A class of optimization problems over the efficient set of a multiple criteria nonlinear programming problem

One of the most important and interesting approaches in multiple criteria optimization is the problem of optimizing some function over the set of efficient solutions. This is a very difficult multiextremal global optimization problem, even for the case that the underlying multiple criteria program i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 122; číslo 1; s. 58 - 68
Hlavní autor: Thoai, Nguyen V.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.04.2000
Elsevier
Elsevier Sequoia S.A
Edice:European Journal of Operational Research
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:One of the most important and interesting approaches in multiple criteria optimization is the problem of optimizing some function over the set of efficient solutions. This is a very difficult multiextremal global optimization problem, even for the case that the underlying multiple criteria program is linear and the function to be optimized over the efficient set is linear as well. In this article, we consider the problem of maximizing a special function over the efficient set of a multiple criteria concave maximization problem under the assumption that the objective function is a nondecreasing composite quasiconvex function of the concave criteria. We show that this problem can be formulated as a special global optimization problem in the outcome space. An algorithm of the outer approximation type is proposed for solving the resulting problem. Preliminary computational experiments show that this algorithm can work well for problems with a small number of criteria (less than 8), while the dimension of the decision space can be fairly large.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0377-2217
1872-6860
DOI:10.1016/S0377-2217(99)00068-5