028
10.1109/TNN.2002.1031953
10.1016/j.neucom.2010.07.012
10.1016/j.neucom.2006.02.013
10.1561/2200000006
10.3724/SP.J.1016.2010.00279
10.1016/j.neucom.2004.04.015
10.1016/j.neucom.2005.12.126
10.1016/j.neucom.2008.01.005
10.1109/TNN.2009.2024147
10.1109/TNN.2006.880583
10.1016/j.neucom.2011.04.009
10.1109/72.655045
10.1007/s00521-011-0702-7
10.1016/j.neucom.2010.08.022
10.1016/j.cnsns.2012.07.021
10.1109/TNN.2005.853575
10.1016/j.asoc.2007.07.013
10.1016/S0893-6080(05)80131-5
10.7498/aps.60.110201
10.7498/aps.60.080504
10.1109/CEC.2011.5949670
10.1007/BF02478259
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2013
COPYRIGHT 2015 Springer
Copyright Springer Nature B.V. Jun 2015
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2013
– notice: COPYRIGHT 2015 Springer
– notice: Copyright Springer Nature B.V. Jun 2015
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-013-9405-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 115
ExternalDocumentID 3683355811
A718212709
10_1007_s10462_013_9405_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c454t-59b54738d771f4c8af81ad9815b32d38bc06329b1c363de45a10e16de310d1413
IEDL.DBID 7WY
ISICitedReferencesCount 436
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354407100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-2821
IngestDate Sat Nov 15 19:16:43 EST 2025
Sat Nov 29 09:49:07 EST 2025
Sat Nov 29 02:43:23 EST 2025
Tue Nov 18 22:36:13 EST 2025
Fri Feb 21 02:37:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Extreme learning machine (ELM)
Local minimum
Over-fitting
Single-hidden layer feedforward neural networks (SLFNs)
Least-squares
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c454t-59b54738d771f4c8af81ad9815b32d38bc06329b1c363de45a10e16de310d1413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1680659719
PQPubID 36790
PageCount 13
ParticipantIDs proquest_journals_1680659719
gale_infotracacademiconefile_A718212709
crossref_citationtrail_10_1007_s10462_013_9405_z
crossref_primary_10_1007_s10462_013_9405_z
springer_journals_10_1007_s10462_013_9405_z
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2015
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Zhang, Wang (CR50) 2011; 60
Li, Wang, Yu (CR30) 2013; 18
Deng, Zheng, Lian (CR6) 2010; 74
Huang, Zhu, Siew (CR22) 2006; 70
Ding, Xu, Chunyang (CR9) 2012; 21
Fernandez-Navarro, Hervas-Martinez, Sanchez-Monedero (CR12) 2011; 74
Mohamed (CR37) 2011; 74
Huang, Wang, Lan (CR20) 2011; 2
Feng, Huang, Lin (CR11) 2009; 20
Mohammed, Minhas, Wu (CR38) 2011; 44
Chang, Li, Wang (CR4) 2007; 19
Wang, Cao, Yuan (CR46) 2011; 74
Huang (CR17) 2003; 14
CR45
Mao (CR32) 2002; 13
Kahramanli, Allahverdi (CR23) 2009; 36
Quteishat, Lim (CR40) 2008; 8
Ding, Su, Yu (CR8) 2011; 36
Huang, Zhu, Siew (CR21) 2004; 1–4
Li, Liu, Li (CR29) 2013; 24
Ding, Jia, Su (CR7) 2011; 20
Martinez-Martinez, Escandell-Montero, Soria-Olivas (CR35) 2011; 74
Pan, Cheng, Cai (CR39) 2010; 32
Shang, Wang, Yao (CR44) 2005; 16
Deng, Zheng, Chen (CR5) 2010; 33
CR19
Li, Chen, Liu (CR27) 2013; 37
Liang, Huang (CR31) 2006; 17
Huang (CR16) 2003; 14
Ding, Jin, Zhao (CR10) 2013
McCulloch, Pitts (CR36) 1943; 5
Yao, Han (CR48) 2010; 15
CR13
Rong, Ong, Tan (CR43) 2008; 72
Mao, Huang (CR33) 2005; 16
Zhang, Wang (CR49) 2009; 30
Han, Huang (CR14) 2006; 69
Carpenter, Grossberg, Arbib (CR3) 2003
Lan, Soh, Huang (CR24) 2010; 73
LeCun, Bengio (CR25) 1995
Leshno, Lin, Pinkus (CR26) 1991; 6
Li, Chen, Liu (CR28) 2012; 91
Cai, Cheng, Pan (CR2) 2010; 31
Rong, Huang, Sundararajan (CR42) 2009; 39
Benqio (CR1) 2009; 2
Markowska-Kaczmar, Trelak (CR34) 2005; 63
Zhu, Qin, Suganthan (CR52) 2005; 38
Huang, Babri (CR18) 1998; 9
Zhang, Wang (CR51) 2011; 60
Hornik (CR15) 1991; 4
Romero, Alquezar (CR41) 2012; 25
Xu, Ding, Shi (CR47) 2012; 13
G Carpenter (9405_CR3) 2003
W Deng (9405_CR5) 2010; 33
G Feng (9405_CR11) 2009; 20
S Ding (9405_CR10) 2013
G Huang (9405_CR20) 2011; 2
E Romero (9405_CR41) 2012; 25
Y Lan (9405_CR24) 2010; 73
H Kahramanli (9405_CR23) 2009; 36
Y Wang (9405_CR46) 2011; 74
W Yao (9405_CR48) 2010; 15
G Huang (9405_CR16) 2003; 14
A Quteishat (9405_CR40) 2008; 8
Y Benqio (9405_CR1) 2009; 2
9405_CR13
S Li (9405_CR29) 2013; 24
S Ding (9405_CR9) 2012; 21
AA Mohammed (9405_CR38) 2011; 44
9405_CR19
K Mao (9405_CR33) 2005; 16
K Mao (9405_CR32) 2002; 13
F Fernandez-Navarro (9405_CR12) 2011; 74
G Huang (9405_CR21) 2004; 1–4
MH Mohamed (9405_CR37) 2011; 74
S Ding (9405_CR8) 2011; 36
K Hornik (9405_CR15) 1991; 4
S Li (9405_CR30) 2013; 18
L Shang (9405_CR44) 2005; 16
9405_CR50
9405_CR51
S Li (9405_CR28) 2012; 91
JM Martinez-Martinez (9405_CR35) 2011; 74
HJ Rong (9405_CR43) 2008; 72
G Huang (9405_CR17) 2003; 14
D Zhang (9405_CR49) 2009; 30
Q Zhu (9405_CR52) 2005; 38
HJ Rong (9405_CR42) 2009; 39
U Markowska-Kaczmar (9405_CR34) 2005; 63
X Xu (9405_CR47) 2012; 13
Y LeCun (9405_CR25) 1995
G Huang (9405_CR18) 1998; 9
H Pan (9405_CR39) 2010; 32
9405_CR45
G Huang (9405_CR22) 2006; 70
9405_CR36
W Deng (9405_CR6) 2010; 74
N Liang (9405_CR31) 2006; 17
M Leshno (9405_CR26) 1991; 6
F Han (9405_CR14) 2006; 69
S Li (9405_CR27) 2013; 37
S Ding (9405_CR7) 2011; 20
Y Chang (9405_CR4) 2007; 19
L Cai (9405_CR2) 2010; 31
References_xml – ident: CR45
– volume: 36
  start-page: 153
  issue: 2
  year: 2011
  end-page: 162
  ident: CR8
  article-title: An optimizing BP neural network algorithm based on genetic algorithm
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9208-z
– volume: 19
  start-page: 5587
  issue: 23
  year: 2007
  end-page: 5590
  ident: CR4
  article-title: Soft sensing modeling based on extreme learning machine for biochemical processes
  publication-title: J Syst Simul
– volume: 91
  start-page: 1
  year: 2012
  end-page: 10
  ident: CR28
  article-title: Decentralized kinematic control of a class of collaborative redundant manipulators via recurrent neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.01.034
– volume: 14
  start-page: 274
  issue: 2
  year: 2003
  end-page: 281
  ident: CR16
  article-title: Learning capability and storage capacity of two hidden-layer feedforward networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2003.809401
– volume: 74
  start-page: 3716
  issue: 17
  year: 2011
  end-page: 3721
  ident: CR35
  article-title: Regularized extreme learning machine for regression problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.06.013
– volume: 25
  start-page: 122
  year: 2012
  end-page: 129
  ident: CR41
  article-title: Comparing error minimized extreme learning machines and support vector sequential feed-forward neural networks
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2011.08.005
– volume: 24
  start-page: 301
  issue: 2
  year: 2013
  end-page: 309
  ident: CR29
  article-title: Selective positive-negative feedback produces the winner-take-all competition in recurrent neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2230451
– volume: 74
  start-page: 2483
  issue: 16
  year: 2011
  end-page: 2490
  ident: CR46
  article-title: A study on effectiveness of extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.030
– volume: 30
  start-page: 187
  issue: 3
  year: 2009
  end-page: 211
  ident: CR49
  article-title: Rough neural network based on bottom-up fuzzy rough data analysis
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-009-9118-0
– volume: 36
  start-page: 1513
  issue: 2
  year: 2009
  end-page: 1522
  ident: CR23
  article-title: Rule extraction from trained adaptive neural networks using artificial immune systems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.11.024
– ident: CR19
– volume: 44
  start-page: 2588
  issue: 10–11
  year: 2011
  end-page: 2597
  ident: CR38
  article-title: Human face recognition based on multidimensional PCA and extreme learning machine
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.03.013
– volume: 13
  start-page: 131
  issue: 2
  year: 2012
  end-page: 138
  ident: CR47
  article-title: A novel optimizing method for RBF neural network based on rough set and AP clustering algorithm
  publication-title: J Zhejiang University-SCIENCE C
  doi: 10.1631/jzus.C1100176
– volume: 1–4
  start-page: 985
  year: 2004
  end-page: 990
  ident: CR21
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
  publication-title: IEEE Int Jt Conf Neural Netw
– volume: 20
  start-page: 297
  issue: 2
  year: 2011
  end-page: 302
  ident: CR7
  article-title: Research of neural network algorithm based on factor analysis and cluster analysis
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-010-0416-2
– volume: 4
  start-page: 251
  issue: 2
  year: 1991
  end-page: 257
  ident: CR15
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(91)90009-T
– volume: 74
  start-page: 2502
  issue: 16
  year: 2011
  end-page: 2510
  ident: CR12
  article-title: MELM-GRBF: A modified version of the extreme learning machine for generalized radial basis function neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.032
– volume: 16
  start-page: 1577
  issue: 9
  year: 2005
  end-page: 1583
  ident: CR44
  article-title: A classification approach based on evolutionary neural networks
  publication-title: J Softw
  doi: 10.1360/jos161577
– volume: 15
  start-page: 1278
  issue: 8
  year: 2010
  end-page: 1284
  ident: CR48
  article-title: Fusion of thermal infrared and multispectral remote sensing images via neural network regression
  publication-title: J Image Graphics
– volume: 37
  start-page: 189
  year: 2013
  end-page: 205
  ident: CR27
  article-title: Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-012-9241-1
– year: 2013
  ident: CR10
  publication-title: Modern data analysis and information pattern recognition
– volume: 14
  start-page: 274
  issue: 2
  year: 2003
  end-page: 281
  ident: CR17
  article-title: Learning capability and storage capacity of two-hidden-layer feedforward network
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2003.809401
– volume: 39
  start-page: 1067
  issue: 4
  year: 2009
  end-page: 1072
  ident: CR42
  article-title: Online sequential fuzzy extreme learning machine for function approximation and classification problems
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2008.2010506
– volume: 2
  start-page: 107
  issue: 2
  year: 2011
  end-page: 122
  ident: CR20
  article-title: Extreme learning machines: a survey
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-011-0019-y
– volume: 38
  start-page: 1759
  issue: 10
  year: 2005
  end-page: 1763
  ident: CR52
  article-title: Evolutionary extreme learning machine
  publication-title: Patt Recognit
  doi: 10.1016/j.patcog.2005.03.028
– volume: 13
  start-page: 1211
  issue: 5
  year: 2002
  end-page: 1217
  ident: CR32
  article-title: RBF neural network center selection based on Fisher ratio class separability measure
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.1031953
– volume: 73
  start-page: 3028
  issue: 2010
  year: 2010
  end-page: 3038
  ident: CR24
  article-title: Two-stage extreme learning machine for regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.07.012
– start-page: 87
  year: 2003
  end-page: 90
  ident: CR3
  article-title: Adaptive resonance theory
  publication-title: The handbook of brain theory and neural networks
– volume: 69
  start-page: 2369
  issue: 16–18
  year: 2006
  end-page: 2373
  ident: CR14
  article-title: Improved extreme learning machine for function approximation by encoding apriori information
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.02.013
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  end-page: 127
  ident: CR1
  article-title: Learning deep architectures for AI
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000006
– volume: 33
  start-page: 279
  issue: 2
  year: 2010
  end-page: 287
  ident: CR5
  article-title: Research on extreme learning of neural networks
  publication-title: Chin J Comput
  doi: 10.3724/SP.J.1016.2010.00279
– volume: 63
  start-page: 359
  year: 2005
  end-page: 379
  ident: CR34
  article-title: Fuzzy logic and evolutionary algorithm-two techniques in rule extraction from neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.04.015
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  end-page: 501
  ident: CR22
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 72
  start-page: 359
  issue: 1–3
  year: 2008
  end-page: 366
  ident: CR43
  article-title: A fast pruned-extreme learning machine for classification problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.01.005
– volume: 20
  start-page: 1352
  issue: 8
  year: 2009
  end-page: 1357
  ident: CR11
  article-title: Error minimized extreme learning machine with growth of hidden nodes and incremental learning
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2024147
– volume: 31
  start-page: 210
  issue: 9
  year: 2010
  end-page: 2012
  ident: CR2
  article-title: Lithologic identification based on ELM
  publication-title: Comput Engi Des
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  end-page: 1423
  ident: CR31
  article-title: A fast and accurate online sequential learning algorithm for feed forward networks
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.880583
– volume: 74
  start-page: 3180
  issue: 17
  year: 2011
  end-page: 3192
  ident: CR37
  article-title: Genetic algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.04.009
– volume: 60
  start-page: 080504
  issue: 8
  year: 2011
  end-page: 080504-6
  ident: CR51
  article-title: Selective forgetting extreme learning machine and its application to time series prediction
  publication-title: Acta Physica Sinica
– ident: CR13
– volume: 9
  start-page: 224
  issue: 1
  year: 1998
  end-page: 229
  ident: CR18
  article-title: Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.655045
– volume: 60
  start-page: 110201
  issue: 11
  year: 2011
  end-page: 111201-6
  ident: CR50
  article-title: Incremental regularized extreme learning machine based on Cholesky factorization and its application to time series prediction
  publication-title: Acta Physica Sinica
– volume: 21
  start-page: 333
  issue: 2
  year: 2012
  end-page: 336
  ident: CR9
  article-title: An optimizing method of RBF neural network based on genetic algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-011-0702-7
– year: 1995
  ident: CR25
  publication-title: Convolutional networks for images, speech, and time series
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  end-page: 133
  ident: CR36
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Math Biophys
– volume: 74
  start-page: 447
  issue: 1–3
  year: 2010
  end-page: 456
  ident: CR6
  article-title: Ordinal extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.08.022
– volume: 32
  start-page: 131
  issue: 2
  year: 2010
  end-page: 134
  ident: CR39
  article-title: Comparison of the extreme learning machine with the support vector machine for reservoir permeability prediction
  publication-title: Comput Engi Sci
– volume: 18
  start-page: 435
  issue: 3
  year: 2013
  end-page: 442
  ident: CR30
  article-title: A nonlinear model to generate the winner-take-all competition
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.07.021
– volume: 16
  start-page: 1531
  issue: 6
  year: 2005
  end-page: 1540
  ident: CR33
  article-title: Neuron selection for RBF neural network classifier based on data structure preserving criterion
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.853575
– volume: 8
  start-page: 985
  issue: 2
  year: 2008
  end-page: 995
  ident: CR40
  article-title: A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.07.013
– volume: 6
  start-page: 861
  issue: 6
  year: 1991
  end-page: 867
  ident: CR26
  article-title: Multilayer feedforward networks with a non-polynomial activation function can approximate any function
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80131-5
– start-page: 87
  volume-title: The handbook of brain theory and neural networks
  year: 2003
  ident: 9405_CR3
– volume: 33
  start-page: 279
  issue: 2
  year: 2010
  ident: 9405_CR5
  publication-title: Chin J Comput
  doi: 10.3724/SP.J.1016.2010.00279
– volume: 6
  start-page: 861
  issue: 6
  year: 1991
  ident: 9405_CR26
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80131-5
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 9405_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 63
  start-page: 359
  year: 2005
  ident: 9405_CR34
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2004.04.015
– volume: 17
  start-page: 1411
  issue: 6
  year: 2006
  ident: 9405_CR31
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.880583
– volume: 32
  start-page: 131
  issue: 2
  year: 2010
  ident: 9405_CR39
  publication-title: Comput Engi Sci
– volume: 72
  start-page: 359
  issue: 1–3
  year: 2008
  ident: 9405_CR43
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.01.005
– volume: 14
  start-page: 274
  issue: 2
  year: 2003
  ident: 9405_CR16
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2003.809401
– volume-title: Modern data analysis and information pattern recognition
  year: 2013
  ident: 9405_CR10
– ident: 9405_CR50
  doi: 10.7498/aps.60.110201
– ident: 9405_CR13
– volume: 4
  start-page: 251
  issue: 2
  year: 1991
  ident: 9405_CR15
  publication-title: Neural Netw
  doi: 10.1016/0893-6080(91)90009-T
– volume: 13
  start-page: 1211
  issue: 5
  year: 2002
  ident: 9405_CR32
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.1031953
– volume: 74
  start-page: 3180
  issue: 17
  year: 2011
  ident: 9405_CR37
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.04.009
– volume: 36
  start-page: 153
  issue: 2
  year: 2011
  ident: 9405_CR8
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9208-z
– volume: 1–4
  start-page: 985
  year: 2004
  ident: 9405_CR21
  publication-title: IEEE Int Jt Conf Neural Netw
– volume: 16
  start-page: 1577
  issue: 9
  year: 2005
  ident: 9405_CR44
  publication-title: J Softw
  doi: 10.1360/jos161577
– volume: 91
  start-page: 1
  year: 2012
  ident: 9405_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.01.034
– ident: 9405_CR51
  doi: 10.7498/aps.60.080504
– volume: 69
  start-page: 2369
  issue: 16–18
  year: 2006
  ident: 9405_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.02.013
– volume: 2
  start-page: 107
  issue: 2
  year: 2011
  ident: 9405_CR20
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-011-0019-y
– volume: 74
  start-page: 2502
  issue: 16
  year: 2011
  ident: 9405_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.032
– volume: 21
  start-page: 333
  issue: 2
  year: 2012
  ident: 9405_CR9
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-011-0702-7
– volume: 38
  start-page: 1759
  issue: 10
  year: 2005
  ident: 9405_CR52
  publication-title: Patt Recognit
  doi: 10.1016/j.patcog.2005.03.028
– volume: 25
  start-page: 122
  year: 2012
  ident: 9405_CR41
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2011.08.005
– volume: 19
  start-page: 5587
  issue: 23
  year: 2007
  ident: 9405_CR4
  publication-title: J Syst Simul
– volume: 74
  start-page: 3716
  issue: 17
  year: 2011
  ident: 9405_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.06.013
– volume: 18
  start-page: 435
  issue: 3
  year: 2013
  ident: 9405_CR30
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2012.07.021
– volume: 30
  start-page: 187
  issue: 3
  year: 2009
  ident: 9405_CR49
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-009-9118-0
– ident: 9405_CR45
  doi: 10.1109/CEC.2011.5949670
– volume: 15
  start-page: 1278
  issue: 8
  year: 2010
  ident: 9405_CR48
  publication-title: J Image Graphics
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 9405_CR1
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000006
– volume: 13
  start-page: 131
  issue: 2
  year: 2012
  ident: 9405_CR47
  publication-title: J Zhejiang University-SCIENCE C
  doi: 10.1631/jzus.C1100176
– volume: 74
  start-page: 447
  issue: 1–3
  year: 2010
  ident: 9405_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.08.022
– volume: 44
  start-page: 2588
  issue: 10–11
  year: 2011
  ident: 9405_CR38
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.03.013
– ident: 9405_CR19
– volume: 73
  start-page: 3028
  issue: 2010
  year: 2010
  ident: 9405_CR24
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.07.012
– volume: 24
  start-page: 301
  issue: 2
  year: 2013
  ident: 9405_CR29
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2230451
– volume: 9
  start-page: 224
  issue: 1
  year: 1998
  ident: 9405_CR18
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.655045
– volume: 37
  start-page: 189
  year: 2013
  ident: 9405_CR27
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-012-9241-1
– volume: 36
  start-page: 1513
  issue: 2
  year: 2009
  ident: 9405_CR23
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.11.024
– volume: 39
  start-page: 1067
  issue: 4
  year: 2009
  ident: 9405_CR42
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2008.2010506
– volume-title: Convolutional networks for images, speech, and time series
  year: 1995
  ident: 9405_CR25
– ident: 9405_CR36
  doi: 10.1007/BF02478259
– volume: 8
  start-page: 985
  issue: 2
  year: 2008
  ident: 9405_CR40
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2007.07.013
– volume: 16
  start-page: 1531
  issue: 6
  year: 2005
  ident: 9405_CR33
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2005.853575
– volume: 74
  start-page: 2483
  issue: 16
  year: 2011
  ident: 9405_CR46
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.030
– volume: 31
  start-page: 210
  issue: 9
  year: 2010
  ident: 9405_CR2
  publication-title: Comput Engi Des
– volume: 20
  start-page: 297
  issue: 2
  year: 2011
  ident: 9405_CR7
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-010-0416-2
– volume: 14
  start-page: 274
  issue: 2
  year: 2003
  ident: 9405_CR17
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2003.809401
– volume: 20
  start-page: 1352
  issue: 8
  year: 2009
  ident: 9405_CR11
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2009.2024147
SSID ssj0005243
Score 2.570056
Snippet Extreme learning machine (ELM) is a new learning algorithm for the single hidden layer feedforward neural networks. Compared with the conventional neural...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103
SubjectTerms Algorithms
Application
Artificial Intelligence
Artificial neural networks
Computer Science
Data mining
Information processing
Learning
Machine learning
Minimization
Neural networks
Optimization
Pattern recognition
R&D
Research & development
Robot learning
Robust control
Robustness
Theory
Tracking
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86PXhxfuJ0Sg6CoAaapk1T8TJkw4MMQR27hTRJ52DrZKui--tN-qH1E_ScNAnvI--l773fA-DQeBFMC-oiGUcKedpVKIqZjwKHqVAb-0UyuKbeVdDtsn4_vC7quGdltnsZksxu6kqxm0dtGgFBofEy0HwRLPkWbMY-0W96lbyOPFXOpSEy7wlchjK_W-KDMfp8JX-JjWYmp1P_12HXwGrhYcJWLhLrYEEnG6Bedm-AhTJvgvP2c2p_DsKiccQAjrPESn0GxWgwmQ7T-_EpzAodX6BIFKzGurfAXad9e3GJil4KSHq-lyI_jGyXYaaCAMeeZCJmWKiQYT8iriIsksZXccMIS0KJ0p4vsKMxVdq4fwobS7cNaskk0TsAChbEVEoisKCeIpoJyTSVjDJpY56kAZySqFwWQOO238WIv0MkW-pwQx1uqcPnDXD89slDjrLx2-QjyyluNdCsK0VRSGBOZ7GseMuYW4tb74QN0CyZyQvVnHEjnDaWHGAzfFIyrzL807a7f5q9B1aMa-XnSWVNUEunj3ofLMundDibHmQS-woqtuR2
  priority: 102
  providerName: Springer Nature
Title Extreme learning machine: algorithm, theory and applications
URI https://link.springer.com/article/10.1007/s10462-013-9405-z
https://www.proquest.com/docview/1680659719
Volume 44
WOSCitedRecordID wos000354407100005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1By4EL5VNsKZUPSEiARRwnjo2QUKm2QgKWVYFSuFiO7ZRK7bZ0A4L-emYShy4geuEyUpRkYuXZnrFnPA_gHnoROjqVc9_UgRcxD7xudMmrTAcT0X7JrlzTzqtqMtG7u2aaNtzmKa1ymBO7iTocedojf4w6KQRYCfPs-Asn1iiKriYKjYuwjIa6JAaD6sPHhRSPPmsuV4bj0kIMUc3-6FyhKClBcoM-Cz_9zS79OTv_FSbtrM_Wyv-2-ypcSX4n2-g7yjW4EGfXYWXgdGBpiN-Ap-PvLW0ZskQnsccOu3TL-IS5gz1U3H4-fMS6448_mJsFthgBvwnvt8bvNl_wxLDAfVEWLS9NTdzDOlSVaAqvXaOFC0aLspZ5kLr26MHkphZeKhliUTqRRaFCRKcwCLR_t2BpdjSLt4E5XTXKe-mEU0WQUTuvo_JaaU-RUDmCbPi_1qfy48SCcWDPCicTJBYhsQSJPR3Bg1-vHPe1N857-D6BZmlcol7v0vECbB1VuLIbaISpmn1mRrA2IGXTgJ3bM5hG8HDAeuH2vz67er6yO3AZPayyzy1bg6X25Gu8C5f8t3Z_frLe9dZ1WH4-nky38eplxVG-zjZJijcop-UnlNtvd34CuWL05g
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bTxUxEJ4gmOiLgJd4FLQPGBO18XS7220NxhCFQDgcfUDDW-m2XTSBA3LWC_wof6Mze5EjRt544Hl3Z7fbrzPTzuUDWEIvQkenEu7LIvA0JoEXpc543tfBRLRfsm7X9GmQD4d6Z8d8mIJfXS0MpVV2OrFW1OHQ0xn5S5RJIcBcmDdHXzmxRlF0taPQaGCxGU9-4JZt_HrjHc7vkyRZW91-u85bVgHu0yyteGYK4tvVIc9FmXrtSi1cMFpkhUyC1IVHq52YQnipZIhp5kQ_ChUiOkJBoM5Huddghvrq0YraEu8nUkqaLL1EGY5bGdFFUZtSvVRREoTkBn0kfvqXHTxvDf4Jy9bWbm32qv2nObjV-tVspVkI8zAVR7dhtuOsYK0KuwPLqz8rOhJlLV3GHjuo00njK-b293Ag1eeDF6wu7zxhbhTYZIT_Lny8lDHcg-nR4SjeB-Z0XirvpRNOpUFG7byOymulPUV6ZQ_63Xxa37ZXJ5aPfXvWGJogYBECliBgT3vw7M8jR01vkYtufkogsaR3UK53bfkEfh118LIr6GRQt_6-6cFChwzbKqSxPYNFD5532Jq4_L_XPrhY2GO4sb69NbCDjeHmQ7iJ3mTW5NEtwHR1_C0uwnX_vfoyPn5UrxQGu5cNud9LeEkx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fTxQxEJ7gYYwvgr_iKWAfNCZqw3W7220JhoDcRQK5XIwa3mq37aIJHMgtKPxp_HVOd7tyauSNB593d3a7_Toz7XwzA_AMvQjpjUioLQtHU584WpQyo3lPOuXRfvG6XNOnnXw4lLu7ajQDF20uTKBVtjqxVtTu0IYz8mWUGUKAOVPLZaRFjDYHa0ffaOggFSKtbTuNBiLb_uw7bt8mb7Y2ca6fJ8mg_-HtOxo7DFCbZmlFM1WE3rvS5TkrUytNKZlxSrKs4InjsrBowRNVMMsFdz7NDOt5JpxHp8gx1P8o9wbM5hw3PR2Y3egPR--nCCYNZy8RiuLGhrUx1SZxLxWBEsGpQo-Jnv9mFf-0DX8FaWvbN5j7n__aPNyJHjdZb5bIXZjx43sw13azIFG53YfV_o8qHJaS2EhjjxzURFO_Qsz-Hg6k-nLwmtSJn2fEjB2Zjv0_gI_XMoaH0Bkfjv0jIEbmpbCWG2ZE6riXxkovrBTShhgw70KvnVttY-H10P9jX1-WjA5w0AgHHeCgz7vw8tcjR03VkatufhEAo4NGQrnWxMQK_LpQ20uvo_sR6vj3VBcWWpToqKom-hIiXXjV4mzq8r9e-_hqYU_hFiJN72wNt5_AbXQzs4ZgtwCd6vjEL8JNe1p9nRwvxWVD4PN1Y-4nvjhTUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extreme+learning+machine%3A+algorithm%2C+theory+and+applications&rft.jtitle=The+Artificial+intelligence+review&rft.au=Ding%2C+Shifei&rft.au=Zhao%2C+Han&rft.au=Zhang%2C+Yanan&rft.au=Xu%2C+Xinzheng&rft.date=2015-06-01&rft.pub=Springer&rft.issn=0269-2821&rft.volume=44&rft.issue=1&rft.spage=103&rft_id=info:doi/10.1007%2Fs10462-013-9405-z&rft.externalDocID=A718212709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon