Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mec...
Uloženo v:
| Vydáno v: | International journal of cosmetic science Ročník 40; číslo 4; s. 328 - 347 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Wiley Subscription Services, Inc
01.08.2018
|
| Témata: | |
| ISSN: | 0142-5463, 1468-2494, 1468-2494 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non‐coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non‐specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.
Résumé
Dans la peau humaine, le processus de la mélanogenèse est extrêmement contrôlé. En effet, divers signaux extracellulaires sont transduits via des voies de signalisation dédiées qui convergent essentiellement vers le facteur de transcription MITF. Ce dernier intègre cette signalisation en amont et régule alors la transcription de gènes impliqués dans les divers mécanismes inhérents à la modulation de la mélanogenèse. La synthèse des pigments de mélanine se produit dans les mélanocytes, à l'intérieur des mélanosomes dans lesquels les enzymes de la mélanogenèse (tyrosinase et protéines apparentées) sont adressées à l'aide de complexes protéiques spécifiques. Les mélanosomes ainsi chargés en mélanine sont ensuite transférés aux kératinocytes. Un niveau plus élaboré de régulation de la mélanogenèse entre aussi en jeu au travers de l'action d’ARNs non codants (microARNs et lncRNAs). Outre cette régulation canonique, la mélanogenèse peut également être modulée par des voies intrinsèques non spécifiques telles l'environnement hormonal et l'inflammation, et par des facteurs extrinsèques, comme le rayonnement solaire et la pollution environnementale. Nous avons par ailleurs développé un réseau d'interactions gènes/protéines regroupant les multiples aspects de la régulation de la mélanogenèse et de la pigmentation de la peau grâce à l'outil bioinformatique. Ce réseau constitue une ressource pour mieux comprendre et étudier la biologie de la pigmentation de la peau. |
|---|---|
| AbstractList | In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced
via
dedicated signalling pathways and mostly converge to
MITF
, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play
via
the action of non‐coding
RNA
s (micro
RNA
s, lnc
RNA
s). Besides this canonical regulation, melanogenesis can also be modulated by other non‐specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.
Dans la peau humaine, le processus de la mélanogenèse est extrêmement contrôlé. En effet, divers signaux extracellulaires sont transduits
via
des voies de signalisation dédiées qui convergent essentiellement vers le facteur de transcription
MITF
. Ce dernier intègre cette signalisation en amont et régule alors la transcription de gènes impliqués dans les divers mécanismes inhérents à la modulation de la mélanogenèse. La synthèse des pigments de mélanine se produit dans les mélanocytes, à l'intérieur des mélanosomes dans lesquels les enzymes de la mélanogenèse (tyrosinase et protéines apparentées) sont adressées à l'aide de complexes protéiques spécifiques. Les mélanosomes ainsi chargés en mélanine sont ensuite transférés aux kératinocytes. Un niveau plus élaboré de régulation de la mélanogenèse entre aussi en jeu au travers de l'action d’
ARN
s non codants (micro
ARN
s et lnc
RNA
s). Outre cette régulation canonique, la mélanogenèse peut également être modulée par des voies intrinsèques non spécifiques telles l'environnement hormonal et l'inflammation, et par des facteurs extrinsèques, comme le rayonnement solaire et la pollution environnementale. Nous avons par ailleurs développé un réseau d'interactions gènes/protéines regroupant les multiples aspects de la régulation de la mélanogenèse et de la pigmentation de la peau grâce à l'outil bioinformatique. Ce réseau constitue une ressource pour mieux comprendre et étudier la biologie de la pigmentation de la peau. In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology. In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non‐coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non‐specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology. Résumé Dans la peau humaine, le processus de la mélanogenèse est extrêmement contrôlé. En effet, divers signaux extracellulaires sont transduits via des voies de signalisation dédiées qui convergent essentiellement vers le facteur de transcription MITF. Ce dernier intègre cette signalisation en amont et régule alors la transcription de gènes impliqués dans les divers mécanismes inhérents à la modulation de la mélanogenèse. La synthèse des pigments de mélanine se produit dans les mélanocytes, à l'intérieur des mélanosomes dans lesquels les enzymes de la mélanogenèse (tyrosinase et protéines apparentées) sont adressées à l'aide de complexes protéiques spécifiques. Les mélanosomes ainsi chargés en mélanine sont ensuite transférés aux kératinocytes. Un niveau plus élaboré de régulation de la mélanogenèse entre aussi en jeu au travers de l'action d’ARNs non codants (microARNs et lncRNAs). Outre cette régulation canonique, la mélanogenèse peut également être modulée par des voies intrinsèques non spécifiques telles l'environnement hormonal et l'inflammation, et par des facteurs extrinsèques, comme le rayonnement solaire et la pollution environnementale. Nous avons par ailleurs développé un réseau d'interactions gènes/protéines regroupant les multiples aspects de la régulation de la mélanogenèse et de la pigmentation de la peau grâce à l'outil bioinformatique. Ce réseau constitue une ressource pour mieux comprendre et étudier la biologie de la pigmentation de la peau. In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology. |
| Author | Botto, J.‐M. Busuttil, V. Serre, C. |
| Author_xml | – sequence: 1 givenname: C. surname: Serre fullname: Serre, C. organization: Ashland – sequence: 2 givenname: V. surname: Busuttil fullname: Busuttil, V. organization: Ashland – sequence: 3 givenname: J.‐M. orcidid: 0000-0002-6182-4236 surname: Botto fullname: Botto, J.‐M. email: jbotto@ashland.com organization: Ashland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29752874$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kUtLxDAUhYMoOj4W_gEpuNFFNa_msZTBx4DgQl2HtL0do206Ji3qvzfOYyOaxQ2B7xxO7tlH2773gNAxwRcknUtXxQtCuRBbaEK4UDnlmm-jCSac5gUXbA_tx_iKMeZasV20R7UsqJJ8gh5mfgjOR1dl1tcZfG5eAeZjawfX-6xvspexsz6Lb85nHbTW93PwEF1cihZu3oEflvAh2mlsG-FofR-g55vrp-ldfv9wO5te3ecVT4Fyq5uyUFJXtiGl0GlwolSBuahZCg26JpRJSYBDDZyrUgITtSoJoxUUNWUH6Gzluwj9-whxMJ2LFbQpG_RjNBQzRaXUQib09Bf62o_Bp3SGEowZ51LoRJ2sqbHsoDaL4DobvsxmVQm4XAFV6GMM0JjKrf48BOtaQ7D5KcOkMsyyjKQ4_6XYmP7Frt0_XAtf_4NmNn1cKb4Bj7-X2g |
| CitedBy_id | crossref_primary_10_1080_07391102_2025_2477143 crossref_primary_10_2147_CCID_S396272 crossref_primary_10_1016_j_phymed_2021_153876 crossref_primary_10_1038_s41598_024_60165_9 crossref_primary_10_1042_BSR20231324 crossref_primary_10_1111_exd_14761 crossref_primary_10_1111_jocd_14968 crossref_primary_10_1111_pcmr_12826 crossref_primary_10_3390_ijms241914947 crossref_primary_10_1111_jocd_14966 crossref_primary_10_3390_diagnostics11050865 crossref_primary_10_1038_s41598_020_58911_w crossref_primary_10_1016_j_ejphar_2024_176537 crossref_primary_10_1111_jocd_13000 crossref_primary_10_1016_j_colsurfb_2025_114979 crossref_primary_10_1016_j_jprot_2022_104665 crossref_primary_10_3390_ijms25084479 crossref_primary_10_3390_plants11010062 crossref_primary_10_3390_antiox14010109 crossref_primary_10_3390_ijms26073281 crossref_primary_10_3839_jabc_2022_013 crossref_primary_10_1111_pcmr_13077 crossref_primary_10_1111_ijd_17867 crossref_primary_10_3390_md22020072 crossref_primary_10_3390_ijms23031358 crossref_primary_10_1016_j_mrrev_2020_108321 crossref_primary_10_1111_jocd_70163 crossref_primary_10_3390_molecules25173887 crossref_primary_10_1038_s41419_023_06223_y crossref_primary_10_1007_s00217_025_04764_4 crossref_primary_10_1111_exd_14752 crossref_primary_10_1016_j_colsurfb_2024_114170 crossref_primary_10_1007_s13273_022_00250_0 crossref_primary_10_3390_molecules27134183 crossref_primary_10_1111_mec_17525 crossref_primary_10_3390_plants10040727 crossref_primary_10_3390_antiox10071129 crossref_primary_10_1080_10495398_2021_1998089 crossref_primary_10_3390_cosmetics6040057 crossref_primary_10_3390_ijms26094370 crossref_primary_10_3389_fmed_2022_812653 crossref_primary_10_3390_cosmetics10050121 crossref_primary_10_1016_j_procbio_2023_09_011 crossref_primary_10_3390_cosmetics12050210 crossref_primary_10_3390_antiox11030503 crossref_primary_10_3390_cells8080803 crossref_primary_10_3390_nu14235044 crossref_primary_10_1016_j_indcrop_2025_121612 crossref_primary_10_1007_s10103_021_03327_9 crossref_primary_10_1111_ics_12728 crossref_primary_10_1097_CM9_0000000000001934 crossref_primary_10_1111_jocd_15163 crossref_primary_10_3390_ijms22126192 crossref_primary_10_1111_jocd_13899 crossref_primary_10_1016_j_arr_2021_101349 crossref_primary_10_1016_j_jid_2024_03_048 crossref_primary_10_3390_cells10112848 crossref_primary_10_3390_ijms26052278 crossref_primary_10_1111_jfbc_14353 crossref_primary_10_3390_md21070385 crossref_primary_10_3389_fimmu_2023_1009137 crossref_primary_10_1111_phpp_12935 crossref_primary_10_3390_cosmetics12050205 crossref_primary_10_1134_S102279542108007X crossref_primary_10_2147_CCID_S299569 crossref_primary_10_1016_j_yexcr_2023_113874 crossref_primary_10_1111_exd_14693 crossref_primary_10_3390_biology12020290 crossref_primary_10_1111_mec_16136 crossref_primary_10_1089_jmf_2021_K_0130 crossref_primary_10_1186_s43094_022_00435_3 crossref_primary_10_3390_cells11142220 crossref_primary_10_1016_j_psj_2024_103513 crossref_primary_10_3390_molecules28010378 crossref_primary_10_1016_j_jid_2020_09_031 crossref_primary_10_1016_j_lfs_2021_119915 crossref_primary_10_1016_j_eujim_2022_102181 crossref_primary_10_3390_ijms20092081 crossref_primary_10_3390_antiox12030692 crossref_primary_10_3389_fvets_2020_00258 crossref_primary_10_4103_ijd_ijd_568_23 crossref_primary_10_1016_j_aquaculture_2024_740820 crossref_primary_10_1016_j_jdermsci_2020_10_014 crossref_primary_10_1016_j_semcancer_2019_06_020 crossref_primary_10_1080_03014460_2025_2468692 crossref_primary_10_5812_jjnpp_114152 crossref_primary_10_3390_ijms25116199 crossref_primary_10_1016_j_prmcm_2022_100202 crossref_primary_10_1002_em_22511 crossref_primary_10_1016_j_rvsc_2022_03_020 crossref_primary_10_3390_nu13113894 crossref_primary_10_3390_ani12121482 crossref_primary_10_1111_jdv_19718 crossref_primary_10_3390_ph17010055 crossref_primary_10_3390_md22090421 crossref_primary_10_4103_ds_ds_1_21 crossref_primary_10_3390_antiox8090332 crossref_primary_10_3390_molecules27103228 crossref_primary_10_1016_j_jid_2022_08_040 crossref_primary_10_3390_molecules26247515 crossref_primary_10_3390_cancers14071752 crossref_primary_10_1111_jocd_16669 crossref_primary_10_1007_s40995_022_01310_9 crossref_primary_10_1007_s10103_025_04567_9 crossref_primary_10_3390_molecules27217518 crossref_primary_10_1016_j_jand_2021_10_024 crossref_primary_10_1016_j_jid_2022_04_022 crossref_primary_10_3390_ijms20040956 crossref_primary_10_1016_j_ad_2024_09_032 crossref_primary_10_3390_biomedicines8090322 crossref_primary_10_3390_ijms252111502 crossref_primary_10_1111_pcmr_12994 crossref_primary_10_1016_j_bcab_2024_103486 crossref_primary_10_1016_j_ceca_2024_102987 crossref_primary_10_3390_ijms241612810 crossref_primary_10_1093_toxres_tfaf025 crossref_primary_10_1007_s00403_025_04400_x crossref_primary_10_1016_j_envpol_2022_119316 crossref_primary_10_1186_s12864_023_09837_w crossref_primary_10_25259_IJDVL_1087_19 crossref_primary_10_3390_cells12121671 crossref_primary_10_3390_epigenomes5040023 crossref_primary_10_3390_cosmetics8030070 crossref_primary_10_4103_apjtb_apjtb_568_24 crossref_primary_10_3390_cimb46060359 crossref_primary_10_1128_spectrum_02730_21 crossref_primary_10_3390_molecules27010177 crossref_primary_10_1016_j_burns_2022_04_017 crossref_primary_10_1111_ics_12886 crossref_primary_10_3390_ijms22116104 crossref_primary_10_1038_s41467_021_27173_z crossref_primary_10_1111_dth_15934 crossref_primary_10_1016_j_bioorg_2019_03_026 crossref_primary_10_1186_s43088_025_00673_3 crossref_primary_10_3390_molecules29225391 crossref_primary_10_3390_genes13071271 crossref_primary_10_1016_j_jsps_2023_02_006 crossref_primary_10_1210_clinem_dgac342 crossref_primary_10_3390_ijms222313056 crossref_primary_10_25259_JCAS_73_2024 crossref_primary_10_3390_ijms26157589 crossref_primary_10_3390_antiox9070637 crossref_primary_10_1093_bjd_ljae291 crossref_primary_10_1016_j_jdermsci_2022_06_005 crossref_primary_10_3390_genes14051035 crossref_primary_10_1016_j_toxlet_2019_11_014 crossref_primary_10_3390_antiox13101248 crossref_primary_10_1016_j_jid_2023_08_019 crossref_primary_10_3390_ijms21249631 crossref_primary_10_1093_jbcr_irz168 crossref_primary_10_1002_hsr2_374 crossref_primary_10_3389_fnut_2023_1121498 crossref_primary_10_3390_plants11233318 crossref_primary_10_1016_j_aaf_2023_12_002 crossref_primary_10_52711_0974_360X_2021_01061 crossref_primary_10_1016_j_bbadis_2021_166219 crossref_primary_10_3390_pharmaceutics14020307 crossref_primary_10_1186_s13287_021_02570_9 crossref_primary_10_3390_molecules26247648 crossref_primary_10_1111_jocd_13571 crossref_primary_10_3390_molecules27051549 crossref_primary_10_3390_plants9121672 crossref_primary_10_1111_phpp_12865 crossref_primary_10_1016_j_jdermsci_2022_12_008 crossref_primary_10_1016_j_autrev_2020_102664 crossref_primary_10_3389_ftox_2023_1256399 crossref_primary_10_1093_evolut_qpac064 crossref_primary_10_1097_PAS_0000000000002262 crossref_primary_10_1016_j_jid_2022_04_019 crossref_primary_10_3390_antiox10010044 |
| Cites_doi | 10.7554/eLife.15104 10.1083/jcb.115.3.821 10.1046/j.1523-1747.2003.12427.x 10.1006/excr.1999.4692 10.1042/bj3130625 10.1242/jcs.00598 10.1111/j.1749-6632.1993.tb19691.x 10.1091/mbc.e06-05-0379 10.1016/0006-291X(92)91527-W 10.1093/hmg/9.19.2781 10.1096/fj.04-1968fje 10.1016/j.celrep.2017.05.042 10.1016/S0021-9258(18)35817-4 10.1073/pnas.0705117104 10.1242/jcs.064774 10.1016/S0002-9440(10)63657-7 10.1152/ajpendo.00519.2004 10.1177/002215540205000201 10.1586/edm.10.70 10.1038/332411a0 10.1111/1523-1747.ep12349932 10.1016/0006-291X(91)90887-D 10.1242/jcs.094185 10.1371/journal.pone.0100893 10.1101/cshperspect.a017046 10.1038/sj.jid.5700760 10.1001/archderm.1988.01670060015008 10.1038/nrc2015 10.1371/journal.pone.0096035 10.1111/j.1600-0625.2009.00957.x 10.1074/jbc.C000113200 10.1016/j.abb.2007.03.038 10.1111/j.1755-148X.2009.00610.x 10.1128/MCB.23.15.5245-5255.2003 10.3892/ijmm.2012.1028 10.1371/journal.pbio.0060236 10.1016/j.jdermsci.2015.10.019 10.1038/nature06642 10.1128/MCB.14.12.7996 10.1083/jcb.107.4.1611 10.1016/j.ddmec.2008.02.001 10.1111/1523-1747.ep12471536 10.1016/j.sder.2010.04.006 10.1158/0008-5472.CAN-07-2912 10.18632/oncotarget.9330 10.1034/j.1600-0749.2001.140402.x 10.1016/j.cub.2011.09.047 10.1016/j.jid.2017.07.833 10.1016/j.jid.2016.03.038 10.1038/nature05660 10.1046/j.1523-1747.2000.00957.x 10.1093/hmg/ddp415 10.1073/pnas.1117433109 10.1016/S0024-3205(02)01996-3 10.1091/mbc.e06-01-0081 10.1111/j.1755-148X.2009.00653.x 10.1007/s00018-014-1791-0 10.1074/jbc.M112.370544 10.1073/pnas.191184798 10.1038/sj.jid.5700629 10.1038/cdd.2011.132 10.1111/j.1600-0854.2006.00425.x 10.1093/bioinformatics/btq466 10.1039/c2mb25228g 10.1111/pcmr.12334 10.1111/exd.13528 10.3390/ijms17070959 10.1101/gad.14.2.158 10.1111/pcmr.12301 10.1046/j.1523-1747.2003.12242.x 10.1096/fj.10-159046 10.1046/j.1523-1747.2003.12481.x 10.1111/j.0022-202X.2004.22724.x 10.1046/j.1523-1747.2000.00894.x 10.1016/j.jneuroim.2005.01.014 10.1038/ncomms8506 10.1371/journal.pone.0072699 10.1158/0008-5472.CAN-03-2440 10.1111/j.1755-148X.2010.00679.x 10.1152/physrev.00044.2003 10.4161/rna.28865 10.1210/en.2008-1212 10.1111/j.1755-148X.2010.00762.x 10.18388/abp.2010_2366 10.1111/pcmr.12393 10.1007/s00018-004-4189-6 10.1042/BJ20051388 10.1111/j.1600-0749.2005.00284.x 10.1111/j.1600-0749.2004.00198.x 10.1155/2014/498276 10.1152/physiol.00043.2011 10.1002/(SICI)1097-4652(200006)183:3<364::AID-JCP9>3.0.CO;2-X 10.1038/34681 10.1038/jid.2013.310 10.1034/j.1600-0625.2002.00112.x 10.3389/fgene.2016.00095 10.3390/ijms141020443 10.1242/jcs.115.7.1441 10.1016/j.molcel.2008.11.002 10.1038/nature07163 10.1128/MCB.00106-14 10.1677/joe.0.1460439 10.1016/j.clindermatol.2006.04.006 10.1590/S0365-05962013000100009 10.1242/jcs.113.17.3093 10.2527/jas.2014-8404 10.1016/j.cell.2006.12.045 10.1620/tjem.156.303 10.1242/jcs.102038 10.1261/rna.351707 10.1016/S0021-9258(18)55277-7 10.1371/journal.pone.0129273 10.1002/biof.29 10.1111/j.1755-148X.2008.00505.x 10.1111/j.1600-0749.2005.00226.x 10.1007/s12272-013-0130-6 10.1074/jbc.M110.168088 10.1038/jid.2014.439 10.1091/mbc.E06-12-1066 10.1007/BF02505269 10.1016/j.envres.2005.12.003 10.1074/jbc.M413692200 10.1038/jid.2013.165 10.1038/nrm2258 10.1038/24620 10.1111/j.1600-0625.2009.00886.x 10.1590/abd1806-4841.20143063 10.1074/jbc.R700026200 10.1111/j.1600-0625.2009.01053.x 10.1111/j.1087-0024.2005.10108.x 10.1038/jid.2012.324 10.1111/pcmr.12083 10.1038/sj.jid.5701063 10.3390/ijms160510921 10.1016/j.domaniend.2009.10.004 10.1111/pcmr.12179 10.1038/jid.2012.266 10.1111/j.1600-0625.1996.tb00088.x 10.5114/pdia.2013.33376 10.1017/S1751731116001294 10.1016/j.jid.2016.01.018 10.1128/MCB.24.15.6550-6559.2004 10.1006/dbio.2001.0222 10.1046/j.0022-202x.2001.01575.x 10.1096/fj.06-7398com 10.1124/pr.110.002931 10.1371/journal.pone.0011014 10.1111/j.1600-0749.2003.00126.x 10.1111/exd.13395 10.1111/j.1600-0749.2006.00358.x 10.1006/phrs.2000.0725 10.1096/fj.10-162156 10.1101/cshperspect.a008029 10.1146/annurev.genet.38.072902.092717 10.1096/fj.07-9080com 10.2741/1966 10.1371/journal.pbio.0040006 10.1038/cdd.2015.117 10.1111/j.1600-0625.2010.01074.x 10.1016/j.jaad.2010.11.061 10.1096/fj.06-6649rev 10.1128/MCB.18.2.694 10.1210/er.2014-1034 10.1038/emm.2017.115 10.1038/srep08238 10.1074/jbc.M800130200 10.3390/ijms15058293 10.1111/j.1600-0749.1997.tb00488.x 10.1016/j.ddmec.2008.04.004 10.1002/jcp.20530 |
| ContentType | Journal Article |
| Copyright | 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie. Copyright © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie |
| Copyright_xml | – notice: 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie – notice: 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie. – notice: Copyright © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U7 8FD C1K FR3 K9. P64 7X8 |
| DOI | 10.1111/ics.12466 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Economics Engineering |
| EISSN | 1468-2494 |
| EndPage | 347 |
| ExternalDocumentID | 29752874 10_1111_ics_12466 ICS12466 |
| Genre | reviewArticle Journal Article Review |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BGNMA BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EJD EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LAK LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M4Y MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NU0 O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR XG1 YFH YUY ZZTAW ~IA ~WT AAYXX CITATION O8X AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF NPM WRC WUP 7QR 7U7 8FD C1K FR3 K9. P64 7X8 |
| ID | FETCH-LOGICAL-c4546-a9fb5879caf1b69f1b41885046d3142e9d123771e4ede448b7e36d8b132ce5d23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 192 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443942500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-5463 1468-2494 |
| IngestDate | Thu Oct 02 10:42:56 EDT 2025 Sat Nov 29 14:45:46 EST 2025 Wed Feb 19 02:34:17 EST 2025 Sat Nov 29 02:45:46 EST 2025 Tue Nov 18 22:43:21 EST 2025 Sun Sep 21 06:15:38 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | melanogenesis computer modelling skin physiology/structure ncRNAs environmental pollution |
| Language | English |
| License | 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4546-a9fb5879caf1b69f1b41885046d3142e9d123771e4ede448b7e36d8b132ce5d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-6182-4236 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ics.12466 |
| PMID | 29752874 |
| PQID | 2100344769 |
| PQPubID | 1086359 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2038277967 proquest_journals_2100344769 pubmed_primary_29752874 crossref_citationtrail_10_1111_ics_12466 crossref_primary_10_1111_ics_12466 wiley_primary_10_1111_ics_12466_ICS12466 |
| PublicationCentury | 2000 |
| PublicationDate | August 2018 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | International journal of cosmetic science |
| PublicationTitleAlternate | Int J Cosmet Sci |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2007; 104 2007; 464 2010; 19 2015; 72 2002; 11 2004; 24 2014; 27 2012; 19 2008; 32 2000; 254 2012; 125 1998; 396 2013; 8 2013; 5 1991; 115 1988; 107 2010; 23 1998; 18 2012; 132 2010; 26 2010; 24 2000; 14 2006; 24 2004; 38 2015; 135 2010; 29 2007; 8 2014; 15 1988; 332 2011; 65 2008; 21 2008; 22 2012; 27 2005b; 288 2010; 3 2006; 206 2010; 5 2014; 11 2009; 18 2003; 163 1991; 176 2007; 445 2007; 18 2010; 38 2013; 88 2000; 113 2007; 282 2000; 114 1992; 267 2008; 128 2014; 2014 2016; 17 2011; 6 2007; 13 2012; 30 2012; 109 1993; 100 2016; 5 1998; 391 2016; 7 2005; 19 2016; 21 2000; 183 1988; 156 1994; 14 2005; 10 1995; 146 2002; 71 2005; 18 2014; 34 2006; 101 2016; 23 2003; 23 2004; 123 2017; 6 2004; 64 2015; 36 2013; 26 2004; 61 2012; 287 2010; 57 2003; 116 2002; 50 2017; 49 2000; 9 2000; 42 1993; 680 2002; 115 2008; 5 2009; 150 2008; 6 2008; 1 2010; 62 1987; 89 2014; 4 2013; 14 1991; 266 1997; 10 2018; 138 2008; 68 2011; 21 2016; 81 2011; 25 2014; 9 2007; 20 2007; 21 2011; 27 1996; 5 2001; 14 2003; 121 2003; 120 2011; 286 2001; 98 1991; 4 2009; 22 2015; 6 2004; 84 2015; 5 2015; 16 2007; 127 2007; 128 2015; 93 2006; 11 1992; 189 2006; 17 2010; 123 2015; 10 2006; 7 1988; 124 2006; 19 2006; 395 2006; 6 2000; 275 2006; 4 1972; 23 1996; 288 2014; 89 2008; 283 2005; 280 2009; 35 2001; 233 2015; 28 2013; 36 2004; 17 2017; 11 2005a; 162 2017; 13 2013; 30 2013; 134 2013; 133 2018 2015 2013 2008; 454 2016; 136 1996; 313 2008; 452 2001; 117 2012; 8 e_1_2_12_6_1 e_1_2_12_130_1 e_1_2_12_172_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_157_1 e_1_2_12_138_1 e_1_2_12_115_1 Sharlow E.R. (e_1_2_12_116_1) 2000; 113 e_1_2_12_153_1 e_1_2_12_134_1 e_1_2_12_176_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_161_1 Wu D.T. (e_1_2_12_146_1) 2008; 1 e_1_2_12_100_1 e_1_2_12_123_1 e_1_2_12_169_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_127_1 e_1_2_12_142_1 e_1_2_12_165_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_96_1 Ohno S. (e_1_2_12_124_1) 1972; 23 e_1_2_12_139_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_152_1 e_1_2_12_171_1 e_1_2_12_18_1 Davis E.C. (e_1_2_12_15_1) 2010; 3 e_1_2_12_110_1 e_1_2_12_137_1 e_1_2_12_179_1 e_1_2_12_114_1 e_1_2_12_156_1 e_1_2_12_175_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 Delevoye C. (e_1_2_12_8_1) 2011; 27 e_1_2_12_82_1 e_1_2_12_160_1 e_1_2_12_141_1 e_1_2_12_122_1 e_1_2_12_168_1 e_1_2_12_29_1 e_1_2_12_149_1 e_1_2_12_126_1 e_1_2_12_164_1 e_1_2_12_103_1 e_1_2_12_145_1 e_1_2_12_119_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 Yada Y. (e_1_2_12_42_1) 1991; 266 e_1_2_12_13_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_174_1 e_1_2_12_151_1 e_1_2_12_19_1 e_1_2_12_170_1 e_1_2_12_38_1 e_1_2_12_136_1 e_1_2_12_159_1 e_1_2_12_132_1 e_1_2_12_178_1 e_1_2_12_113_1 e_1_2_12_155_1 Imokawa G. (e_1_2_12_40_1) 1992; 267 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_129_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_140_1 e_1_2_12_163_1 e_1_2_12_49_1 e_1_2_12_121_1 e_1_2_12_148_1 e_1_2_12_102_1 e_1_2_12_144_1 e_1_2_12_167_1 e_1_2_12_52_1 e_1_2_12_98_1 Jiang S. (e_1_2_12_133_1) 2016; 21 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_150_1 e_1_2_12_173_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_135_1 e_1_2_12_158_1 e_1_2_12_39_1 e_1_2_12_131_1 e_1_2_12_154_1 e_1_2_12_177_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_128_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 Morhenn V.B. (e_1_2_12_31_1) 1991; 4 e_1_2_12_162_1 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_147_1 e_1_2_12_120_1 e_1_2_12_105_1 e_1_2_12_143_1 e_1_2_12_166_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_91_1 Botto J.M. (e_1_2_12_125_1) 2015 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 |
| References_xml | – volume: 445 start-page: 843 year: 2007 end-page: 850 article-title: Melanocyte biology and skin pigmentation publication-title: Nature – volume: 18 start-page: 167 year: 2005 end-page: 180 article-title: WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action publication-title: Pigment Cell Res. – volume: 38 start-page: 365 year: 2004 end-page: 411 article-title: Melanocytes and the microphthalmia transcription factor network publication-title: Annu. Rev. Genet. – volume: 5 start-page: a008029 year: 2013 article-title: Wnt signaling in skin development, homeostasis, and disease publication-title: Cold Spring Harb Perspect. Biol. – volume: 5 start-page: 8238 year: 2015 article-title: Rab1A regulates anterograde melanosome transport by recruiting kinesin‐1 to melanosomes through interaction with SKIP publication-title: Sci. Rep. – volume: 288 start-page: 633 year: 1996 end-page: 635 article-title: Basic fibroblast growth factor promotes melanin synthesis by melanocytes publication-title: Arch. Dermatol. Res. – volume: 19 start-page: 58 year: 2006 end-page: 67 article-title: Glutamate receptors on human melanocytes regulate the expression of MiTF publication-title: Pigment Cell Res. – volume: 136 start-page: 819 year: 2016 end-page: 828 article-title: The long noncoding RNA SPRIGHTLY regulates cell proliferation in primary human melanocytes publication-title: J. Invest. Dermatol. – volume: 138 start-page: 171 year: 2018 end-page: 178 article-title: Melanocytes sense blue light and regulate pigmentation through opsin‐3 publication-title: J. Invest. Dermatol. – volume: 113 start-page: 3093 year: 2000 end-page: 3101 article-title: The protease‐activated receptor‐2 upregulates keratinocyte phagocytosis publication-title: J. Cell Sci. – volume: 17 start-page: 4027 year: 2006 end-page: 4038 article-title: BLOC‐1 interacts with BLOC‐2 and the AP‐3 complex to facilitate protein trafficking on endosomes publication-title: Mol. Cell. Biol. – volume: 19 start-page: 1332 year: 2005 end-page: 1334 article-title: Human hair follicles display a functional equivalent of the hypothalamic–pituitary–adrenal axis and synthesize cortisol publication-title: FASEB J. – volume: 128 start-page: 558 year: 2008 end-page: 567 article-title: Melanosome transfer promoted by keratinocyte growth factor in light and dark skin‐derived keratinocytes publication-title: J. Invest. Dermatol. – volume: 123 start-page: 184 year: 2004 end-page: 195 article-title: beta‐Endorphin as a regulator of human hair follicle melanocyte biology publication-title: J. Invest. Dermatol. – volume: 8 start-page: 786 year: 2007 end-page: 797 article-title: Melanosomes – dark organelles enlighten endosomal membrane transport publication-title: Nat. Rev. Mol. Cell Biol. – volume: 18 start-page: 694 year: 1998 end-page: 702 article-title: Different cis‐acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia publication-title: Mol. Cell. Biol. – volume: 332 start-page: 411 year: 1988 end-page: 415 article-title: A novel potent vasoconstrictor peptide produced by vascular endothelial cells publication-title: Nature – volume: 50 start-page: 125 year: 2002 end-page: 133 article-title: Melanocyte function and its control by melanocortin peptides publication-title: J. Histochemytochem. – volume: 89 start-page: 771 year: 2014 end-page: 782 article-title: Melasma: a clinical and epidemiological review publication-title: An. Bras. Dermatol. – volume: 38 start-page: 200 year: 2010 end-page: 209 article-title: MicroRNA‐25 functions in regulation of pigmentation by targeting the transcription factor MITF in Alpaca (Lama pacos) skin melanocytes publication-title: Domest. Anim. Endocrinol. – volume: 18 start-page: 4530 year: 2009 end-page: 4545 article-title: The ocular albinism type 1 (OA1) G‐protein‐coupled receptor functions with MART‐1 at early stages of melanogenesis to control melanosome identity and composition publication-title: Hum. Mol. Genet. – volume: 27 start-page: 1014 year: 2014 end-page: 1031 article-title: Skin as a living coloring book: how epithelial cells create patterns of pigmentation publication-title: Pigment Cell Melanoma Res. – volume: 28 start-page: 217 year: 2015 end-page: 222 article-title: Regulation of pigmentation by microRNAs: MITF‐dependent microRNA‐211 targets TGF‐ receptor 2 publication-title: Pigment Cell Melanoma Res. – volume: 18 start-page: 768 year: 2007 end-page: 780 article-title: BLOC‐1 is required for cargo‐specific sorting from vacuolar early endosomes toward lysosome‐related organelles publication-title: Mol. Biol. Cell – volume: 93 start-page: 1622 year: 2015 end-page: 1631 article-title: Identification of a novel microRNA important for melanogenesis in alpaca (Vicugna pacos) publication-title: J. Anim. Sci. – volume: 114 start-page: 438 year: 2000 end-page: 443 article-title: Kinesin participates in melanosomal movement along melanocyte dendrites publication-title: J. Invest. Dermatol. – volume: 1 start-page: 19 year: 2008 end-page: 35 article-title: Mir‐434‐5p mediates skin whitening and lightening publication-title: Clin. Cosmet. Investig. Dermatol. – volume: 6 start-page: 947 year: 2006 end-page: 960 article-title: The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis publication-title: Nat. Rev. – volume: 18 start-page: 2 year: 2005 end-page: 12 article-title: Role of keratinocyte‐derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes publication-title: Pigment Cell Res. – volume: 42 start-page: 393 year: 2000 end-page: 420 article-title: New aspects on the melanocortins and their receptors publication-title: Pharmacol. Res. – volume: 30 start-page: 636 year: 2012 end-page: 642 article-title: Wnt3a inhibits proliferation but promotes melanogenesis of melan‐a cells publication-title: Int. J. Mol. Med. – volume: 391 start-page: 289 year: 1998 end-page: 301 article-title: MAPK links the transcription factor microphthalmia to c‐kit signaling in melanocytes publication-title: Nature – volume: 133 start-page: 2416 year: 2013 end-page: 2424 article-title: Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes publication-title: J. Invest. Dermatol. – volume: 84 start-page: 1155 year: 2004 end-page: 1228 article-title: Melanin pigmentation in mammalian skin and its hormonal regulation publication-title: Physiol. Rev. – volume: 19 start-page: 616 year: 2012 end-page: 622 article-title: FGF2 regulates melanocytes viability through the STAT3‐transactivated PAX3 transcription publication-title: Cell Death Differ. – start-page: 940 year: 2015 end-page: 1189 – volume: 121 start-page: 529 year: 2003 end-page: 541 article-title: The proteinase‐activated receptor‐2 mediates phagocytosis in a Rho‐dependent manner in human keratinocytes publication-title: J. Invest. Dermatol. – volume: 14 start-page: 236 year: 2001 end-page: 242 article-title: Keratinocyte‐melanocyte interactions during melanosome transfer publication-title: Pigment Cell Res. – volume: 146 start-page: 439 year: 1995 end-page: 447 article-title: Stimulation of tyrosinase in human melanocytes by pro‐opiomelanocortin‐derived peptides publication-title: J. Endocrinol. – volume: 266 start-page: 18352 year: 1991 end-page: 18357 article-title: Effects of endothelins on signal transduction and proliferation in human melanocytes publication-title: J. Biol. Chem. – volume: 288 start-page: E701 year: 2005b end-page: E706 article-title: CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 72 start-page: 1249 year: 2015 end-page: 1260 article-title: MITF in melanoma: mechanisms behind its expression and activity publication-title: Cell. Mol. Life Sci. – volume: 6 start-page: e236 year: 2008 article-title: L‐DOPA Is an endogenous ligand for OA1 publication-title: PLoS Biol. – volume: 162 start-page: 97 year: 2005a end-page: 102 article-title: CRH stimulates POMC activity and corticosterone production in dermal fibroblasts publication-title: J. Neuroimmunol. – volume: 21 start-page: 1906 year: 2011 end-page: 1911 article-title: UVA phototransduction drives early melanin synthesis in human melanocytes publication-title: Curr. Biol. – volume: 14 start-page: 7996 year: 1994 end-page: 8006 article-title: Melanocyte‐specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator publication-title: Mol. Cell. Biol. – volume: 88 start-page: 76 year: 2013 end-page: 83 article-title: Mechanisms regulating melanogenesis publication-title: An. Bras. Dermatol. – volume: 121 start-page: 813 year: 2003 end-page: 820 article-title: Role of cytoplasmic dynein in perinuclear aggregation of phagocytosed melanosomes and supranuclear melanin cap formation in human keratinocytes publication-title: J. Invest. Dermatol. – volume: 267 start-page: 24675 year: 1992 end-page: 24680 article-title: Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes publication-title: J. Biol. Chem. – volume: 49 start-page: e367 year: 2017 article-title: SH3BP4, a novel pigmentation gene, is inversely regulated by miR‐125b and MITF publication-title: Exp. Mol. Med. – volume: 19 start-page: 865 year: 2010 end-page: 872 article-title: The role of keratinocyte growth factor in melanogenesis: a possible mechanism for the initiation of solar lentigines publication-title: Exp. Dermatol. – volume: 16 start-page: 10921 year: 2015 end-page: 10933 article-title: MicroRNA‐27a‐3p inhibits melanogenesis in mouse skin melanocytes by targeting Wnt3a publication-title: Int. J. Mol. Sci. – volume: 127 start-page: 1217 year: 2007 end-page: 1225 article-title: The effects of dickkopf 1 on gene expression and Wnt signaling by melanocytes: mechanisms underlying its suppression of melanocyte function and proliferation publication-title: J. Invest. Dermatol. – volume: 287 start-page: 28619 year: 2012 end-page: 28631 article-title: The Rab interacting lysosomal protein (RILP) homology domain functions as a novel effector domain for small GTPase Rab36: Rab36 regulates retrograde melanosome transport in melanocytes publication-title: J. Biol. Chem. – volume: 115 start-page: 1441 year: 2002 end-page: 1451 article-title: Filopodia are conduits for melanosome transfer to keratinocytes publication-title: J. Cell Sci. – volume: 680 start-page: 290 year: 1993 end-page: 301 article-title: Pigmentation and proliferation of human melanocytes and the effects of melanocyte‐stimulating hormone and ultraviolet B light publication-title: Ann. N. Y. Acad. Sci. – volume: 17 start-page: 96 year: 2004 end-page: 110 article-title: Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders publication-title: Pigment Cell Res. – volume: 313 start-page: 625 year: 1996 end-page: 631 article-title: Granulocyte/macrophage colony‐stimulating factor is an intrinsic keratinocyte‐derived growth factor for human melanocytes in UVA‐induced melanosis publication-title: Biochem. J. – volume: 19 start-page: 682 year: 2010 end-page: 684 article-title: PGE2 is a UVR‐inducible autocrine factor for human melanocytes that stimulates tyrosinase activation publication-title: Exp. Dermatol. – volume: 23 start-page: 828 year: 2010 end-page: 833 article-title: The aryl hydrocarbon receptor (AHR), a novel regulator of human melanogenesis publication-title: Pigment Cell Melanoma Res. – volume: 11 start-page: 732 year: 2014 end-page: 741 article-title: MicroRNA‐218 inhibits melanogenesis by directly suppressing microphthalmia‐associated transcription factor expression publication-title: RNA Biol. – volume: 163 start-page: 333 year: 2003 end-page: 343 article-title: MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma publication-title: Am. J. Pathol. – volume: 117 start-page: 1412 year: 2001 end-page: 1420 article-title: Protease‐activated receptor 2, a receptor involved in melanosome transfer, is upregulated in human skin by ultraviolet irradiation publication-title: J. Invest. Dermatol. – volume: 8 start-page: 2924 year: 2012 end-page: 2931 article-title: The changes of microRNA expression profiles and tyrosinase related proteins in MITF knocked down melanocytes publication-title: Mol. BioSyst. – volume: 10 start-page: e0129273 year: 2015 article-title: Membrane‐Associated Transporter Protein (MATP) regulates melanosomal pH and influences tyrosinase activity publication-title: PLoS ONE – volume: 61 start-page: 2535 year: 2004 end-page: 2548 article-title: Signal transduction via the stem cell factor receptor/c‐Kit publication-title: Cell. Mol. Life Sci. – volume: 11 start-page: 236 year: 2017 end-page: 243 article-title: Role of microRNA508‐3p in melanogenesis by targeting microphthalmia transcription factor in melanocytes of alpaca publication-title: Animal – volume: 14 start-page: 158 year: 2000 end-page: 162 article-title: Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway publication-title: Genes Dev. – volume: 254 start-page: 25 year: 2000 end-page: 32 article-title: The protease‐activated receptor 2 regulates pigmentation via keratinocyte‐melanocyte interactions publication-title: Exp. Cell Res. – volume: 30 start-page: 30 year: 2013 end-page: 41 article-title: Skin melanocytes: biology and development publication-title: Postepy Dermatol. Alergol. – volume: 454 start-page: 1142 year: 2008 end-page: 1146 article-title: Cell‐specific ATP7A transport sustains copper‐dependent tyrosinase activity in melanosomes publication-title: Nature – volume: 150 start-page: 1250 year: 2009 end-page: 1258 article-title: Regulation of pigmentation in human epidermal melanocytes by functional high‐affinity beta‐melanocyte‐stimulating hormone/melanocortin‐4 receptor signaling publication-title: Endocrinology – volume: 125 start-page: 4306 year: 2012 end-page: 4319 article-title: Bone morphogenetic proteins differentially regulate pigmentation in human skin cells publication-title: J. Cell Sci. – volume: 11 start-page: 159 year: 2002 end-page: 187 article-title: What is the ‘true’ function of skin? publication-title: Exp. Dermatol. – volume: 36 start-page: 25 year: 2015 end-page: 64 article-title: From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease publication-title: Endocr. Rev. – volume: 28 start-page: 520 year: 2015 end-page: 544 article-title: Melanins and melanogenesis: from pigment cells to human health and technological applications publication-title: Pigment Cell Melanoma Res. – volume: 29 start-page: 127 year: 2010 end-page: 136 article-title: Genetics for the practicing dermatologist publication-title: Semin. Cutan. Med. Surg. – volume: 114 start-page: 990 year: 2000 end-page: 997 article-title: Role of cytoplasmic dynein in melanosome transport in human melanocytes publication-title: J. Invest. Dermatol. – volume: 7 start-page: 769 year: 2006 end-page: 778 article-title: The quest for the mechanism of melanin transfer publication-title: Traffic – volume: 3 start-page: 20 year: 2010 end-page: 31 article-title: Postinflammatory hyperpigmentation. A review of the epidemiology, clinical features, and treatment options in skin of color publication-title: J. Clin. Aesthet. Dermatol. – volume: 98 start-page: 10698 year: 2001 end-page: 10703 article-title: A model for melanosome biogenesis based on the purification and analysis of early melanosomes publication-title: Proc. Natl. Acad. Sci. USA – volume: 19 start-page: 617 year: 2010 end-page: 627 article-title: “Transcription physiology” of pigment formation in melanocytes: central role of MITF publication-title: Exp. Dermatol. – volume: 24 start-page: 276 year: 2006 end-page: 280 article-title: Addison's disease publication-title: Clin. Dermatol. – volume: 5 start-page: e11014 year: 2010 article-title: Dkk1 stabilizes Wnt co‐receptor LRP6: implication for Wnt ligand‐induced LRP6 down‐regulation publication-title: PLoS ONE – volume: 7 start-page: 50682 year: 2016 end-page: 50697 article-title: The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases publication-title: Oncotarget – volume: 206 start-page: 780 year: 2006 end-page: 791 article-title: CRH functions as a growth factor/cytokine in the skin publication-title: J. Cell. Physiol. – volume: 65 start-page: 473 year: 2011 end-page: 491 article-title: Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work‐up publication-title: J. Am. Acad. Dermatol. – volume: 23 start-page: 5245 year: 2003 end-page: 5255 article-title: The actin‐binding domain of Slac2‐a/melanophilin is required for melanosome distribution in melanocytes publication-title: Mol. Cell. Biol. – volume: 10 start-page: 218 year: 1997 end-page: 228 article-title: The role of endothelin‐1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis publication-title: Pigment Cell Res. – year: 2013 – volume: 107 start-page: 1611 year: 1988 end-page: 1619 article-title: Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes publication-title: J. Cell Biol. – volume: 13 start-page: 2177 year: 2017 end-page: 2184 article-title: A UV‐independent topical small‐molecule approach for melanin production in human skin publication-title: Cell Rep. – volume: 132 start-page: 2678 year: 2012 end-page: 2680 article-title: Tyrosinase: a central regulatory protein for cutaneous pigmentation publication-title: J. Invest. Dermatol. – volume: 64 start-page: 509 year: 2004 end-page: 516 article-title: Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma publication-title: Can. Res. – volume: 68 start-page: 1362 year: 2008 end-page: 1368 article-title: MicroRNA‐137 targets microphthalmia‐associated transcription factor in melanoma cell lines publication-title: Cancer Res. – volume: 5 start-page: 137 year: 2008 end-page: 144 article-title: Skin as an endocrine organ: implications for its function publication-title: Drug Discov. Today Dis. Mech. – volume: 6 start-page: 1125 year: 2017 end-page: 1133 article-title: E‐cadherin mediates ultraviolet radiation‐ and calcium‐induced melanin transfer in human skin cells publication-title: Exp. Dermatol. – volume: 27 start-page: 153 year: 2011 end-page: 162 article-title: Biogenesis of melanosomes – the chessboard of pigmentation publication-title: Med. Sci. – volume: 115 start-page: 821 year: 1991 end-page: 828 article-title: Evidence for nerve growth factor‐mediated paracrine effects in human epidermis publication-title: J. Cell Biol. – volume: 14 start-page: 20443 year: 2013 end-page: 20458 article-title: Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/ ‐catenin signaling pathways in B16F10 cells publication-title: Int. J. Mol. Sci. – volume: 22 start-page: 563 year: 2009 end-page: 579 article-title: Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function publication-title: Pigment Cell Melanoma Res. – volume: 109 start-page: 8752 year: 2012 end-page: 8757 article-title: G‐protein‐mediated inhibition of the Trp channel TRPM1 requires the G dimer publication-title: Proc. Natl. Acad. Sci. USA – volume: 100 start-page: 23 year: 1993 end-page: 26 article-title: Cultured human keratinocytes synthesize and secrete endothelin‐1 publication-title: J. Invest. Dermatol. – volume: 116 start-page: 3203 year: 2003 end-page: 3212 article-title: Tyrosinase processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underwhite (uw) mutation. A model for oculocutaneous albinism (OCA) type 4 publication-title: J. Cell Sci. – volume: 275 start-page: 14013 year: 2000 end-page: 14016 article-title: Induction of melanocyte‐specific microphthalmia‐associated transcription factor by Wnt‐3a publication-title: J. Biol. Chem. – volume: 57 start-page: 1 year: 2010 end-page: 13 article-title: Emerging role of alternative splicing of CRF1 receptor in CRF signaling publication-title: Acta Biochim. Pol. – volume: 189 start-page: 72 year: 1992 end-page: 78 article-title: Production of catecholamines in the human epidermis publication-title: Biochem. Biophys. Res. Commun. – volume: 9 start-page: 2781 year: 2000 end-page: 2788 article-title: Oa1 knock‐out: new insights on the pathogenesis of ocular albinism type 1 publication-title: Hum. Mol. Genet. – volume: 125 start-page: 1508 year: 2012 end-page: 1518 article-title: Melanoregulin regulates retrograde melanosome transport through interaction with the RILP‐p150Glued complex in melanocytes publication-title: J. Cell Sci. – volume: 17 start-page: 3598 year: 2006 end-page: 3612 article-title: Dual loss of ER export and endocytic signals with altered melanosome morphology in the silver mutation of Pmel17 publication-title: Mol. Biol. Cell – volume: 21 start-page: 976 year: 2007 end-page: 994 article-title: Human skin pigmentation: melanocytes modulate skin color in response to stress publication-title: FASEB J. – volume: 71 start-page: 2171 year: 2002 end-page: 2179 article-title: Involvement of microphthalmia‐associated transcription factor (MITF) in expression of human melanocortin‐1 receptor (MC1R) publication-title: Life Sci. – volume: 23 start-page: 496 year: 2016 end-page: 508 article-title: Oxidative stress‐induced overexpression of miR‐25: the mechanism underlying the degeneration of melanocytes in vitiligo publication-title: Cell Death Differ. – volume: 21 start-page: 1 year: 2016 end-page: 7 article-title: MiR‐137 affects melanin synthesis in mouse melanocyte by repressing the expression of c‐Kit and Tyrp2 in SCF/c‐Kit signaling pathway publication-title: Biosci. Biotechnol. Biochem. – volume: 128 start-page: 853 year: 2007 end-page: 864 article-title: Central role of p53 in the suntan response and pathologic hyperpigmentation publication-title: Cell – volume: 101 start-page: 419 year: 2006 end-page: 428 article-title: Dioxins: an overview publication-title: Environ. Res. – volume: 9 start-page: e100893 year: 2014 article-title: Long non‐coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation publication-title: PLoS ONE – volume: 36 start-page: 792 year: 2013 end-page: 801 article-title: The regulation of epidermal melanogenesis via cAMP and/or PKC signaling pathways: insights for the development of hypopigmenting agents publication-title: Arch. Pharm. Res. – volume: 26 start-page: 2438 year: 2010 end-page: 2444 article-title: ChEA: transcription factor regulation inferred from integrating genome‐wide ChIP‐X experiments publication-title: Bioinformatics – volume: 2014 start-page: 1 year: 2014 end-page: 28 article-title: Melanins: skin pigments and much more‐types, structural models, biological functions, and formation routes publication-title: New J. Sci. – volume: 23 start-page: 366 year: 1972 end-page: 370 article-title: So much “junk” DNA in our genome publication-title: Brookhaven Symp. Biol. – volume: 8 start-page: e72699 year: 2013 article-title: In‐depth characterization of microRNA transcriptome in melanoma publication-title: PLoS ONE – volume: 286 start-page: 9321 year: 2011 end-page: 9337 article-title: Proprotein convertases process PMEL17 during secretion publication-title: J. Biol. Chem. – volume: 89 start-page: 299 year: 1987 end-page: 301 article-title: Stimulatory effect of prostaglandin E2 on the configuration of normal human melanocytes in vitro publication-title: J. Invest. Dermatol. – volume: 17 start-page: 959 year: 2016 article-title: MicroRNA‐21a‐5p functions on the regulation of melanogenesis by targeting Sox5 in mouse skin melanocytes publication-title: Int. J. Mol. Sci. – volume: 133 start-page: 201 year: 2013 end-page: 209 article-title: Identification of miR‐145 as a key regulator of the pigmentary process publication-title: J. Invest. Dermatol. – volume: 395 start-page: 571 year: 2006 end-page: 578 article-title: MITF mediates cAMP‐induced protein kinase C‐ expression in human melanocytes publication-title: Biochem. J. – volume: 280 start-page: 14006 year: 2005 end-page: 14016 article-title: MART‐1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes publication-title: J. Biol. Chem. – volume: 124 start-page: 869 year: 1988 end-page: 871 article-title: The validity and practicality of sun‐reactive skin types I through VI publication-title: Arch. Dermatol. – volume: 27 start-page: 140 year: 2014 end-page: 144 article-title: Novel inhibitory function of miR‐125b in melanogenesis publication-title: Pigment Cell Melanoma Res. – volume: 127 start-page: 1736 year: 2007 end-page: 1744 article-title: Requirement of dynactin p150(Glued) subunit for the functional integrity of the keratinocyte microparasol publication-title: J. Invest. Dermatol. – volume: 21 start-page: 1844 year: 2007 end-page: 1856 article-title: Proopiomelanocortin (POMC), the ACTH/melanocortin precursor, is secreted by human epidermal keratinocytes and melanocytes and stimulates melanogenesis publication-title: FASEB J. – volume: 9 start-page: e96035 year: 2014 article-title: Nrf2 negatively regulates melanogenesis by modulating PI3K/Akt signaling publication-title: PLoS ONE – volume: 21 start-page: 665 year: 2008 end-page: 676 article-title: Novel MITF targets identified using a two‐step DNA microarray strategy publication-title: Pigment Cell Melanoma Res. – volume: 464 start-page: 207 year: 2007 end-page: 212 article-title: Cytochrome P450 gene regulation and physiological functions mediated by the aryl hydrocarbon receptor publication-title: Arch. Biochem. Biophys. – volume: 15 start-page: 8293 year: 2014 end-page: 8315 article-title: Inhibitors of intracellular signaling pathways that lead to stimulated epidermal pigmentation: perspective of anti‐pigmenting agents publication-title: Int. J. Mol. Sci. – volume: 27 start-page: 85 year: 2012 end-page: 99 article-title: Mechanisms of protein delivery to melanosomes in pigment cells publication-title: Physiology (Bethesda) – year: 2018 article-title: Myosin 10 is involved in murine pigmentation publication-title: Exp. Dermatol. – volume: 104 start-page: 13984 year: 2007 end-page: 13989 article-title: SOX9 is a key player in ultraviolet B‐induced melanocyte differentiation and pigmentation publication-title: Proc. Natl. Acad. Sci. USA – volume: 283 start-page: 12635 year: 2008 end-page: 12642 article-title: Microphthalmia‐associated transcription factor regulates RAB27A gene expression and controls melanosome transport publication-title: J. Biol. Chem. – volume: 282 start-page: 27557 year: 2007 end-page: 27561 article-title: The regulation of skin pigmentation publication-title: J. Biol. Chem. – volume: 5 start-page: 20 year: 1996 end-page: 23 article-title: The induction of the alpha‐1‐adrenoceptor signal transduction system on human melanocytes publication-title: Exp. Dermatol. – volume: 34 start-page: 3407 year: 2014 end-page: 3420 article-title: MicroRNA 340 is involved in UVB‐induced dendrite formation through the regulation of RhoA expression in melanocytes publication-title: Mol. Cell. Biol. – volume: 18 start-page: 1064 year: 2009 end-page: 1066 article-title: Keratinocytes: A source of the transmitter L‐glutamate in the epidermis publication-title: Exp. Dermatol. – volume: 32 start-page: 554 year: 2008 end-page: 563 article-title: Inhibition of PAX3 by TGF‐beta modulates melanocyte viability publication-title: Mol. Cell – volume: 4 start-page: 265 year: 1991 end-page: 267 article-title: The physiology of scratching: involvement of proopiomelanocortin gene‐coded proteins in Langerhans cells publication-title: Prog. Neuro. Endo. Immunol. – volume: 24 start-page: 3756 year: 2010 end-page: 3769 article-title: Melanin transfer in human skin cells is mediated by filopodia–a model for homotypic and heterotypic lysosome‐related organelle transfer publication-title: FASEB J. – volume: 135 start-page: 1348 year: 2015 end-page: 1357 article-title: Suppression of autophagy dysregulates the antioxidant response and causes premature senescence of melanocytes publication-title: J. Invest. Dermatol. – volume: 24 start-page: 6550 year: 2004 end-page: 6559 article-title: The Microphthalmia Transcription Factor (Mitf) controls expression of the ocular albinism type 1 gene: link between melanin synthesis and melanosome biogenesis publication-title: Mol. Cell. Biol. – volume: 233 start-page: 22 year: 2001 end-page: 37 article-title: Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo publication-title: Dev. Biol. – volume: 22 start-page: 1155 year: 2008 end-page: 1168 article-title: Epistatic connections between microphthalmia‐associated transcription factor and endothelin signaling in Waardenburg syndrome and other pigmentary disorders publication-title: FASEB J. – volume: 35 start-page: 193 year: 2009 end-page: 199 article-title: Physiological factors that regulate skin pigmentation publication-title: BioFactors – volume: 156 start-page: 303 year: 1988 end-page: 304 article-title: Leukotrienes and thromboxane B2 stimulate normal human melanocytes in vitro: possible inducers of postinflammatory pigmentation publication-title: Tohoku J. Exp. Med. – volume: 26 start-page: 348 year: 2013 end-page: 356 article-title: Metabotropic glutamate receptor 6 signaling enhances TRPM1 calcium channel function and increases melanin content in human melanocytes publication-title: Pigment Cell Melanoma Res. – volume: 23 start-page: 171 year: 2010 end-page: 186 article-title: Stepping up melanocytes to the challenge of UV exposure publication-title: Pigment Cell Melanoma Res. – volume: 25 start-page: 170 year: 2011 end-page: 181 article-title: Expression and signaling of the tyrosine kinase FGFR2b/KGFR regulates phagocytosis and melanosome uptake in human keratinocytes publication-title: FASEB J. – volume: 5 start-page: e189 year: 2008 end-page: e199 article-title: Modifying skin pigmentation – approaches through intrinsic biochemistry and exogenous agents publication-title: Drug Discov. Today Dis. Mech. – volume: 176 start-page: 45 year: 1991 end-page: 51 article-title: Hepatocyte growth factor is a potent stimulator of human melanocyte DNA synthesis and growth publication-title: Biochem. Biophys. Res. Commun. – volume: 11 start-page: 2230 year: 2006 end-page: 2248 article-title: Corticotropin releasing hormone and the skin publication-title: Front Biosci. – volume: 123 start-page: 3102 year: 2010 end-page: 3111 article-title: The fibroblast‐derived paracrine factor neuregulin‐1 has a novel role in regulating the constitutive color and melanocyte function in human skin publication-title: J. Cell Sci. – volume: 6 start-page: 97 year: 2011 end-page: 108 article-title: Update on the regulation of mammalian melanocyte function and skin pigmentation publication-title: Expert Rev. Dermatol. – volume: 13 start-page: 313 year: 2007 end-page: 316 article-title: The imprinted H19 noncoding RNA is a primary microRNA precursor publication-title: RNA – volume: 6 start-page: 7506 year: 2015 article-title: Exosomes released by keratinocytes modulate melanocyte pigmentation publication-title: Nat. Commun. – volume: 10 start-page: 212 year: 2005 end-page: 216 article-title: Beta‐endorphin: the forgotten hair follicle melanotropin publication-title: J. Investig. Dermatol. Symp. Proc. – volume: 183 start-page: 364 year: 2000 end-page: 372 article-title: Expression of functional mGlu5 metabotropic glutamate receptors in human melanocytes publication-title: J. Cell. Physiol. – volume: 20 start-page: 2 year: 2007 end-page: 13 article-title: Regulation of human skin pigmentation and responses to ultraviolet radiation publication-title: Pigment Cell Res. – volume: 23 start-page: 27 year: 2010 end-page: 40 article-title: Fifteen‐year quest for microphthalmia‐associated transcription factor target genes publication-title: Pigment Cell Melanoma Res. – volume: 452 start-page: 225 year: 2008 end-page: 229 article-title: A skin microRNA promotes differentiation by repressing ‘stemness’ publication-title: Nature – volume: 134 start-page: 461 year: 2013 end-page: 469 article-title: MicroRNA‐203 regulates melanosome transport and tyrosinase expression in melanoma cells by targeting kinesin superfamily protein 5b publication-title: J. Invest. Dermatol. – volume: 5 start-page: e15104 year: 2016 article-title: Sex steroids regulate skin pigmentation through nonclassical membrane‐bound receptors publication-title: Elife – volume: 396 start-page: 370 year: 1998 end-page: 373 article-title: Control of neural crest cell fate by the Wnt signalling pathway publication-title: Nature – volume: 4 start-page: e6 year: 2006 article-title: Functional amyloid formation within mammalian tissue publication-title: PLoS Biol. – volume: 62 start-page: 632 year: 2010 end-page: 667 article-title: International union of basic and clinical pharmacology. LXXX. The class Frizzled receptors publication-title: Pharmacol. Rev. – volume: 7 start-page: 95 year: 2016 article-title: Melanocortin 1 receptor: structure, function, and regulation publication-title: Front Genet. – volume: 136 start-page: 1681 year: 2016 end-page: 1691 article-title: Variation in Hsp70‐1A expression contributes to skin color diversity publication-title: J. Invest. Dermatol. – volume: 4 start-page: a017046 year: 2014 article-title: Melanocytes and their diseases publication-title: Cold Spring Harb. Perspect Med. – volume: 120 start-page: 1073 year: 2003 end-page: 1080 article-title: Regulation of human epidermal melanocyte biology by beta‐endorphin publication-title: J. Invest. Dermatol. – volume: 81 start-page: 53 year: 2016 end-page: 60 article-title: Analysis of lncRNAs expression in UVB‐induced stress responses of melanocytes publication-title: J. Dermatol. Sci. – ident: e_1_2_12_168_1 doi: 10.7554/eLife.15104 – start-page: 940 volume-title: Cosmetic Industry Approaches to Epigenetics and Molecular Biology (Harry's Cosmeticology 9th Edition) year: 2015 ident: e_1_2_12_125_1 – ident: e_1_2_12_157_1 doi: 10.1083/jcb.115.3.821 – ident: e_1_2_12_117_1 doi: 10.1046/j.1523-1747.2003.12427.x – ident: e_1_2_12_114_1 doi: 10.1006/excr.1999.4692 – volume: 4 start-page: 265 year: 1991 ident: e_1_2_12_31_1 article-title: The physiology of scratching: involvement of proopiomelanocortin gene‐coded proteins in Langerhans cells publication-title: Prog. Neuro. Endo. Immunol. – ident: e_1_2_12_156_1 doi: 10.1042/bj3130625 – ident: e_1_2_12_98_1 doi: 10.1242/jcs.00598 – ident: e_1_2_12_76_1 doi: 10.1111/j.1749-6632.1993.tb19691.x – ident: e_1_2_12_101_1 doi: 10.1091/mbc.e06-05-0379 – ident: e_1_2_12_57_1 doi: 10.1016/0006-291X(92)91527-W – ident: e_1_2_12_97_1 doi: 10.1093/hmg/9.19.2781 – ident: e_1_2_12_23_1 doi: 10.1096/fj.04-1968fje – ident: e_1_2_12_89_1 doi: 10.1016/j.celrep.2017.05.042 – volume: 267 start-page: 24675 year: 1992 ident: e_1_2_12_40_1 article-title: Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)35817-4 – ident: e_1_2_12_85_1 doi: 10.1073/pnas.0705117104 – ident: e_1_2_12_78_1 doi: 10.1242/jcs.064774 – ident: e_1_2_12_174_1 doi: 10.1016/S0002-9440(10)63657-7 – ident: e_1_2_12_25_1 doi: 10.1152/ajpendo.00519.2004 – ident: e_1_2_12_30_1 doi: 10.1177/002215540205000201 – ident: e_1_2_12_9_1 doi: 10.1586/edm.10.70 – ident: e_1_2_12_39_1 doi: 10.1038/332411a0 – ident: e_1_2_12_41_1 doi: 10.1111/1523-1747.ep12349932 – ident: e_1_2_12_77_1 doi: 10.1016/0006-291X(91)90887-D – ident: e_1_2_12_106_1 doi: 10.1242/jcs.094185 – volume: 1 start-page: 19 year: 2008 ident: e_1_2_12_146_1 article-title: Mir‐434‐5p mediates skin whitening and lightening publication-title: Clin. Cosmet. Investig. Dermatol. – ident: e_1_2_12_149_1 doi: 10.1371/journal.pone.0100893 – ident: e_1_2_12_18_1 doi: 10.1101/cshperspect.a017046 – volume: 21 start-page: 1 year: 2016 ident: e_1_2_12_133_1 article-title: MiR‐137 affects melanin synthesis in mouse melanocyte by repressing the expression of c‐Kit and Tyrp2 in SCF/c‐Kit signaling pathway publication-title: Biosci. Biotechnol. Biochem. – ident: e_1_2_12_162_1 doi: 10.1038/sj.jid.5700760 – ident: e_1_2_12_3_1 doi: 10.1001/archderm.1988.01670060015008 – ident: e_1_2_12_164_1 doi: 10.1038/nrc2015 – ident: e_1_2_12_167_1 doi: 10.1371/journal.pone.0096035 – ident: e_1_2_12_14_1 doi: 10.1111/j.1600-0625.2009.00957.x – ident: e_1_2_12_52_1 doi: 10.1074/jbc.C000113200 – ident: e_1_2_12_165_1 doi: 10.1016/j.abb.2007.03.038 – ident: e_1_2_12_81_1 doi: 10.1111/j.1755-148X.2009.00610.x – ident: e_1_2_12_109_1 doi: 10.1128/MCB.23.15.5245-5255.2003 – ident: e_1_2_12_46_1 doi: 10.3892/ijmm.2012.1028 – ident: e_1_2_12_95_1 doi: 10.1371/journal.pbio.0060236 – ident: e_1_2_12_148_1 doi: 10.1016/j.jdermsci.2015.10.019 – ident: e_1_2_12_138_1 doi: 10.1038/nature06642 – ident: e_1_2_12_173_1 doi: 10.1128/MCB.14.12.7996 – ident: e_1_2_12_72_1 doi: 10.1083/jcb.107.4.1611 – ident: e_1_2_12_169_1 doi: 10.1016/j.ddmec.2008.02.001 – ident: e_1_2_12_171_1 doi: 10.1111/1523-1747.ep12471536 – ident: e_1_2_12_126_1 doi: 10.1016/j.sder.2010.04.006 – ident: e_1_2_12_132_1 doi: 10.1158/0008-5472.CAN-07-2912 – ident: e_1_2_12_122_1 doi: 10.18632/oncotarget.9330 – ident: e_1_2_12_154_1 doi: 10.1034/j.1600-0749.2001.140402.x – ident: e_1_2_12_159_1 doi: 10.1016/j.cub.2011.09.047 – ident: e_1_2_12_67_1 doi: 10.1016/j.jid.2017.07.833 – ident: e_1_2_12_121_1 doi: 10.1016/j.jid.2016.03.038 – ident: e_1_2_12_29_1 doi: 10.1038/nature05660 – ident: e_1_2_12_105_1 doi: 10.1046/j.1523-1747.2000.00957.x – ident: e_1_2_12_96_1 doi: 10.1093/hmg/ddp415 – ident: e_1_2_12_64_1 doi: 10.1073/pnas.1117433109 – volume: 3 start-page: 20 year: 2010 ident: e_1_2_12_15_1 article-title: Postinflammatory hyperpigmentation. A review of the epidemiology, clinical features, and treatment options in skin of color publication-title: J. Clin. Aesthet. Dermatol. – ident: e_1_2_12_178_1 doi: 10.1016/S0024-3205(02)01996-3 – ident: e_1_2_12_93_1 doi: 10.1091/mbc.e06-01-0081 – ident: e_1_2_12_7_1 doi: 10.1111/j.1755-148X.2009.00653.x – ident: e_1_2_12_86_1 doi: 10.1007/s00018-014-1791-0 – ident: e_1_2_12_107_1 doi: 10.1074/jbc.M112.370544 – ident: e_1_2_12_91_1 doi: 10.1073/pnas.191184798 – ident: e_1_2_12_55_1 doi: 10.1038/sj.jid.5700629 – ident: e_1_2_12_74_1 doi: 10.1038/cdd.2011.132 – ident: e_1_2_12_110_1 doi: 10.1111/j.1600-0854.2006.00425.x – ident: e_1_2_12_172_1 doi: 10.1093/bioinformatics/btq466 – ident: e_1_2_12_135_1 doi: 10.1039/c2mb25228g – ident: e_1_2_12_88_1 doi: 10.1111/pcmr.12334 – ident: e_1_2_12_113_1 doi: 10.1111/exd.13528 – ident: e_1_2_12_140_1 doi: 10.3390/ijms17070959 – ident: e_1_2_12_51_1 doi: 10.1101/gad.14.2.158 – ident: e_1_2_12_103_1 doi: 10.1111/pcmr.12301 – ident: e_1_2_12_36_1 doi: 10.1046/j.1523-1747.2003.12242.x – ident: e_1_2_12_112_1 doi: 10.1096/fj.10-159046 – ident: e_1_2_12_161_1 doi: 10.1046/j.1523-1747.2003.12481.x – ident: e_1_2_12_37_1 doi: 10.1111/j.0022-202X.2004.22724.x – ident: e_1_2_12_104_1 doi: 10.1046/j.1523-1747.2000.00894.x – ident: e_1_2_12_24_1 doi: 10.1016/j.jneuroim.2005.01.014 – ident: e_1_2_12_136_1 doi: 10.1038/ncomms8506 – ident: e_1_2_12_137_1 doi: 10.1371/journal.pone.0072699 – ident: e_1_2_12_66_1 doi: 10.1158/0008-5472.CAN-03-2440 – ident: e_1_2_12_84_1 doi: 10.1111/j.1755-148X.2010.00679.x – ident: e_1_2_12_58_1 doi: 10.1152/physrev.00044.2003 – ident: e_1_2_12_134_1 doi: 10.4161/rna.28865 – ident: e_1_2_12_34_1 doi: 10.1210/en.2008-1212 – ident: e_1_2_12_166_1 doi: 10.1111/j.1755-148X.2010.00762.x – ident: e_1_2_12_27_1 doi: 10.18388/abp.2010_2366 – ident: e_1_2_12_83_1 doi: 10.1111/pcmr.12393 – ident: e_1_2_12_70_1 doi: 10.1007/s00018-004-4189-6 – ident: e_1_2_12_80_1 doi: 10.1042/BJ20051388 – ident: e_1_2_12_61_1 doi: 10.1111/j.1600-0749.2005.00284.x – ident: e_1_2_12_75_1 doi: 10.1111/j.1600-0749.2004.00198.x – ident: e_1_2_12_82_1 doi: 10.1155/2014/498276 – ident: e_1_2_12_11_1 doi: 10.1152/physiol.00043.2011 – ident: e_1_2_12_63_1 doi: 10.1002/(SICI)1097-4652(200006)183:3<364::AID-JCP9>3.0.CO;2-X – ident: e_1_2_12_69_1 doi: 10.1038/34681 – ident: e_1_2_12_139_1 doi: 10.1038/jid.2013.310 – ident: e_1_2_12_2_1 doi: 10.1034/j.1600-0625.2002.00112.x – ident: e_1_2_12_32_1 doi: 10.3389/fgene.2016.00095 – ident: e_1_2_12_48_1 doi: 10.3390/ijms141020443 – ident: e_1_2_12_111_1 doi: 10.1242/jcs.115.7.1441 – ident: e_1_2_12_87_1 doi: 10.1016/j.molcel.2008.11.002 – ident: e_1_2_12_90_1 doi: 10.1038/nature07163 – ident: e_1_2_12_145_1 doi: 10.1128/MCB.00106-14 – ident: e_1_2_12_28_1 doi: 10.1677/joe.0.1460439 – ident: e_1_2_12_16_1 doi: 10.1016/j.clindermatol.2006.04.006 – ident: e_1_2_12_19_1 doi: 10.1590/S0365-05962013000100009 – volume: 113 start-page: 3093 year: 2000 ident: e_1_2_12_116_1 article-title: The protease‐activated receptor‐2 upregulates keratinocyte phagocytosis publication-title: J. Cell Sci. doi: 10.1242/jcs.113.17.3093 – ident: e_1_2_12_12_1 – ident: e_1_2_12_131_1 doi: 10.2527/jas.2014-8404 – ident: e_1_2_12_151_1 doi: 10.1016/j.cell.2006.12.045 – ident: e_1_2_12_170_1 doi: 10.1620/tjem.156.303 – ident: e_1_2_12_79_1 doi: 10.1242/jcs.102038 – ident: e_1_2_12_150_1 doi: 10.1261/rna.351707 – volume: 266 start-page: 18352 year: 1991 ident: e_1_2_12_42_1 article-title: Effects of endothelins on signal transduction and proliferation in human melanocytes publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)55277-7 – ident: e_1_2_12_99_1 doi: 10.1371/journal.pone.0129273 – ident: e_1_2_12_4_1 doi: 10.1002/biof.29 – ident: e_1_2_12_176_1 doi: 10.1111/j.1755-148X.2008.00505.x – ident: e_1_2_12_54_1 doi: 10.1111/j.1600-0749.2005.00226.x – ident: e_1_2_12_33_1 doi: 10.1007/s12272-013-0130-6 – ident: e_1_2_12_94_1 doi: 10.1074/jbc.M110.168088 – ident: e_1_2_12_123_1 doi: 10.1038/jid.2014.439 – volume: 23 start-page: 366 year: 1972 ident: e_1_2_12_124_1 article-title: So much “junk” DNA in our genome publication-title: Brookhaven Symp. Biol. – ident: e_1_2_12_102_1 doi: 10.1091/mbc.E06-12-1066 – ident: e_1_2_12_73_1 doi: 10.1007/BF02505269 – ident: e_1_2_12_163_1 doi: 10.1016/j.envres.2005.12.003 – ident: e_1_2_12_100_1 doi: 10.1074/jbc.M413692200 – ident: e_1_2_12_120_1 doi: 10.1038/jid.2013.165 – ident: e_1_2_12_10_1 doi: 10.1038/nrm2258 – ident: e_1_2_12_50_1 doi: 10.1038/24620 – volume: 27 start-page: 153 year: 2011 ident: e_1_2_12_8_1 article-title: Biogenesis of melanosomes – the chessboard of pigmentation publication-title: Med. Sci. – ident: e_1_2_12_62_1 doi: 10.1111/j.1600-0625.2009.00886.x – ident: e_1_2_12_13_1 doi: 10.1590/abd1806-4841.20143063 – ident: e_1_2_12_153_1 doi: 10.1074/jbc.R700026200 – ident: e_1_2_12_6_1 doi: 10.1111/j.1600-0625.2009.01053.x – ident: e_1_2_12_38_1 doi: 10.1111/j.1087-0024.2005.10108.x – ident: e_1_2_12_60_1 doi: 10.1038/jid.2012.324 – ident: e_1_2_12_65_1 doi: 10.1111/pcmr.12083 – ident: e_1_2_12_118_1 doi: 10.1038/sj.jid.5701063 – ident: e_1_2_12_141_1 doi: 10.3390/ijms160510921 – ident: e_1_2_12_128_1 doi: 10.1016/j.domaniend.2009.10.004 – ident: e_1_2_12_142_1 doi: 10.1111/pcmr.12179 – ident: e_1_2_12_144_1 doi: 10.1038/jid.2012.266 – ident: e_1_2_12_59_1 doi: 10.1111/j.1600-0625.1996.tb00088.x – ident: e_1_2_12_68_1 doi: 10.5114/pdia.2013.33376 – ident: e_1_2_12_130_1 doi: 10.1017/S1751731116001294 – ident: e_1_2_12_147_1 doi: 10.1016/j.jid.2016.01.018 – ident: e_1_2_12_175_1 doi: 10.1128/MCB.24.15.6550-6559.2004 – ident: e_1_2_12_53_1 doi: 10.1006/dbio.2001.0222 – ident: e_1_2_12_115_1 doi: 10.1046/j.0022-202x.2001.01575.x – ident: e_1_2_12_26_1 doi: 10.1096/fj.06-7398com – ident: e_1_2_12_45_1 doi: 10.1124/pr.110.002931 – ident: e_1_2_12_56_1 doi: 10.1371/journal.pone.0011014 – ident: e_1_2_12_160_1 doi: 10.1111/j.1600-0749.2003.00126.x – ident: e_1_2_12_155_1 doi: 10.1111/exd.13395 – ident: e_1_2_12_152_1 doi: 10.1111/j.1600-0749.2006.00358.x – ident: e_1_2_12_35_1 doi: 10.1006/phrs.2000.0725 – ident: e_1_2_12_119_1 doi: 10.1096/fj.10-162156 – ident: e_1_2_12_49_1 doi: 10.1101/cshperspect.a008029 – ident: e_1_2_12_47_1 doi: 10.1146/annurev.genet.38.072902.092717 – ident: e_1_2_12_179_1 doi: 10.1096/fj.07-9080com – ident: e_1_2_12_20_1 doi: 10.2741/1966 – ident: e_1_2_12_92_1 doi: 10.1371/journal.pbio.0040006 – ident: e_1_2_12_129_1 doi: 10.1038/cdd.2015.117 – ident: e_1_2_12_158_1 doi: 10.1111/j.1600-0625.2010.01074.x – ident: e_1_2_12_17_1 doi: 10.1016/j.jaad.2010.11.061 – ident: e_1_2_12_5_1 doi: 10.1096/fj.06-6649rev – ident: e_1_2_12_71_1 doi: 10.1128/MCB.18.2.694 – ident: e_1_2_12_127_1 doi: 10.1210/er.2014-1034 – ident: e_1_2_12_143_1 doi: 10.1038/emm.2017.115 – ident: e_1_2_12_108_1 doi: 10.1038/srep08238 – ident: e_1_2_12_177_1 doi: 10.1074/jbc.M800130200 – ident: e_1_2_12_43_1 doi: 10.3390/ijms15058293 – ident: e_1_2_12_44_1 doi: 10.1111/j.1600-0749.1997.tb00488.x – ident: e_1_2_12_21_1 doi: 10.1016/j.ddmec.2008.04.004 – ident: e_1_2_12_22_1 doi: 10.1002/jcp.20530 |
| SSID | ssj0004983 |
| Score | 2.5737715 |
| SecondaryResourceType | review_article |
| Snippet | In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly... In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 328 |
| SubjectTerms | computer modelling Convergence Environmental Pollutants - toxicity environmental pollution Enzymes Humans Irradiation Keratinocytes Melanin Melanins - biosynthesis Melanocytes Melanocytes - metabolism melanogenesis Melanosomes Melanosomes - metabolism Microphthalmia-associated transcription factor Microphthalmia-Associated Transcription Factor - metabolism MicroRNAs - metabolism miRNA ncRNAs Pigmentation Pigments Proteins Receptors, G-Protein-Coupled - metabolism RNA, Long Noncoding - metabolism Signal processing Signal transduction Signaling Skin Skin - drug effects Skin - metabolism Skin - radiation effects skin physiology/structure Skin Pigmentation Sunlight Tyrosinase Ultraviolet radiation |
| Title | Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fics.12466 https://www.ncbi.nlm.nih.gov/pubmed/29752874 https://www.proquest.com/docview/2100344769 https://www.proquest.com/docview/2038277967 |
| Volume | 40 |
| WOSCitedRecordID | wos000443942500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1468-2494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004983 issn: 0142-5463 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61W8Tj0MLyWmirgDhwCdokjh_ihAorKrUFAZX2FtmxXUW03mqz5fczdpy0Fa2E1EuUx1i25vN4ZmLPDMA7STJpM1WntlQ0JcSSVEx1mcqM2cxaUtYmVC05YEdHfD4X39fgYx8L0-WHGH64eckI67UXcKnaK0Le1O0HVE6UrsNGjvOWjGDj84_Z8cFlWKTosnBmxKf7p0VMLOQP8gyNr6ujf2zM6yZr0DmzrTuN9jFsRlMz-dTNjSewZtwYHvSRyO0YHl1JRjiG-4dxm_0pfNt3K3yJACbS6QTX7_i07CrXI5bJwiahvl_S_m5ccmZOpVuc-IWzaUOj8-bkLMY1uWdwPPvya-9rGisvpDVBTqVSWFVyJmqPIxV4IRnnJfrSukBuGqFR4TGWGWK0QQdPMVNQzRW6toitzovnMHILZ15Ckpe4gsppoZX35Wyucm6nGtWipqogVE7gfQ9AVce05L46xmnVuyfIkSqwbgJvB9LzLhfHTUTbPYpVFMe2Qr82pDakYgJvhs8oSH53RDqzuECaacFzxgRlE3jRoT_04sOPfWEAHGwA-fbuq_29n-Hm1f-TvoaHaIbx7ljhNoxWywuzA_fqP6umXe7COpvz3Ti3_wJ3Xvq4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BQbA9jK3soxtsGeKBl0xN4tixtJeJUVGtlGmAxFvkxDaKBi5qyv7-nR0nAw0kJF6ifFxk634-353tuwPYFSQSOirKUKcFDQnRJORDmYYiYjrSmqSlclVLJmw6zc7P-c8l-NrGwjT5IboFNysZbr62Am4XpG9JeVXWX1A7UboMKwSHUdqDle-_RmeTf3GRvEnDGRGb758mPrOQPcnT_XxXH_1nZN61WZ3SGW08rbsv4YU3NoNvzeh4BUvK9GG9jUWu-_D8VjrCPqwd-Y32TTgemwW-RAgDYWSAM7h_mje16xHNYKYDV-EvqH9XJrhSl8LMLuzUWdXup-vq4spHNpnXcDY6ON0_DH3thbAkyKpQcF2kGeOlRZJyvJAoy1L0pmWC7FRcospjLFJESYUuXsFUQmVWoHOL6Mo4eQM9MzPqHQRxinOoGCaysN6cjos400OJilHSIiFUDGCvRSAvfWJyWx_jMm8dFORI7lg3gJ2O9LrJxnEf0VYLY-4Fss7Rs3XJDSkfwOfuM4qS3R8RRs1ukGaYZDFjnLIBvG3g71qxAci2NAB21qH8cPP5eP_E3bx_POknWD88PZrkk_H0xwd4hkZZ1hwy3ILeYn6jtmG1_LOo6vlHP8T_ApJE_cA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tHRrjgY_CRmFAmPawl6AmcexY4gVtq6goZQIm7S1yYruKtrlV0_L3c3acsAmQJu0lysdZtu58vrvY9zuAQ0EioaOiDHVa0JAQTUI-lGkoIqYjrUlaKle1ZMKm0-zigp9twMc2F6bBh-h-uFnNcOu1VXC1kPqGlldl_QGtE6WbsEVSTlEtt06-j84nf_IieQPDGRGL908TjyxkT_J0jW_bo7-czNs-qzM6oyf3G-5TeOydzeBTMzuewYYyfXjY5iLXfXh0A46wD9tf_Ub7c_g2Nit8iSIMhJEBruD-adnUrkdpBnMduAp_QX1ZmeBaXQkzn9mls6pdo0U1u_aZTeYFnI9Ofx5_Dn3thbAkyKpQcF2kGeOllSTleCFRlqUYTcsE2am4RJPHWKSIkgpDvIKphMqswOAWpSvjZBd6Zm7USwjiFNdQMUxkYaM5HRdxpocSDaOkRUKoGMBRK4G89MDktj7GVd4GKMiR3LFuAAcd6aJB4_gX0X4rxtwrZJ1jZOvADSkfwPvuM6qS3R8RRs3XSDNMspgxTtkA9hrxd73YBGRbGgAH66T8_-7z8fEPd_Pq7qTvYPvsZJRPxtMvr2EHfbKsOWO4D73Vcq3ewIPy16qql2_9DP8NIK79Ow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+and+extrinsic+regulation+of+human+skin+melanogenesis+and+pigmentation&rft.jtitle=International+journal+of+cosmetic+science&rft.au=Serre%2C+C&rft.au=Busuttil%2C+V&rft.au=J%E2%80%90M+Botto&rft.date=2018-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0142-5463&rft.eissn=1468-2494&rft.volume=40&rft.issue=4&rft.spage=328&rft.epage=347&rft_id=info:doi/10.1111%2Fics.12466&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-5463&client=summon |