Fusing Mobile Phone and Travel Survey Data to Model Urban Activity Dynamics

A key issue to understand urban system is to characterize the activity dynamics in a city—when, where, what, and how activities happen in a city. To better understand the urban activity dynamics, city-wide and multiday activity participation sequence data, namely, activity chain as well as suitable...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of advanced transportation Ročník 2020; číslo 2020; s. 1 - 17
Hlavní autori: Ukkusuri, Satish V., Zhan, Xianyuan, Zhang, Yuliang, Yang, Chao, Chen, Yifan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Wiley
Predmet:
ISSN:0197-6729, 2042-3195
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A key issue to understand urban system is to characterize the activity dynamics in a city—when, where, what, and how activities happen in a city. To better understand the urban activity dynamics, city-wide and multiday activity participation sequence data, namely, activity chain as well as suitable spatiotemporal models, are needed. The commonly used household travel survey data in activity analysis suffers from limited sample size and temporal coverage. The emergence of large-scale spatiotemporal data in urban areas, such as mobile phone data, provides a new opportunity to infer urban activities and the underlying dynamics. However, the challenge is the absence of labeled activity information in mobile phone data. Consequently, how to fuse the useful information in household survey data and mobile phone data to build city-wide, multiday, and all-time activity chains becomes an important research question. Moreover, the multidimension structure of the activity data (e.g., location, start time, duration, type) makes the extraction of spatiotemporal activity patterns another difficult problem. In this study, the authors first introduce an activity chain inference model based on tensor decomposition to infer the missing activity labels in large-scale and multiday activity data, and then develop a spatiotemporal event clustering model based on DBSCAN, called STE-DBSCAN, to identify the spatiotemporal activity patterns. The proposed approaches achieved good accuracy and produced patterns with a high level of interpretability.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0197-6729
2042-3195
DOI:10.1155/2020/5321385