A MEASURE-THEORETIC COMPUTATIONAL METHOD FOR INVERSE SENSITIVITY PROBLEMS I: METHOD AND ANALYSIS

We consider the inverse sensitivity analysis problem of quantifying the uncertainty of inputs to a deterministic map given specified uncertainty in a linear functional of the output of the map. This is a version of the model calibration or parameter estimation problem for a deterministic map. We ass...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on numerical analysis Ročník 49; číslo 5/6; s. 1836 - 1859
Hlavní autoři: BREIDT, J., BUTLER, T., ESTEP, D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.09.2011
Témata:
ISSN:0036-1429, 1095-7170
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the inverse sensitivity analysis problem of quantifying the uncertainty of inputs to a deterministic map given specified uncertainty in a linear functional of the output of the map. This is a version of the model calibration or parameter estimation problem for a deterministic map. We assume that the uncertainty in the quantity of interest is represented by a random variable with a given distribution, and we use the law of total probability to express the inverse problem for the corresponding probability measure on the input space. Assuming that the map from the input space to the quantity of interest is smooth, we solve the generally ill-posed inverse problem by using the implicit function theorem to derive a method for approximating the set-valued inverse that provides an approximate quotient space representation of the input space. We then derive an efficient computational approach to compute a measure theoretic approximation of the probability measure on the input space imparted by the approximate set-valued inverse that solves the inverse problem.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
ISSN:0036-1429
1095-7170
DOI:10.1137/100785946