Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation

In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of cosmetic science Ročník 40; číslo 4; s. 328 - 347
Hlavní autori: Serre, C., Busuttil, V., Botto, J.‐M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Wiley Subscription Services, Inc 01.08.2018
Predmet:
ISSN:0142-5463, 1468-2494, 1468-2494
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non‐coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non‐specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology. Résumé Dans la peau humaine, le processus de la mélanogenèse est extrêmement contrôlé. En effet, divers signaux extracellulaires sont transduits via des voies de signalisation dédiées qui convergent essentiellement vers le facteur de transcription MITF. Ce dernier intègre cette signalisation en amont et régule alors la transcription de gènes impliqués dans les divers mécanismes inhérents à la modulation de la mélanogenèse. La synthèse des pigments de mélanine se produit dans les mélanocytes, à l'intérieur des mélanosomes dans lesquels les enzymes de la mélanogenèse (tyrosinase et protéines apparentées) sont adressées à l'aide de complexes protéiques spécifiques. Les mélanosomes ainsi chargés en mélanine sont ensuite transférés aux kératinocytes. Un niveau plus élaboré de régulation de la mélanogenèse entre aussi en jeu au travers de l'action d’ARNs non codants (microARNs et lncRNAs). Outre cette régulation canonique, la mélanogenèse peut également être modulée par des voies intrinsèques non spécifiques telles l'environnement hormonal et l'inflammation, et par des facteurs extrinsèques, comme le rayonnement solaire et la pollution environnementale. Nous avons par ailleurs développé un réseau d'interactions gènes/protéines regroupant les multiples aspects de la régulation de la mélanogenèse et de la pigmentation de la peau grâce à l'outil bioinformatique. Ce réseau constitue une ressource pour mieux comprendre et étudier la biologie de la pigmentation de la peau.
AbstractList In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non‐coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non‐specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology. Résumé Dans la peau humaine, le processus de la mélanogenèse est extrêmement contrôlé. En effet, divers signaux extracellulaires sont transduits via des voies de signalisation dédiées qui convergent essentiellement vers le facteur de transcription MITF. Ce dernier intègre cette signalisation en amont et régule alors la transcription de gènes impliqués dans les divers mécanismes inhérents à la modulation de la mélanogenèse. La synthèse des pigments de mélanine se produit dans les mélanocytes, à l'intérieur des mélanosomes dans lesquels les enzymes de la mélanogenèse (tyrosinase et protéines apparentées) sont adressées à l'aide de complexes protéiques spécifiques. Les mélanosomes ainsi chargés en mélanine sont ensuite transférés aux kératinocytes. Un niveau plus élaboré de régulation de la mélanogenèse entre aussi en jeu au travers de l'action d’ARNs non codants (microARNs et lncRNAs). Outre cette régulation canonique, la mélanogenèse peut également être modulée par des voies intrinsèques non spécifiques telles l'environnement hormonal et l'inflammation, et par des facteurs extrinsèques, comme le rayonnement solaire et la pollution environnementale. Nous avons par ailleurs développé un réseau d'interactions gènes/protéines regroupant les multiples aspects de la régulation de la mélanogenèse et de la pigmentation de la peau grâce à l'outil bioinformatique. Ce réseau constitue une ressource pour mieux comprendre et étudier la biologie de la pigmentation de la peau.
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF, a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non-coding RNAs (microRNAs, lncRNAs). Besides this canonical regulation, melanogenesis can also be modulated by other non-specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology.
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly converge to MITF , a transcription factor integrating upstream signalling and regulating downstream genes involved in the various inherent mechanisms modulating melanogenesis. The synthesis of melanin pigments occurs in melanocytes inside melanosomes where melanogenic enzymes (tyrosinase and related proteins) are addressed with the help of specific protein complexes. The melanosomes loaded with melanin are then transferred to keratinocytes. A more elaborate level of melanogenesis regulation comes into play via the action of non‐coding RNA s (micro RNA s, lnc RNA s). Besides this canonical regulation, melanogenesis can also be modulated by other non‐specific intrinsic pathways (hormonal environment, inflammation) and by extrinsic factors (solar irradiation such as ultraviolet irradiation, environmental pollution). We developed a bioinformatic interaction network gathering the multiple aspects of melanogenesis and skin pigmentation as a resource to better understand and study skin pigmentation biology. Dans la peau humaine, le processus de la mélanogenèse est extrêmement contrôlé. En effet, divers signaux extracellulaires sont transduits via des voies de signalisation dédiées qui convergent essentiellement vers le facteur de transcription MITF . Ce dernier intègre cette signalisation en amont et régule alors la transcription de gènes impliqués dans les divers mécanismes inhérents à la modulation de la mélanogenèse. La synthèse des pigments de mélanine se produit dans les mélanocytes, à l'intérieur des mélanosomes dans lesquels les enzymes de la mélanogenèse (tyrosinase et protéines apparentées) sont adressées à l'aide de complexes protéiques spécifiques. Les mélanosomes ainsi chargés en mélanine sont ensuite transférés aux kératinocytes. Un niveau plus élaboré de régulation de la mélanogenèse entre aussi en jeu au travers de l'action d’ ARN s non codants (micro ARN s et lnc RNA s). Outre cette régulation canonique, la mélanogenèse peut également être modulée par des voies intrinsèques non spécifiques telles l'environnement hormonal et l'inflammation, et par des facteurs extrinsèques, comme le rayonnement solaire et la pollution environnementale. Nous avons par ailleurs développé un réseau d'interactions gènes/protéines regroupant les multiples aspects de la régulation de la mélanogenèse et de la pigmentation de la peau grâce à l'outil bioinformatique. Ce réseau constitue une ressource pour mieux comprendre et étudier la biologie de la pigmentation de la peau.
Author Botto, J.‐M.
Busuttil, V.
Serre, C.
Author_xml – sequence: 1
  givenname: C.
  surname: Serre
  fullname: Serre, C.
  organization: Ashland
– sequence: 2
  givenname: V.
  surname: Busuttil
  fullname: Busuttil, V.
  organization: Ashland
– sequence: 3
  givenname: J.‐M.
  orcidid: 0000-0002-6182-4236
  surname: Botto
  fullname: Botto, J.‐M.
  email: jbotto@ashland.com
  organization: Ashland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29752874$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLxDAUhYMoOj4W_gEpuNFFNa_msZTBx4DgQl2HtL0do206Ji3qvzfOYyOaxQ2B7xxO7tlH2773gNAxwRcknUtXxQtCuRBbaEK4UDnlmm-jCSac5gUXbA_tx_iKMeZasV20R7UsqJJ8gh5mfgjOR1dl1tcZfG5eAeZjawfX-6xvspexsz6Lb85nHbTW93PwEF1cihZu3oEflvAh2mlsG-FofR-g55vrp-ldfv9wO5te3ecVT4Fyq5uyUFJXtiGl0GlwolSBuahZCg26JpRJSYBDDZyrUgITtSoJoxUUNWUH6Gzluwj9-whxMJ2LFbQpG_RjNBQzRaXUQib09Bf62o_Bp3SGEowZ51LoRJ2sqbHsoDaL4DobvsxmVQm4XAFV6GMM0JjKrf48BOtaQ7D5KcOkMsyyjKQ4_6XYmP7Frt0_XAtf_4NmNn1cKb4Bj7-X2g
CitedBy_id crossref_primary_10_1080_07391102_2025_2477143
crossref_primary_10_2147_CCID_S396272
crossref_primary_10_1016_j_phymed_2021_153876
crossref_primary_10_1038_s41598_024_60165_9
crossref_primary_10_1042_BSR20231324
crossref_primary_10_1111_exd_14761
crossref_primary_10_1111_jocd_14968
crossref_primary_10_1111_pcmr_12826
crossref_primary_10_3390_ijms241914947
crossref_primary_10_1111_jocd_14966
crossref_primary_10_3390_diagnostics11050865
crossref_primary_10_1038_s41598_020_58911_w
crossref_primary_10_1016_j_ejphar_2024_176537
crossref_primary_10_1111_jocd_13000
crossref_primary_10_1016_j_colsurfb_2025_114979
crossref_primary_10_1016_j_jprot_2022_104665
crossref_primary_10_3390_ijms25084479
crossref_primary_10_3390_plants11010062
crossref_primary_10_3390_antiox14010109
crossref_primary_10_3390_ijms26073281
crossref_primary_10_3839_jabc_2022_013
crossref_primary_10_1111_pcmr_13077
crossref_primary_10_1111_ijd_17867
crossref_primary_10_3390_md22020072
crossref_primary_10_3390_ijms23031358
crossref_primary_10_1016_j_mrrev_2020_108321
crossref_primary_10_1111_jocd_70163
crossref_primary_10_3390_molecules25173887
crossref_primary_10_1038_s41419_023_06223_y
crossref_primary_10_1007_s00217_025_04764_4
crossref_primary_10_1111_exd_14752
crossref_primary_10_1016_j_colsurfb_2024_114170
crossref_primary_10_1007_s13273_022_00250_0
crossref_primary_10_3390_molecules27134183
crossref_primary_10_1111_mec_17525
crossref_primary_10_3390_plants10040727
crossref_primary_10_3390_antiox10071129
crossref_primary_10_1080_10495398_2021_1998089
crossref_primary_10_3390_cosmetics6040057
crossref_primary_10_3390_ijms26094370
crossref_primary_10_3389_fmed_2022_812653
crossref_primary_10_3390_cosmetics10050121
crossref_primary_10_1016_j_procbio_2023_09_011
crossref_primary_10_3390_cosmetics12050210
crossref_primary_10_3390_antiox11030503
crossref_primary_10_3390_cells8080803
crossref_primary_10_3390_nu14235044
crossref_primary_10_1016_j_indcrop_2025_121612
crossref_primary_10_1007_s10103_021_03327_9
crossref_primary_10_1111_ics_12728
crossref_primary_10_1097_CM9_0000000000001934
crossref_primary_10_1111_jocd_15163
crossref_primary_10_3390_ijms22126192
crossref_primary_10_1111_jocd_13899
crossref_primary_10_1016_j_arr_2021_101349
crossref_primary_10_1016_j_jid_2024_03_048
crossref_primary_10_3390_cells10112848
crossref_primary_10_3390_ijms26052278
crossref_primary_10_1111_jfbc_14353
crossref_primary_10_3390_md21070385
crossref_primary_10_3389_fimmu_2023_1009137
crossref_primary_10_1111_phpp_12935
crossref_primary_10_3390_cosmetics12050205
crossref_primary_10_1134_S102279542108007X
crossref_primary_10_2147_CCID_S299569
crossref_primary_10_1016_j_yexcr_2023_113874
crossref_primary_10_1111_exd_14693
crossref_primary_10_3390_biology12020290
crossref_primary_10_1111_mec_16136
crossref_primary_10_1089_jmf_2021_K_0130
crossref_primary_10_1186_s43094_022_00435_3
crossref_primary_10_3390_cells11142220
crossref_primary_10_1016_j_psj_2024_103513
crossref_primary_10_3390_molecules28010378
crossref_primary_10_1016_j_jid_2020_09_031
crossref_primary_10_1016_j_lfs_2021_119915
crossref_primary_10_1016_j_eujim_2022_102181
crossref_primary_10_3390_ijms20092081
crossref_primary_10_3390_antiox12030692
crossref_primary_10_3389_fvets_2020_00258
crossref_primary_10_4103_ijd_ijd_568_23
crossref_primary_10_1016_j_aquaculture_2024_740820
crossref_primary_10_1016_j_jdermsci_2020_10_014
crossref_primary_10_1016_j_semcancer_2019_06_020
crossref_primary_10_1080_03014460_2025_2468692
crossref_primary_10_5812_jjnpp_114152
crossref_primary_10_3390_ijms25116199
crossref_primary_10_1016_j_prmcm_2022_100202
crossref_primary_10_1002_em_22511
crossref_primary_10_1016_j_rvsc_2022_03_020
crossref_primary_10_3390_nu13113894
crossref_primary_10_3390_ani12121482
crossref_primary_10_1111_jdv_19718
crossref_primary_10_3390_ph17010055
crossref_primary_10_3390_md22090421
crossref_primary_10_4103_ds_ds_1_21
crossref_primary_10_3390_antiox8090332
crossref_primary_10_3390_molecules27103228
crossref_primary_10_1016_j_jid_2022_08_040
crossref_primary_10_3390_molecules26247515
crossref_primary_10_3390_cancers14071752
crossref_primary_10_1111_jocd_16669
crossref_primary_10_1007_s40995_022_01310_9
crossref_primary_10_1007_s10103_025_04567_9
crossref_primary_10_3390_molecules27217518
crossref_primary_10_1016_j_jand_2021_10_024
crossref_primary_10_1016_j_jid_2022_04_022
crossref_primary_10_3390_ijms20040956
crossref_primary_10_1016_j_ad_2024_09_032
crossref_primary_10_3390_biomedicines8090322
crossref_primary_10_3390_ijms252111502
crossref_primary_10_1111_pcmr_12994
crossref_primary_10_1016_j_bcab_2024_103486
crossref_primary_10_1016_j_ceca_2024_102987
crossref_primary_10_3390_ijms241612810
crossref_primary_10_1093_toxres_tfaf025
crossref_primary_10_1007_s00403_025_04400_x
crossref_primary_10_1016_j_envpol_2022_119316
crossref_primary_10_1186_s12864_023_09837_w
crossref_primary_10_25259_IJDVL_1087_19
crossref_primary_10_3390_cells12121671
crossref_primary_10_3390_epigenomes5040023
crossref_primary_10_3390_cosmetics8030070
crossref_primary_10_4103_apjtb_apjtb_568_24
crossref_primary_10_3390_cimb46060359
crossref_primary_10_1128_spectrum_02730_21
crossref_primary_10_3390_molecules27010177
crossref_primary_10_1016_j_burns_2022_04_017
crossref_primary_10_1111_ics_12886
crossref_primary_10_3390_ijms22116104
crossref_primary_10_1038_s41467_021_27173_z
crossref_primary_10_1111_dth_15934
crossref_primary_10_1016_j_bioorg_2019_03_026
crossref_primary_10_1186_s43088_025_00673_3
crossref_primary_10_3390_molecules29225391
crossref_primary_10_3390_genes13071271
crossref_primary_10_1016_j_jsps_2023_02_006
crossref_primary_10_1210_clinem_dgac342
crossref_primary_10_3390_ijms222313056
crossref_primary_10_25259_JCAS_73_2024
crossref_primary_10_3390_ijms26157589
crossref_primary_10_3390_antiox9070637
crossref_primary_10_1093_bjd_ljae291
crossref_primary_10_1016_j_jdermsci_2022_06_005
crossref_primary_10_3390_genes14051035
crossref_primary_10_1016_j_toxlet_2019_11_014
crossref_primary_10_3390_antiox13101248
crossref_primary_10_1016_j_jid_2023_08_019
crossref_primary_10_3390_ijms21249631
crossref_primary_10_1093_jbcr_irz168
crossref_primary_10_1002_hsr2_374
crossref_primary_10_3389_fnut_2023_1121498
crossref_primary_10_3390_plants11233318
crossref_primary_10_1016_j_aaf_2023_12_002
crossref_primary_10_52711_0974_360X_2021_01061
crossref_primary_10_1016_j_bbadis_2021_166219
crossref_primary_10_3390_pharmaceutics14020307
crossref_primary_10_1186_s13287_021_02570_9
crossref_primary_10_3390_molecules26247648
crossref_primary_10_1111_jocd_13571
crossref_primary_10_3390_molecules27051549
crossref_primary_10_3390_plants9121672
crossref_primary_10_1111_phpp_12865
crossref_primary_10_1016_j_jdermsci_2022_12_008
crossref_primary_10_1016_j_autrev_2020_102664
crossref_primary_10_3389_ftox_2023_1256399
crossref_primary_10_1093_evolut_qpac064
crossref_primary_10_1097_PAS_0000000000002262
crossref_primary_10_1016_j_jid_2022_04_019
crossref_primary_10_3390_antiox10010044
Cites_doi 10.7554/eLife.15104
10.1083/jcb.115.3.821
10.1046/j.1523-1747.2003.12427.x
10.1006/excr.1999.4692
10.1042/bj3130625
10.1242/jcs.00598
10.1111/j.1749-6632.1993.tb19691.x
10.1091/mbc.e06-05-0379
10.1016/0006-291X(92)91527-W
10.1093/hmg/9.19.2781
10.1096/fj.04-1968fje
10.1016/j.celrep.2017.05.042
10.1016/S0021-9258(18)35817-4
10.1073/pnas.0705117104
10.1242/jcs.064774
10.1016/S0002-9440(10)63657-7
10.1152/ajpendo.00519.2004
10.1177/002215540205000201
10.1586/edm.10.70
10.1038/332411a0
10.1111/1523-1747.ep12349932
10.1016/0006-291X(91)90887-D
10.1242/jcs.094185
10.1371/journal.pone.0100893
10.1101/cshperspect.a017046
10.1038/sj.jid.5700760
10.1001/archderm.1988.01670060015008
10.1038/nrc2015
10.1371/journal.pone.0096035
10.1111/j.1600-0625.2009.00957.x
10.1074/jbc.C000113200
10.1016/j.abb.2007.03.038
10.1111/j.1755-148X.2009.00610.x
10.1128/MCB.23.15.5245-5255.2003
10.3892/ijmm.2012.1028
10.1371/journal.pbio.0060236
10.1016/j.jdermsci.2015.10.019
10.1038/nature06642
10.1128/MCB.14.12.7996
10.1083/jcb.107.4.1611
10.1016/j.ddmec.2008.02.001
10.1111/1523-1747.ep12471536
10.1016/j.sder.2010.04.006
10.1158/0008-5472.CAN-07-2912
10.18632/oncotarget.9330
10.1034/j.1600-0749.2001.140402.x
10.1016/j.cub.2011.09.047
10.1016/j.jid.2017.07.833
10.1016/j.jid.2016.03.038
10.1038/nature05660
10.1046/j.1523-1747.2000.00957.x
10.1093/hmg/ddp415
10.1073/pnas.1117433109
10.1016/S0024-3205(02)01996-3
10.1091/mbc.e06-01-0081
10.1111/j.1755-148X.2009.00653.x
10.1007/s00018-014-1791-0
10.1074/jbc.M112.370544
10.1073/pnas.191184798
10.1038/sj.jid.5700629
10.1038/cdd.2011.132
10.1111/j.1600-0854.2006.00425.x
10.1093/bioinformatics/btq466
10.1039/c2mb25228g
10.1111/pcmr.12334
10.1111/exd.13528
10.3390/ijms17070959
10.1101/gad.14.2.158
10.1111/pcmr.12301
10.1046/j.1523-1747.2003.12242.x
10.1096/fj.10-159046
10.1046/j.1523-1747.2003.12481.x
10.1111/j.0022-202X.2004.22724.x
10.1046/j.1523-1747.2000.00894.x
10.1016/j.jneuroim.2005.01.014
10.1038/ncomms8506
10.1371/journal.pone.0072699
10.1158/0008-5472.CAN-03-2440
10.1111/j.1755-148X.2010.00679.x
10.1152/physrev.00044.2003
10.4161/rna.28865
10.1210/en.2008-1212
10.1111/j.1755-148X.2010.00762.x
10.18388/abp.2010_2366
10.1111/pcmr.12393
10.1007/s00018-004-4189-6
10.1042/BJ20051388
10.1111/j.1600-0749.2005.00284.x
10.1111/j.1600-0749.2004.00198.x
10.1155/2014/498276
10.1152/physiol.00043.2011
10.1002/(SICI)1097-4652(200006)183:3<364::AID-JCP9>3.0.CO;2-X
10.1038/34681
10.1038/jid.2013.310
10.1034/j.1600-0625.2002.00112.x
10.3389/fgene.2016.00095
10.3390/ijms141020443
10.1242/jcs.115.7.1441
10.1016/j.molcel.2008.11.002
10.1038/nature07163
10.1128/MCB.00106-14
10.1677/joe.0.1460439
10.1016/j.clindermatol.2006.04.006
10.1590/S0365-05962013000100009
10.1242/jcs.113.17.3093
10.2527/jas.2014-8404
10.1016/j.cell.2006.12.045
10.1620/tjem.156.303
10.1242/jcs.102038
10.1261/rna.351707
10.1016/S0021-9258(18)55277-7
10.1371/journal.pone.0129273
10.1002/biof.29
10.1111/j.1755-148X.2008.00505.x
10.1111/j.1600-0749.2005.00226.x
10.1007/s12272-013-0130-6
10.1074/jbc.M110.168088
10.1038/jid.2014.439
10.1091/mbc.E06-12-1066
10.1007/BF02505269
10.1016/j.envres.2005.12.003
10.1074/jbc.M413692200
10.1038/jid.2013.165
10.1038/nrm2258
10.1038/24620
10.1111/j.1600-0625.2009.00886.x
10.1590/abd1806-4841.20143063
10.1074/jbc.R700026200
10.1111/j.1600-0625.2009.01053.x
10.1111/j.1087-0024.2005.10108.x
10.1038/jid.2012.324
10.1111/pcmr.12083
10.1038/sj.jid.5701063
10.3390/ijms160510921
10.1016/j.domaniend.2009.10.004
10.1111/pcmr.12179
10.1038/jid.2012.266
10.1111/j.1600-0625.1996.tb00088.x
10.5114/pdia.2013.33376
10.1017/S1751731116001294
10.1016/j.jid.2016.01.018
10.1128/MCB.24.15.6550-6559.2004
10.1006/dbio.2001.0222
10.1046/j.0022-202x.2001.01575.x
10.1096/fj.06-7398com
10.1124/pr.110.002931
10.1371/journal.pone.0011014
10.1111/j.1600-0749.2003.00126.x
10.1111/exd.13395
10.1111/j.1600-0749.2006.00358.x
10.1006/phrs.2000.0725
10.1096/fj.10-162156
10.1101/cshperspect.a008029
10.1146/annurev.genet.38.072902.092717
10.1096/fj.07-9080com
10.2741/1966
10.1371/journal.pbio.0040006
10.1038/cdd.2015.117
10.1111/j.1600-0625.2010.01074.x
10.1016/j.jaad.2010.11.061
10.1096/fj.06-6649rev
10.1128/MCB.18.2.694
10.1210/er.2014-1034
10.1038/emm.2017.115
10.1038/srep08238
10.1074/jbc.M800130200
10.3390/ijms15058293
10.1111/j.1600-0749.1997.tb00488.x
10.1016/j.ddmec.2008.04.004
10.1002/jcp.20530
ContentType Journal Article
Copyright 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie
2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Copyright © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie
Copyright_xml – notice: 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie
– notice: 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
– notice: Copyright © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U7
8FD
C1K
FR3
K9.
P64
7X8
DOI 10.1111/ics.12466
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Economics
Engineering
EISSN 1468-2494
EndPage 347
ExternalDocumentID 29752874
10_1111_ics_12466
ICS12466
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BGNMA
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EJD
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LAK
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M4Y
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NU0
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
YUY
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
WRC
WUP
7QR
7U7
8FD
C1K
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4546-a9fb5879caf1b69f1b41885046d3142e9d123771e4ede448b7e36d8b132ce5d23
IEDL.DBID DRFUL
ISICitedReferencesCount 192
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443942500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-5463
1468-2494
IngestDate Thu Oct 02 10:42:56 EDT 2025
Sat Nov 29 14:45:46 EST 2025
Wed Feb 19 02:34:17 EST 2025
Sat Nov 29 02:45:46 EST 2025
Tue Nov 18 22:43:21 EST 2025
Sun Sep 21 06:15:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords melanogenesis
computer modelling
skin physiology/structure
ncRNAs
environmental pollution
Language English
License 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4546-a9fb5879caf1b69f1b41885046d3142e9d123771e4ede448b7e36d8b132ce5d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6182-4236
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ics.12466
PMID 29752874
PQID 2100344769
PQPubID 1086359
PageCount 20
ParticipantIDs proquest_miscellaneous_2038277967
proquest_journals_2100344769
pubmed_primary_29752874
crossref_citationtrail_10_1111_ics_12466
crossref_primary_10_1111_ics_12466
wiley_primary_10_1111_ics_12466_ICS12466
PublicationCentury 2000
PublicationDate August 2018
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle International journal of cosmetic science
PublicationTitleAlternate Int J Cosmet Sci
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 104
2007; 464
2010; 19
2015; 72
2002; 11
2004; 24
2014; 27
2012; 19
2008; 32
2000; 254
2012; 125
1998; 396
2013; 8
2013; 5
1991; 115
1988; 107
2010; 23
1998; 18
2012; 132
2010; 26
2010; 24
2000; 14
2006; 24
2004; 38
2015; 135
2010; 29
2007; 8
2014; 15
1988; 332
2011; 65
2008; 21
2008; 22
2012; 27
2005b; 288
2010; 3
2006; 206
2010; 5
2014; 11
2009; 18
2003; 163
1991; 176
2007; 445
2007; 18
2010; 38
2013; 88
2000; 113
2007; 282
2000; 114
1992; 267
2008; 128
2014; 2014
2016; 17
2011; 6
2007; 13
2012; 30
2012; 109
1993; 100
2016; 5
1998; 391
2016; 7
2005; 19
2016; 21
2000; 183
1988; 156
1994; 14
2005; 10
1995; 146
2002; 71
2005; 18
2014; 34
2006; 101
2016; 23
2003; 23
2004; 123
2017; 6
2004; 64
2015; 36
2013; 26
2004; 61
2012; 287
2010; 57
2003; 116
2002; 50
2017; 49
2000; 9
2000; 42
1993; 680
2002; 115
2008; 5
2009; 150
2008; 6
2008; 1
2010; 62
1987; 89
2014; 4
2013; 14
1991; 266
1997; 10
2018; 138
2008; 68
2011; 21
2016; 81
2011; 25
2014; 9
2007; 20
2007; 21
2011; 27
1996; 5
2001; 14
2003; 121
2003; 120
2011; 286
2001; 98
1991; 4
2009; 22
2015; 6
2004; 84
2015; 5
2015; 16
2007; 127
2007; 128
2015; 93
2006; 11
1992; 189
2006; 17
2010; 123
2015; 10
2006; 7
1988; 124
2006; 19
2006; 395
2006; 6
2000; 275
2006; 4
1972; 23
1996; 288
2014; 89
2008; 283
2005; 280
2009; 35
2001; 233
2015; 28
2013; 36
2004; 17
2017; 11
2005a; 162
2017; 13
2013; 30
2013; 134
2013; 133
2018
2015
2013
2008; 454
2016; 136
1996; 313
2008; 452
2001; 117
2012; 8
e_1_2_12_6_1
e_1_2_12_130_1
e_1_2_12_172_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_157_1
e_1_2_12_138_1
e_1_2_12_115_1
Sharlow E.R. (e_1_2_12_116_1) 2000; 113
e_1_2_12_153_1
e_1_2_12_134_1
e_1_2_12_176_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_161_1
Wu D.T. (e_1_2_12_146_1) 2008; 1
e_1_2_12_100_1
e_1_2_12_123_1
e_1_2_12_169_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_127_1
e_1_2_12_142_1
e_1_2_12_165_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
Ohno S. (e_1_2_12_124_1) 1972; 23
e_1_2_12_139_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_152_1
e_1_2_12_171_1
e_1_2_12_18_1
Davis E.C. (e_1_2_12_15_1) 2010; 3
e_1_2_12_110_1
e_1_2_12_137_1
e_1_2_12_179_1
e_1_2_12_114_1
e_1_2_12_156_1
e_1_2_12_175_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
Delevoye C. (e_1_2_12_8_1) 2011; 27
e_1_2_12_82_1
e_1_2_12_160_1
e_1_2_12_141_1
e_1_2_12_122_1
e_1_2_12_168_1
e_1_2_12_29_1
e_1_2_12_149_1
e_1_2_12_126_1
e_1_2_12_164_1
e_1_2_12_103_1
e_1_2_12_145_1
e_1_2_12_119_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
Yada Y. (e_1_2_12_42_1) 1991; 266
e_1_2_12_13_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_174_1
e_1_2_12_151_1
e_1_2_12_19_1
e_1_2_12_170_1
e_1_2_12_38_1
e_1_2_12_136_1
e_1_2_12_159_1
e_1_2_12_132_1
e_1_2_12_178_1
e_1_2_12_113_1
e_1_2_12_155_1
Imokawa G. (e_1_2_12_40_1) 1992; 267
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_129_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_140_1
e_1_2_12_163_1
e_1_2_12_49_1
e_1_2_12_121_1
e_1_2_12_148_1
e_1_2_12_102_1
e_1_2_12_144_1
e_1_2_12_167_1
e_1_2_12_52_1
e_1_2_12_98_1
Jiang S. (e_1_2_12_133_1) 2016; 21
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_150_1
e_1_2_12_173_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_135_1
e_1_2_12_158_1
e_1_2_12_39_1
e_1_2_12_131_1
e_1_2_12_154_1
e_1_2_12_177_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_128_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
Morhenn V.B. (e_1_2_12_31_1) 1991; 4
e_1_2_12_162_1
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_147_1
e_1_2_12_120_1
e_1_2_12_105_1
e_1_2_12_143_1
e_1_2_12_166_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_91_1
Botto J.M. (e_1_2_12_125_1) 2015
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – volume: 445
  start-page: 843
  year: 2007
  end-page: 850
  article-title: Melanocyte biology and skin pigmentation
  publication-title: Nature
– volume: 18
  start-page: 167
  year: 2005
  end-page: 180
  article-title: WNT1 and WNT3a promote expansion of melanocytes through distinct modes of action
  publication-title: Pigment Cell Res.
– volume: 38
  start-page: 365
  year: 2004
  end-page: 411
  article-title: Melanocytes and the microphthalmia transcription factor network
  publication-title: Annu. Rev. Genet.
– volume: 5
  start-page: a008029
  year: 2013
  article-title: Wnt signaling in skin development, homeostasis, and disease
  publication-title: Cold Spring Harb Perspect. Biol.
– volume: 5
  start-page: 8238
  year: 2015
  article-title: Rab1A regulates anterograde melanosome transport by recruiting kinesin‐1 to melanosomes through interaction with SKIP
  publication-title: Sci. Rep.
– volume: 288
  start-page: 633
  year: 1996
  end-page: 635
  article-title: Basic fibroblast growth factor promotes melanin synthesis by melanocytes
  publication-title: Arch. Dermatol. Res.
– volume: 19
  start-page: 58
  year: 2006
  end-page: 67
  article-title: Glutamate receptors on human melanocytes regulate the expression of MiTF
  publication-title: Pigment Cell Res.
– volume: 136
  start-page: 819
  year: 2016
  end-page: 828
  article-title: The long noncoding RNA SPRIGHTLY regulates cell proliferation in primary human melanocytes
  publication-title: J. Invest. Dermatol.
– volume: 138
  start-page: 171
  year: 2018
  end-page: 178
  article-title: Melanocytes sense blue light and regulate pigmentation through opsin‐3
  publication-title: J. Invest. Dermatol.
– volume: 113
  start-page: 3093
  year: 2000
  end-page: 3101
  article-title: The protease‐activated receptor‐2 upregulates keratinocyte phagocytosis
  publication-title: J. Cell Sci.
– volume: 17
  start-page: 4027
  year: 2006
  end-page: 4038
  article-title: BLOC‐1 interacts with BLOC‐2 and the AP‐3 complex to facilitate protein trafficking on endosomes
  publication-title: Mol. Cell. Biol.
– volume: 19
  start-page: 1332
  year: 2005
  end-page: 1334
  article-title: Human hair follicles display a functional equivalent of the hypothalamic–pituitary–adrenal axis and synthesize cortisol
  publication-title: FASEB J.
– volume: 128
  start-page: 558
  year: 2008
  end-page: 567
  article-title: Melanosome transfer promoted by keratinocyte growth factor in light and dark skin‐derived keratinocytes
  publication-title: J. Invest. Dermatol.
– volume: 123
  start-page: 184
  year: 2004
  end-page: 195
  article-title: beta‐Endorphin as a regulator of human hair follicle melanocyte biology
  publication-title: J. Invest. Dermatol.
– volume: 8
  start-page: 786
  year: 2007
  end-page: 797
  article-title: Melanosomes – dark organelles enlighten endosomal membrane transport
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 18
  start-page: 694
  year: 1998
  end-page: 702
  article-title: Different cis‐acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia
  publication-title: Mol. Cell. Biol.
– volume: 332
  start-page: 411
  year: 1988
  end-page: 415
  article-title: A novel potent vasoconstrictor peptide produced by vascular endothelial cells
  publication-title: Nature
– volume: 50
  start-page: 125
  year: 2002
  end-page: 133
  article-title: Melanocyte function and its control by melanocortin peptides
  publication-title: J. Histochemytochem.
– volume: 89
  start-page: 771
  year: 2014
  end-page: 782
  article-title: Melasma: a clinical and epidemiological review
  publication-title: An. Bras. Dermatol.
– volume: 38
  start-page: 200
  year: 2010
  end-page: 209
  article-title: MicroRNA‐25 functions in regulation of pigmentation by targeting the transcription factor MITF in Alpaca (Lama pacos) skin melanocytes
  publication-title: Domest. Anim. Endocrinol.
– volume: 18
  start-page: 4530
  year: 2009
  end-page: 4545
  article-title: The ocular albinism type 1 (OA1) G‐protein‐coupled receptor functions with MART‐1 at early stages of melanogenesis to control melanosome identity and composition
  publication-title: Hum. Mol. Genet.
– volume: 27
  start-page: 1014
  year: 2014
  end-page: 1031
  article-title: Skin as a living coloring book: how epithelial cells create patterns of pigmentation
  publication-title: Pigment Cell Melanoma Res.
– volume: 28
  start-page: 217
  year: 2015
  end-page: 222
  article-title: Regulation of pigmentation by microRNAs: MITF‐dependent microRNA‐211 targets TGF‐ receptor 2
  publication-title: Pigment Cell Melanoma Res.
– volume: 18
  start-page: 768
  year: 2007
  end-page: 780
  article-title: BLOC‐1 is required for cargo‐specific sorting from vacuolar early endosomes toward lysosome‐related organelles
  publication-title: Mol. Biol. Cell
– volume: 93
  start-page: 1622
  year: 2015
  end-page: 1631
  article-title: Identification of a novel microRNA important for melanogenesis in alpaca (Vicugna pacos)
  publication-title: J. Anim. Sci.
– volume: 114
  start-page: 438
  year: 2000
  end-page: 443
  article-title: Kinesin participates in melanosomal movement along melanocyte dendrites
  publication-title: J. Invest. Dermatol.
– volume: 1
  start-page: 19
  year: 2008
  end-page: 35
  article-title: Mir‐434‐5p mediates skin whitening and lightening
  publication-title: Clin. Cosmet. Investig. Dermatol.
– volume: 6
  start-page: 947
  year: 2006
  end-page: 960
  article-title: The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis
  publication-title: Nat. Rev.
– volume: 18
  start-page: 2
  year: 2005
  end-page: 12
  article-title: Role of keratinocyte‐derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes
  publication-title: Pigment Cell Res.
– volume: 42
  start-page: 393
  year: 2000
  end-page: 420
  article-title: New aspects on the melanocortins and their receptors
  publication-title: Pharmacol. Res.
– volume: 30
  start-page: 636
  year: 2012
  end-page: 642
  article-title: Wnt3a inhibits proliferation but promotes melanogenesis of melan‐a cells
  publication-title: Int. J. Mol. Med.
– volume: 391
  start-page: 289
  year: 1998
  end-page: 301
  article-title: MAPK links the transcription factor microphthalmia to c‐kit signaling in melanocytes
  publication-title: Nature
– volume: 133
  start-page: 2416
  year: 2013
  end-page: 2424
  article-title: Autophagy has a significant role in determining skin color by regulating melanosome degradation in keratinocytes
  publication-title: J. Invest. Dermatol.
– volume: 84
  start-page: 1155
  year: 2004
  end-page: 1228
  article-title: Melanin pigmentation in mammalian skin and its hormonal regulation
  publication-title: Physiol. Rev.
– volume: 19
  start-page: 616
  year: 2012
  end-page: 622
  article-title: FGF2 regulates melanocytes viability through the STAT3‐transactivated PAX3 transcription
  publication-title: Cell Death Differ.
– start-page: 940
  year: 2015
  end-page: 1189
– volume: 121
  start-page: 529
  year: 2003
  end-page: 541
  article-title: The proteinase‐activated receptor‐2 mediates phagocytosis in a Rho‐dependent manner in human keratinocytes
  publication-title: J. Invest. Dermatol.
– volume: 14
  start-page: 236
  year: 2001
  end-page: 242
  article-title: Keratinocyte‐melanocyte interactions during melanosome transfer
  publication-title: Pigment Cell Res.
– volume: 146
  start-page: 439
  year: 1995
  end-page: 447
  article-title: Stimulation of tyrosinase in human melanocytes by pro‐opiomelanocortin‐derived peptides
  publication-title: J. Endocrinol.
– volume: 266
  start-page: 18352
  year: 1991
  end-page: 18357
  article-title: Effects of endothelins on signal transduction and proliferation in human melanocytes
  publication-title: J. Biol. Chem.
– volume: 288
  start-page: E701
  year: 2005b
  end-page: E706
  article-title: CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 72
  start-page: 1249
  year: 2015
  end-page: 1260
  article-title: MITF in melanoma: mechanisms behind its expression and activity
  publication-title: Cell. Mol. Life Sci.
– volume: 6
  start-page: e236
  year: 2008
  article-title: L‐DOPA Is an endogenous ligand for OA1
  publication-title: PLoS Biol.
– volume: 162
  start-page: 97
  year: 2005a
  end-page: 102
  article-title: CRH stimulates POMC activity and corticosterone production in dermal fibroblasts
  publication-title: J. Neuroimmunol.
– volume: 21
  start-page: 1906
  year: 2011
  end-page: 1911
  article-title: UVA phototransduction drives early melanin synthesis in human melanocytes
  publication-title: Curr. Biol.
– volume: 14
  start-page: 7996
  year: 1994
  end-page: 8006
  article-title: Melanocyte‐specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator
  publication-title: Mol. Cell. Biol.
– volume: 88
  start-page: 76
  year: 2013
  end-page: 83
  article-title: Mechanisms regulating melanogenesis
  publication-title: An. Bras. Dermatol.
– volume: 121
  start-page: 813
  year: 2003
  end-page: 820
  article-title: Role of cytoplasmic dynein in perinuclear aggregation of phagocytosed melanosomes and supranuclear melanin cap formation in human keratinocytes
  publication-title: J. Invest. Dermatol.
– volume: 267
  start-page: 24675
  year: 1992
  end-page: 24680
  article-title: Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes
  publication-title: J. Biol. Chem.
– volume: 49
  start-page: e367
  year: 2017
  article-title: SH3BP4, a novel pigmentation gene, is inversely regulated by miR‐125b and MITF
  publication-title: Exp. Mol. Med.
– volume: 19
  start-page: 865
  year: 2010
  end-page: 872
  article-title: The role of keratinocyte growth factor in melanogenesis: a possible mechanism for the initiation of solar lentigines
  publication-title: Exp. Dermatol.
– volume: 16
  start-page: 10921
  year: 2015
  end-page: 10933
  article-title: MicroRNA‐27a‐3p inhibits melanogenesis in mouse skin melanocytes by targeting Wnt3a
  publication-title: Int. J. Mol. Sci.
– volume: 127
  start-page: 1217
  year: 2007
  end-page: 1225
  article-title: The effects of dickkopf 1 on gene expression and Wnt signaling by melanocytes: mechanisms underlying its suppression of melanocyte function and proliferation
  publication-title: J. Invest. Dermatol.
– volume: 287
  start-page: 28619
  year: 2012
  end-page: 28631
  article-title: The Rab interacting lysosomal protein (RILP) homology domain functions as a novel effector domain for small GTPase Rab36: Rab36 regulates retrograde melanosome transport in melanocytes
  publication-title: J. Biol. Chem.
– volume: 115
  start-page: 1441
  year: 2002
  end-page: 1451
  article-title: Filopodia are conduits for melanosome transfer to keratinocytes
  publication-title: J. Cell Sci.
– volume: 680
  start-page: 290
  year: 1993
  end-page: 301
  article-title: Pigmentation and proliferation of human melanocytes and the effects of melanocyte‐stimulating hormone and ultraviolet B light
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 17
  start-page: 96
  year: 2004
  end-page: 110
  article-title: Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders
  publication-title: Pigment Cell Res.
– volume: 313
  start-page: 625
  year: 1996
  end-page: 631
  article-title: Granulocyte/macrophage colony‐stimulating factor is an intrinsic keratinocyte‐derived growth factor for human melanocytes in UVA‐induced melanosis
  publication-title: Biochem. J.
– volume: 19
  start-page: 682
  year: 2010
  end-page: 684
  article-title: PGE2 is a UVR‐inducible autocrine factor for human melanocytes that stimulates tyrosinase activation
  publication-title: Exp. Dermatol.
– volume: 23
  start-page: 828
  year: 2010
  end-page: 833
  article-title: The aryl hydrocarbon receptor (AHR), a novel regulator of human melanogenesis
  publication-title: Pigment Cell Melanoma Res.
– volume: 11
  start-page: 732
  year: 2014
  end-page: 741
  article-title: MicroRNA‐218 inhibits melanogenesis by directly suppressing microphthalmia‐associated transcription factor expression
  publication-title: RNA Biol.
– volume: 163
  start-page: 333
  year: 2003
  end-page: 343
  article-title: MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma
  publication-title: Am. J. Pathol.
– volume: 117
  start-page: 1412
  year: 2001
  end-page: 1420
  article-title: Protease‐activated receptor 2, a receptor involved in melanosome transfer, is upregulated in human skin by ultraviolet irradiation
  publication-title: J. Invest. Dermatol.
– volume: 8
  start-page: 2924
  year: 2012
  end-page: 2931
  article-title: The changes of microRNA expression profiles and tyrosinase related proteins in MITF knocked down melanocytes
  publication-title: Mol. BioSyst.
– volume: 10
  start-page: e0129273
  year: 2015
  article-title: Membrane‐Associated Transporter Protein (MATP) regulates melanosomal pH and influences tyrosinase activity
  publication-title: PLoS ONE
– volume: 61
  start-page: 2535
  year: 2004
  end-page: 2548
  article-title: Signal transduction via the stem cell factor receptor/c‐Kit
  publication-title: Cell. Mol. Life Sci.
– volume: 11
  start-page: 236
  year: 2017
  end-page: 243
  article-title: Role of microRNA508‐3p in melanogenesis by targeting microphthalmia transcription factor in melanocytes of alpaca
  publication-title: Animal
– volume: 14
  start-page: 158
  year: 2000
  end-page: 162
  article-title: Direct regulation of nacre, a zebrafish MITF homolog required for pigment cell formation, by the Wnt pathway
  publication-title: Genes Dev.
– volume: 254
  start-page: 25
  year: 2000
  end-page: 32
  article-title: The protease‐activated receptor 2 regulates pigmentation via keratinocyte‐melanocyte interactions
  publication-title: Exp. Cell Res.
– volume: 30
  start-page: 30
  year: 2013
  end-page: 41
  article-title: Skin melanocytes: biology and development
  publication-title: Postepy Dermatol. Alergol.
– volume: 454
  start-page: 1142
  year: 2008
  end-page: 1146
  article-title: Cell‐specific ATP7A transport sustains copper‐dependent tyrosinase activity in melanosomes
  publication-title: Nature
– volume: 150
  start-page: 1250
  year: 2009
  end-page: 1258
  article-title: Regulation of pigmentation in human epidermal melanocytes by functional high‐affinity beta‐melanocyte‐stimulating hormone/melanocortin‐4 receptor signaling
  publication-title: Endocrinology
– volume: 125
  start-page: 4306
  year: 2012
  end-page: 4319
  article-title: Bone morphogenetic proteins differentially regulate pigmentation in human skin cells
  publication-title: J. Cell Sci.
– volume: 11
  start-page: 159
  year: 2002
  end-page: 187
  article-title: What is the ‘true’ function of skin?
  publication-title: Exp. Dermatol.
– volume: 36
  start-page: 25
  year: 2015
  end-page: 64
  article-title: From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease
  publication-title: Endocr. Rev.
– volume: 28
  start-page: 520
  year: 2015
  end-page: 544
  article-title: Melanins and melanogenesis: from pigment cells to human health and technological applications
  publication-title: Pigment Cell Melanoma Res.
– volume: 29
  start-page: 127
  year: 2010
  end-page: 136
  article-title: Genetics for the practicing dermatologist
  publication-title: Semin. Cutan. Med. Surg.
– volume: 114
  start-page: 990
  year: 2000
  end-page: 997
  article-title: Role of cytoplasmic dynein in melanosome transport in human melanocytes
  publication-title: J. Invest. Dermatol.
– volume: 7
  start-page: 769
  year: 2006
  end-page: 778
  article-title: The quest for the mechanism of melanin transfer
  publication-title: Traffic
– volume: 3
  start-page: 20
  year: 2010
  end-page: 31
  article-title: Postinflammatory hyperpigmentation. A review of the epidemiology, clinical features, and treatment options in skin of color
  publication-title: J. Clin. Aesthet. Dermatol.
– volume: 98
  start-page: 10698
  year: 2001
  end-page: 10703
  article-title: A model for melanosome biogenesis based on the purification and analysis of early melanosomes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 19
  start-page: 617
  year: 2010
  end-page: 627
  article-title: “Transcription physiology” of pigment formation in melanocytes: central role of MITF
  publication-title: Exp. Dermatol.
– volume: 24
  start-page: 276
  year: 2006
  end-page: 280
  article-title: Addison's disease
  publication-title: Clin. Dermatol.
– volume: 5
  start-page: e11014
  year: 2010
  article-title: Dkk1 stabilizes Wnt co‐receptor LRP6: implication for Wnt ligand‐induced LRP6 down‐regulation
  publication-title: PLoS ONE
– volume: 7
  start-page: 50682
  year: 2016
  end-page: 50697
  article-title: The signaling involved in autophagy machinery in keratinocytes and therapeutic approaches for skin diseases
  publication-title: Oncotarget
– volume: 206
  start-page: 780
  year: 2006
  end-page: 791
  article-title: CRH functions as a growth factor/cytokine in the skin
  publication-title: J. Cell. Physiol.
– volume: 65
  start-page: 473
  year: 2011
  end-page: 491
  article-title: Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work‐up
  publication-title: J. Am. Acad. Dermatol.
– volume: 23
  start-page: 5245
  year: 2003
  end-page: 5255
  article-title: The actin‐binding domain of Slac2‐a/melanophilin is required for melanosome distribution in melanocytes
  publication-title: Mol. Cell. Biol.
– volume: 10
  start-page: 218
  year: 1997
  end-page: 228
  article-title: The role of endothelin‐1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis
  publication-title: Pigment Cell Res.
– year: 2013
– volume: 107
  start-page: 1611
  year: 1988
  end-page: 1619
  article-title: Basic fibroblast growth factor from human keratinocytes is a natural mitogen for melanocytes
  publication-title: J. Cell Biol.
– volume: 13
  start-page: 2177
  year: 2017
  end-page: 2184
  article-title: A UV‐independent topical small‐molecule approach for melanin production in human skin
  publication-title: Cell Rep.
– volume: 132
  start-page: 2678
  year: 2012
  end-page: 2680
  article-title: Tyrosinase: a central regulatory protein for cutaneous pigmentation
  publication-title: J. Invest. Dermatol.
– volume: 64
  start-page: 509
  year: 2004
  end-page: 516
  article-title: Transcriptional regulation of the melanoma prognostic marker melastatin (TRPM1) by MITF in melanocytes and melanoma
  publication-title: Can. Res.
– volume: 68
  start-page: 1362
  year: 2008
  end-page: 1368
  article-title: MicroRNA‐137 targets microphthalmia‐associated transcription factor in melanoma cell lines
  publication-title: Cancer Res.
– volume: 5
  start-page: 137
  year: 2008
  end-page: 144
  article-title: Skin as an endocrine organ: implications for its function
  publication-title: Drug Discov. Today Dis. Mech.
– volume: 6
  start-page: 1125
  year: 2017
  end-page: 1133
  article-title: E‐cadherin mediates ultraviolet radiation‐ and calcium‐induced melanin transfer in human skin cells
  publication-title: Exp. Dermatol.
– volume: 27
  start-page: 153
  year: 2011
  end-page: 162
  article-title: Biogenesis of melanosomes – the chessboard of pigmentation
  publication-title: Med. Sci.
– volume: 115
  start-page: 821
  year: 1991
  end-page: 828
  article-title: Evidence for nerve growth factor‐mediated paracrine effects in human epidermis
  publication-title: J. Cell Biol.
– volume: 14
  start-page: 20443
  year: 2013
  end-page: 20458
  article-title: Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/ ‐catenin signaling pathways in B16F10 cells
  publication-title: Int. J. Mol. Sci.
– volume: 22
  start-page: 563
  year: 2009
  end-page: 579
  article-title: Current challenges in understanding melanogenesis: bridging chemistry, biological control, morphology, and function
  publication-title: Pigment Cell Melanoma Res.
– volume: 109
  start-page: 8752
  year: 2012
  end-page: 8757
  article-title: G‐protein‐mediated inhibition of the Trp channel TRPM1 requires the G dimer
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 100
  start-page: 23
  year: 1993
  end-page: 26
  article-title: Cultured human keratinocytes synthesize and secrete endothelin‐1
  publication-title: J. Invest. Dermatol.
– volume: 116
  start-page: 3203
  year: 2003
  end-page: 3212
  article-title: Tyrosinase processing and intracellular trafficking is disrupted in mouse primary melanocytes carrying the underwhite (uw) mutation. A model for oculocutaneous albinism (OCA) type 4
  publication-title: J. Cell Sci.
– volume: 275
  start-page: 14013
  year: 2000
  end-page: 14016
  article-title: Induction of melanocyte‐specific microphthalmia‐associated transcription factor by Wnt‐3a
  publication-title: J. Biol. Chem.
– volume: 57
  start-page: 1
  year: 2010
  end-page: 13
  article-title: Emerging role of alternative splicing of CRF1 receptor in CRF signaling
  publication-title: Acta Biochim. Pol.
– volume: 189
  start-page: 72
  year: 1992
  end-page: 78
  article-title: Production of catecholamines in the human epidermis
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 9
  start-page: 2781
  year: 2000
  end-page: 2788
  article-title: Oa1 knock‐out: new insights on the pathogenesis of ocular albinism type 1
  publication-title: Hum. Mol. Genet.
– volume: 125
  start-page: 1508
  year: 2012
  end-page: 1518
  article-title: Melanoregulin regulates retrograde melanosome transport through interaction with the RILP‐p150Glued complex in melanocytes
  publication-title: J. Cell Sci.
– volume: 17
  start-page: 3598
  year: 2006
  end-page: 3612
  article-title: Dual loss of ER export and endocytic signals with altered melanosome morphology in the silver mutation of Pmel17
  publication-title: Mol. Biol. Cell
– volume: 21
  start-page: 976
  year: 2007
  end-page: 994
  article-title: Human skin pigmentation: melanocytes modulate skin color in response to stress
  publication-title: FASEB J.
– volume: 71
  start-page: 2171
  year: 2002
  end-page: 2179
  article-title: Involvement of microphthalmia‐associated transcription factor (MITF) in expression of human melanocortin‐1 receptor (MC1R)
  publication-title: Life Sci.
– volume: 23
  start-page: 496
  year: 2016
  end-page: 508
  article-title: Oxidative stress‐induced overexpression of miR‐25: the mechanism underlying the degeneration of melanocytes in vitiligo
  publication-title: Cell Death Differ.
– volume: 21
  start-page: 1
  year: 2016
  end-page: 7
  article-title: MiR‐137 affects melanin synthesis in mouse melanocyte by repressing the expression of c‐Kit and Tyrp2 in SCF/c‐Kit signaling pathway
  publication-title: Biosci. Biotechnol. Biochem.
– volume: 128
  start-page: 853
  year: 2007
  end-page: 864
  article-title: Central role of p53 in the suntan response and pathologic hyperpigmentation
  publication-title: Cell
– volume: 101
  start-page: 419
  year: 2006
  end-page: 428
  article-title: Dioxins: an overview
  publication-title: Environ. Res.
– volume: 9
  start-page: e100893
  year: 2014
  article-title: Long non‐coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation
  publication-title: PLoS ONE
– volume: 36
  start-page: 792
  year: 2013
  end-page: 801
  article-title: The regulation of epidermal melanogenesis via cAMP and/or PKC signaling pathways: insights for the development of hypopigmenting agents
  publication-title: Arch. Pharm. Res.
– volume: 26
  start-page: 2438
  year: 2010
  end-page: 2444
  article-title: ChEA: transcription factor regulation inferred from integrating genome‐wide ChIP‐X experiments
  publication-title: Bioinformatics
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 28
  article-title: Melanins: skin pigments and much more‐types, structural models, biological functions, and formation routes
  publication-title: New J. Sci.
– volume: 23
  start-page: 366
  year: 1972
  end-page: 370
  article-title: So much “junk” DNA in our genome
  publication-title: Brookhaven Symp. Biol.
– volume: 8
  start-page: e72699
  year: 2013
  article-title: In‐depth characterization of microRNA transcriptome in melanoma
  publication-title: PLoS ONE
– volume: 286
  start-page: 9321
  year: 2011
  end-page: 9337
  article-title: Proprotein convertases process PMEL17 during secretion
  publication-title: J. Biol. Chem.
– volume: 89
  start-page: 299
  year: 1987
  end-page: 301
  article-title: Stimulatory effect of prostaglandin E2 on the configuration of normal human melanocytes in vitro
  publication-title: J. Invest. Dermatol.
– volume: 17
  start-page: 959
  year: 2016
  article-title: MicroRNA‐21a‐5p functions on the regulation of melanogenesis by targeting Sox5 in mouse skin melanocytes
  publication-title: Int. J. Mol. Sci.
– volume: 133
  start-page: 201
  year: 2013
  end-page: 209
  article-title: Identification of miR‐145 as a key regulator of the pigmentary process
  publication-title: J. Invest. Dermatol.
– volume: 395
  start-page: 571
  year: 2006
  end-page: 578
  article-title: MITF mediates cAMP‐induced protein kinase C‐ expression in human melanocytes
  publication-title: Biochem. J.
– volume: 280
  start-page: 14006
  year: 2005
  end-page: 14016
  article-title: MART‐1 is required for the function of the melanosomal matrix protein PMEL17/GP100 and the maturation of melanosomes
  publication-title: J. Biol. Chem.
– volume: 124
  start-page: 869
  year: 1988
  end-page: 871
  article-title: The validity and practicality of sun‐reactive skin types I through VI
  publication-title: Arch. Dermatol.
– volume: 27
  start-page: 140
  year: 2014
  end-page: 144
  article-title: Novel inhibitory function of miR‐125b in melanogenesis
  publication-title: Pigment Cell Melanoma Res.
– volume: 127
  start-page: 1736
  year: 2007
  end-page: 1744
  article-title: Requirement of dynactin p150(Glued) subunit for the functional integrity of the keratinocyte microparasol
  publication-title: J. Invest. Dermatol.
– volume: 21
  start-page: 1844
  year: 2007
  end-page: 1856
  article-title: Proopiomelanocortin (POMC), the ACTH/melanocortin precursor, is secreted by human epidermal keratinocytes and melanocytes and stimulates melanogenesis
  publication-title: FASEB J.
– volume: 9
  start-page: e96035
  year: 2014
  article-title: Nrf2 negatively regulates melanogenesis by modulating PI3K/Akt signaling
  publication-title: PLoS ONE
– volume: 21
  start-page: 665
  year: 2008
  end-page: 676
  article-title: Novel MITF targets identified using a two‐step DNA microarray strategy
  publication-title: Pigment Cell Melanoma Res.
– volume: 464
  start-page: 207
  year: 2007
  end-page: 212
  article-title: Cytochrome P450 gene regulation and physiological functions mediated by the aryl hydrocarbon receptor
  publication-title: Arch. Biochem. Biophys.
– volume: 15
  start-page: 8293
  year: 2014
  end-page: 8315
  article-title: Inhibitors of intracellular signaling pathways that lead to stimulated epidermal pigmentation: perspective of anti‐pigmenting agents
  publication-title: Int. J. Mol. Sci.
– volume: 27
  start-page: 85
  year: 2012
  end-page: 99
  article-title: Mechanisms of protein delivery to melanosomes in pigment cells
  publication-title: Physiology (Bethesda)
– year: 2018
  article-title: Myosin 10 is involved in murine pigmentation
  publication-title: Exp. Dermatol.
– volume: 104
  start-page: 13984
  year: 2007
  end-page: 13989
  article-title: SOX9 is a key player in ultraviolet B‐induced melanocyte differentiation and pigmentation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 283
  start-page: 12635
  year: 2008
  end-page: 12642
  article-title: Microphthalmia‐associated transcription factor regulates RAB27A gene expression and controls melanosome transport
  publication-title: J. Biol. Chem.
– volume: 282
  start-page: 27557
  year: 2007
  end-page: 27561
  article-title: The regulation of skin pigmentation
  publication-title: J. Biol. Chem.
– volume: 5
  start-page: 20
  year: 1996
  end-page: 23
  article-title: The induction of the alpha‐1‐adrenoceptor signal transduction system on human melanocytes
  publication-title: Exp. Dermatol.
– volume: 34
  start-page: 3407
  year: 2014
  end-page: 3420
  article-title: MicroRNA 340 is involved in UVB‐induced dendrite formation through the regulation of RhoA expression in melanocytes
  publication-title: Mol. Cell. Biol.
– volume: 18
  start-page: 1064
  year: 2009
  end-page: 1066
  article-title: Keratinocytes: A source of the transmitter L‐glutamate in the epidermis
  publication-title: Exp. Dermatol.
– volume: 32
  start-page: 554
  year: 2008
  end-page: 563
  article-title: Inhibition of PAX3 by TGF‐beta modulates melanocyte viability
  publication-title: Mol. Cell
– volume: 4
  start-page: 265
  year: 1991
  end-page: 267
  article-title: The physiology of scratching: involvement of proopiomelanocortin gene‐coded proteins in Langerhans cells
  publication-title: Prog. Neuro. Endo. Immunol.
– volume: 24
  start-page: 3756
  year: 2010
  end-page: 3769
  article-title: Melanin transfer in human skin cells is mediated by filopodia–a model for homotypic and heterotypic lysosome‐related organelle transfer
  publication-title: FASEB J.
– volume: 135
  start-page: 1348
  year: 2015
  end-page: 1357
  article-title: Suppression of autophagy dysregulates the antioxidant response and causes premature senescence of melanocytes
  publication-title: J. Invest. Dermatol.
– volume: 24
  start-page: 6550
  year: 2004
  end-page: 6559
  article-title: The Microphthalmia Transcription Factor (Mitf) controls expression of the ocular albinism type 1 gene: link between melanin synthesis and melanosome biogenesis
  publication-title: Mol. Cell. Biol.
– volume: 233
  start-page: 22
  year: 2001
  end-page: 37
  article-title: Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo
  publication-title: Dev. Biol.
– volume: 22
  start-page: 1155
  year: 2008
  end-page: 1168
  article-title: Epistatic connections between microphthalmia‐associated transcription factor and endothelin signaling in Waardenburg syndrome and other pigmentary disorders
  publication-title: FASEB J.
– volume: 35
  start-page: 193
  year: 2009
  end-page: 199
  article-title: Physiological factors that regulate skin pigmentation
  publication-title: BioFactors
– volume: 156
  start-page: 303
  year: 1988
  end-page: 304
  article-title: Leukotrienes and thromboxane B2 stimulate normal human melanocytes in vitro: possible inducers of postinflammatory pigmentation
  publication-title: Tohoku J. Exp. Med.
– volume: 26
  start-page: 348
  year: 2013
  end-page: 356
  article-title: Metabotropic glutamate receptor 6 signaling enhances TRPM1 calcium channel function and increases melanin content in human melanocytes
  publication-title: Pigment Cell Melanoma Res.
– volume: 23
  start-page: 171
  year: 2010
  end-page: 186
  article-title: Stepping up melanocytes to the challenge of UV exposure
  publication-title: Pigment Cell Melanoma Res.
– volume: 25
  start-page: 170
  year: 2011
  end-page: 181
  article-title: Expression and signaling of the tyrosine kinase FGFR2b/KGFR regulates phagocytosis and melanosome uptake in human keratinocytes
  publication-title: FASEB J.
– volume: 5
  start-page: e189
  year: 2008
  end-page: e199
  article-title: Modifying skin pigmentation – approaches through intrinsic biochemistry and exogenous agents
  publication-title: Drug Discov. Today Dis. Mech.
– volume: 176
  start-page: 45
  year: 1991
  end-page: 51
  article-title: Hepatocyte growth factor is a potent stimulator of human melanocyte DNA synthesis and growth
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 11
  start-page: 2230
  year: 2006
  end-page: 2248
  article-title: Corticotropin releasing hormone and the skin
  publication-title: Front Biosci.
– volume: 123
  start-page: 3102
  year: 2010
  end-page: 3111
  article-title: The fibroblast‐derived paracrine factor neuregulin‐1 has a novel role in regulating the constitutive color and melanocyte function in human skin
  publication-title: J. Cell Sci.
– volume: 6
  start-page: 97
  year: 2011
  end-page: 108
  article-title: Update on the regulation of mammalian melanocyte function and skin pigmentation
  publication-title: Expert Rev. Dermatol.
– volume: 13
  start-page: 313
  year: 2007
  end-page: 316
  article-title: The imprinted H19 noncoding RNA is a primary microRNA precursor
  publication-title: RNA
– volume: 6
  start-page: 7506
  year: 2015
  article-title: Exosomes released by keratinocytes modulate melanocyte pigmentation
  publication-title: Nat. Commun.
– volume: 10
  start-page: 212
  year: 2005
  end-page: 216
  article-title: Beta‐endorphin: the forgotten hair follicle melanotropin
  publication-title: J. Investig. Dermatol. Symp. Proc.
– volume: 183
  start-page: 364
  year: 2000
  end-page: 372
  article-title: Expression of functional mGlu5 metabotropic glutamate receptors in human melanocytes
  publication-title: J. Cell. Physiol.
– volume: 20
  start-page: 2
  year: 2007
  end-page: 13
  article-title: Regulation of human skin pigmentation and responses to ultraviolet radiation
  publication-title: Pigment Cell Res.
– volume: 23
  start-page: 27
  year: 2010
  end-page: 40
  article-title: Fifteen‐year quest for microphthalmia‐associated transcription factor target genes
  publication-title: Pigment Cell Melanoma Res.
– volume: 452
  start-page: 225
  year: 2008
  end-page: 229
  article-title: A skin microRNA promotes differentiation by repressing ‘stemness’
  publication-title: Nature
– volume: 134
  start-page: 461
  year: 2013
  end-page: 469
  article-title: MicroRNA‐203 regulates melanosome transport and tyrosinase expression in melanoma cells by targeting kinesin superfamily protein 5b
  publication-title: J. Invest. Dermatol.
– volume: 5
  start-page: e15104
  year: 2016
  article-title: Sex steroids regulate skin pigmentation through nonclassical membrane‐bound receptors
  publication-title: Elife
– volume: 396
  start-page: 370
  year: 1998
  end-page: 373
  article-title: Control of neural crest cell fate by the Wnt signalling pathway
  publication-title: Nature
– volume: 4
  start-page: e6
  year: 2006
  article-title: Functional amyloid formation within mammalian tissue
  publication-title: PLoS Biol.
– volume: 62
  start-page: 632
  year: 2010
  end-page: 667
  article-title: International union of basic and clinical pharmacology. LXXX. The class Frizzled receptors
  publication-title: Pharmacol. Rev.
– volume: 7
  start-page: 95
  year: 2016
  article-title: Melanocortin 1 receptor: structure, function, and regulation
  publication-title: Front Genet.
– volume: 136
  start-page: 1681
  year: 2016
  end-page: 1691
  article-title: Variation in Hsp70‐1A expression contributes to skin color diversity
  publication-title: J. Invest. Dermatol.
– volume: 4
  start-page: a017046
  year: 2014
  article-title: Melanocytes and their diseases
  publication-title: Cold Spring Harb. Perspect Med.
– volume: 120
  start-page: 1073
  year: 2003
  end-page: 1080
  article-title: Regulation of human epidermal melanocyte biology by beta‐endorphin
  publication-title: J. Invest. Dermatol.
– volume: 81
  start-page: 53
  year: 2016
  end-page: 60
  article-title: Analysis of lncRNAs expression in UVB‐induced stress responses of melanocytes
  publication-title: J. Dermatol. Sci.
– ident: e_1_2_12_168_1
  doi: 10.7554/eLife.15104
– start-page: 940
  volume-title: Cosmetic Industry Approaches to Epigenetics and Molecular Biology (Harry's Cosmeticology 9th Edition)
  year: 2015
  ident: e_1_2_12_125_1
– ident: e_1_2_12_157_1
  doi: 10.1083/jcb.115.3.821
– ident: e_1_2_12_117_1
  doi: 10.1046/j.1523-1747.2003.12427.x
– ident: e_1_2_12_114_1
  doi: 10.1006/excr.1999.4692
– volume: 4
  start-page: 265
  year: 1991
  ident: e_1_2_12_31_1
  article-title: The physiology of scratching: involvement of proopiomelanocortin gene‐coded proteins in Langerhans cells
  publication-title: Prog. Neuro. Endo. Immunol.
– ident: e_1_2_12_156_1
  doi: 10.1042/bj3130625
– ident: e_1_2_12_98_1
  doi: 10.1242/jcs.00598
– ident: e_1_2_12_76_1
  doi: 10.1111/j.1749-6632.1993.tb19691.x
– ident: e_1_2_12_101_1
  doi: 10.1091/mbc.e06-05-0379
– ident: e_1_2_12_57_1
  doi: 10.1016/0006-291X(92)91527-W
– ident: e_1_2_12_97_1
  doi: 10.1093/hmg/9.19.2781
– ident: e_1_2_12_23_1
  doi: 10.1096/fj.04-1968fje
– ident: e_1_2_12_89_1
  doi: 10.1016/j.celrep.2017.05.042
– volume: 267
  start-page: 24675
  year: 1992
  ident: e_1_2_12_40_1
  article-title: Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)35817-4
– ident: e_1_2_12_85_1
  doi: 10.1073/pnas.0705117104
– ident: e_1_2_12_78_1
  doi: 10.1242/jcs.064774
– ident: e_1_2_12_174_1
  doi: 10.1016/S0002-9440(10)63657-7
– ident: e_1_2_12_25_1
  doi: 10.1152/ajpendo.00519.2004
– ident: e_1_2_12_30_1
  doi: 10.1177/002215540205000201
– ident: e_1_2_12_9_1
  doi: 10.1586/edm.10.70
– ident: e_1_2_12_39_1
  doi: 10.1038/332411a0
– ident: e_1_2_12_41_1
  doi: 10.1111/1523-1747.ep12349932
– ident: e_1_2_12_77_1
  doi: 10.1016/0006-291X(91)90887-D
– ident: e_1_2_12_106_1
  doi: 10.1242/jcs.094185
– volume: 1
  start-page: 19
  year: 2008
  ident: e_1_2_12_146_1
  article-title: Mir‐434‐5p mediates skin whitening and lightening
  publication-title: Clin. Cosmet. Investig. Dermatol.
– ident: e_1_2_12_149_1
  doi: 10.1371/journal.pone.0100893
– ident: e_1_2_12_18_1
  doi: 10.1101/cshperspect.a017046
– volume: 21
  start-page: 1
  year: 2016
  ident: e_1_2_12_133_1
  article-title: MiR‐137 affects melanin synthesis in mouse melanocyte by repressing the expression of c‐Kit and Tyrp2 in SCF/c‐Kit signaling pathway
  publication-title: Biosci. Biotechnol. Biochem.
– ident: e_1_2_12_162_1
  doi: 10.1038/sj.jid.5700760
– ident: e_1_2_12_3_1
  doi: 10.1001/archderm.1988.01670060015008
– ident: e_1_2_12_164_1
  doi: 10.1038/nrc2015
– ident: e_1_2_12_167_1
  doi: 10.1371/journal.pone.0096035
– ident: e_1_2_12_14_1
  doi: 10.1111/j.1600-0625.2009.00957.x
– ident: e_1_2_12_52_1
  doi: 10.1074/jbc.C000113200
– ident: e_1_2_12_165_1
  doi: 10.1016/j.abb.2007.03.038
– ident: e_1_2_12_81_1
  doi: 10.1111/j.1755-148X.2009.00610.x
– ident: e_1_2_12_109_1
  doi: 10.1128/MCB.23.15.5245-5255.2003
– ident: e_1_2_12_46_1
  doi: 10.3892/ijmm.2012.1028
– ident: e_1_2_12_95_1
  doi: 10.1371/journal.pbio.0060236
– ident: e_1_2_12_148_1
  doi: 10.1016/j.jdermsci.2015.10.019
– ident: e_1_2_12_138_1
  doi: 10.1038/nature06642
– ident: e_1_2_12_173_1
  doi: 10.1128/MCB.14.12.7996
– ident: e_1_2_12_72_1
  doi: 10.1083/jcb.107.4.1611
– ident: e_1_2_12_169_1
  doi: 10.1016/j.ddmec.2008.02.001
– ident: e_1_2_12_171_1
  doi: 10.1111/1523-1747.ep12471536
– ident: e_1_2_12_126_1
  doi: 10.1016/j.sder.2010.04.006
– ident: e_1_2_12_132_1
  doi: 10.1158/0008-5472.CAN-07-2912
– ident: e_1_2_12_122_1
  doi: 10.18632/oncotarget.9330
– ident: e_1_2_12_154_1
  doi: 10.1034/j.1600-0749.2001.140402.x
– ident: e_1_2_12_159_1
  doi: 10.1016/j.cub.2011.09.047
– ident: e_1_2_12_67_1
  doi: 10.1016/j.jid.2017.07.833
– ident: e_1_2_12_121_1
  doi: 10.1016/j.jid.2016.03.038
– ident: e_1_2_12_29_1
  doi: 10.1038/nature05660
– ident: e_1_2_12_105_1
  doi: 10.1046/j.1523-1747.2000.00957.x
– ident: e_1_2_12_96_1
  doi: 10.1093/hmg/ddp415
– ident: e_1_2_12_64_1
  doi: 10.1073/pnas.1117433109
– volume: 3
  start-page: 20
  year: 2010
  ident: e_1_2_12_15_1
  article-title: Postinflammatory hyperpigmentation. A review of the epidemiology, clinical features, and treatment options in skin of color
  publication-title: J. Clin. Aesthet. Dermatol.
– ident: e_1_2_12_178_1
  doi: 10.1016/S0024-3205(02)01996-3
– ident: e_1_2_12_93_1
  doi: 10.1091/mbc.e06-01-0081
– ident: e_1_2_12_7_1
  doi: 10.1111/j.1755-148X.2009.00653.x
– ident: e_1_2_12_86_1
  doi: 10.1007/s00018-014-1791-0
– ident: e_1_2_12_107_1
  doi: 10.1074/jbc.M112.370544
– ident: e_1_2_12_91_1
  doi: 10.1073/pnas.191184798
– ident: e_1_2_12_55_1
  doi: 10.1038/sj.jid.5700629
– ident: e_1_2_12_74_1
  doi: 10.1038/cdd.2011.132
– ident: e_1_2_12_110_1
  doi: 10.1111/j.1600-0854.2006.00425.x
– ident: e_1_2_12_172_1
  doi: 10.1093/bioinformatics/btq466
– ident: e_1_2_12_135_1
  doi: 10.1039/c2mb25228g
– ident: e_1_2_12_88_1
  doi: 10.1111/pcmr.12334
– ident: e_1_2_12_113_1
  doi: 10.1111/exd.13528
– ident: e_1_2_12_140_1
  doi: 10.3390/ijms17070959
– ident: e_1_2_12_51_1
  doi: 10.1101/gad.14.2.158
– ident: e_1_2_12_103_1
  doi: 10.1111/pcmr.12301
– ident: e_1_2_12_36_1
  doi: 10.1046/j.1523-1747.2003.12242.x
– ident: e_1_2_12_112_1
  doi: 10.1096/fj.10-159046
– ident: e_1_2_12_161_1
  doi: 10.1046/j.1523-1747.2003.12481.x
– ident: e_1_2_12_37_1
  doi: 10.1111/j.0022-202X.2004.22724.x
– ident: e_1_2_12_104_1
  doi: 10.1046/j.1523-1747.2000.00894.x
– ident: e_1_2_12_24_1
  doi: 10.1016/j.jneuroim.2005.01.014
– ident: e_1_2_12_136_1
  doi: 10.1038/ncomms8506
– ident: e_1_2_12_137_1
  doi: 10.1371/journal.pone.0072699
– ident: e_1_2_12_66_1
  doi: 10.1158/0008-5472.CAN-03-2440
– ident: e_1_2_12_84_1
  doi: 10.1111/j.1755-148X.2010.00679.x
– ident: e_1_2_12_58_1
  doi: 10.1152/physrev.00044.2003
– ident: e_1_2_12_134_1
  doi: 10.4161/rna.28865
– ident: e_1_2_12_34_1
  doi: 10.1210/en.2008-1212
– ident: e_1_2_12_166_1
  doi: 10.1111/j.1755-148X.2010.00762.x
– ident: e_1_2_12_27_1
  doi: 10.18388/abp.2010_2366
– ident: e_1_2_12_83_1
  doi: 10.1111/pcmr.12393
– ident: e_1_2_12_70_1
  doi: 10.1007/s00018-004-4189-6
– ident: e_1_2_12_80_1
  doi: 10.1042/BJ20051388
– ident: e_1_2_12_61_1
  doi: 10.1111/j.1600-0749.2005.00284.x
– ident: e_1_2_12_75_1
  doi: 10.1111/j.1600-0749.2004.00198.x
– ident: e_1_2_12_82_1
  doi: 10.1155/2014/498276
– ident: e_1_2_12_11_1
  doi: 10.1152/physiol.00043.2011
– ident: e_1_2_12_63_1
  doi: 10.1002/(SICI)1097-4652(200006)183:3<364::AID-JCP9>3.0.CO;2-X
– ident: e_1_2_12_69_1
  doi: 10.1038/34681
– ident: e_1_2_12_139_1
  doi: 10.1038/jid.2013.310
– ident: e_1_2_12_2_1
  doi: 10.1034/j.1600-0625.2002.00112.x
– ident: e_1_2_12_32_1
  doi: 10.3389/fgene.2016.00095
– ident: e_1_2_12_48_1
  doi: 10.3390/ijms141020443
– ident: e_1_2_12_111_1
  doi: 10.1242/jcs.115.7.1441
– ident: e_1_2_12_87_1
  doi: 10.1016/j.molcel.2008.11.002
– ident: e_1_2_12_90_1
  doi: 10.1038/nature07163
– ident: e_1_2_12_145_1
  doi: 10.1128/MCB.00106-14
– ident: e_1_2_12_28_1
  doi: 10.1677/joe.0.1460439
– ident: e_1_2_12_16_1
  doi: 10.1016/j.clindermatol.2006.04.006
– ident: e_1_2_12_19_1
  doi: 10.1590/S0365-05962013000100009
– volume: 113
  start-page: 3093
  year: 2000
  ident: e_1_2_12_116_1
  article-title: The protease‐activated receptor‐2 upregulates keratinocyte phagocytosis
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.113.17.3093
– ident: e_1_2_12_12_1
– ident: e_1_2_12_131_1
  doi: 10.2527/jas.2014-8404
– ident: e_1_2_12_151_1
  doi: 10.1016/j.cell.2006.12.045
– ident: e_1_2_12_170_1
  doi: 10.1620/tjem.156.303
– ident: e_1_2_12_79_1
  doi: 10.1242/jcs.102038
– ident: e_1_2_12_150_1
  doi: 10.1261/rna.351707
– volume: 266
  start-page: 18352
  year: 1991
  ident: e_1_2_12_42_1
  article-title: Effects of endothelins on signal transduction and proliferation in human melanocytes
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)55277-7
– ident: e_1_2_12_99_1
  doi: 10.1371/journal.pone.0129273
– ident: e_1_2_12_4_1
  doi: 10.1002/biof.29
– ident: e_1_2_12_176_1
  doi: 10.1111/j.1755-148X.2008.00505.x
– ident: e_1_2_12_54_1
  doi: 10.1111/j.1600-0749.2005.00226.x
– ident: e_1_2_12_33_1
  doi: 10.1007/s12272-013-0130-6
– ident: e_1_2_12_94_1
  doi: 10.1074/jbc.M110.168088
– ident: e_1_2_12_123_1
  doi: 10.1038/jid.2014.439
– volume: 23
  start-page: 366
  year: 1972
  ident: e_1_2_12_124_1
  article-title: So much “junk” DNA in our genome
  publication-title: Brookhaven Symp. Biol.
– ident: e_1_2_12_102_1
  doi: 10.1091/mbc.E06-12-1066
– ident: e_1_2_12_73_1
  doi: 10.1007/BF02505269
– ident: e_1_2_12_163_1
  doi: 10.1016/j.envres.2005.12.003
– ident: e_1_2_12_100_1
  doi: 10.1074/jbc.M413692200
– ident: e_1_2_12_120_1
  doi: 10.1038/jid.2013.165
– ident: e_1_2_12_10_1
  doi: 10.1038/nrm2258
– ident: e_1_2_12_50_1
  doi: 10.1038/24620
– volume: 27
  start-page: 153
  year: 2011
  ident: e_1_2_12_8_1
  article-title: Biogenesis of melanosomes – the chessboard of pigmentation
  publication-title: Med. Sci.
– ident: e_1_2_12_62_1
  doi: 10.1111/j.1600-0625.2009.00886.x
– ident: e_1_2_12_13_1
  doi: 10.1590/abd1806-4841.20143063
– ident: e_1_2_12_153_1
  doi: 10.1074/jbc.R700026200
– ident: e_1_2_12_6_1
  doi: 10.1111/j.1600-0625.2009.01053.x
– ident: e_1_2_12_38_1
  doi: 10.1111/j.1087-0024.2005.10108.x
– ident: e_1_2_12_60_1
  doi: 10.1038/jid.2012.324
– ident: e_1_2_12_65_1
  doi: 10.1111/pcmr.12083
– ident: e_1_2_12_118_1
  doi: 10.1038/sj.jid.5701063
– ident: e_1_2_12_141_1
  doi: 10.3390/ijms160510921
– ident: e_1_2_12_128_1
  doi: 10.1016/j.domaniend.2009.10.004
– ident: e_1_2_12_142_1
  doi: 10.1111/pcmr.12179
– ident: e_1_2_12_144_1
  doi: 10.1038/jid.2012.266
– ident: e_1_2_12_59_1
  doi: 10.1111/j.1600-0625.1996.tb00088.x
– ident: e_1_2_12_68_1
  doi: 10.5114/pdia.2013.33376
– ident: e_1_2_12_130_1
  doi: 10.1017/S1751731116001294
– ident: e_1_2_12_147_1
  doi: 10.1016/j.jid.2016.01.018
– ident: e_1_2_12_175_1
  doi: 10.1128/MCB.24.15.6550-6559.2004
– ident: e_1_2_12_53_1
  doi: 10.1006/dbio.2001.0222
– ident: e_1_2_12_115_1
  doi: 10.1046/j.0022-202x.2001.01575.x
– ident: e_1_2_12_26_1
  doi: 10.1096/fj.06-7398com
– ident: e_1_2_12_45_1
  doi: 10.1124/pr.110.002931
– ident: e_1_2_12_56_1
  doi: 10.1371/journal.pone.0011014
– ident: e_1_2_12_160_1
  doi: 10.1111/j.1600-0749.2003.00126.x
– ident: e_1_2_12_155_1
  doi: 10.1111/exd.13395
– ident: e_1_2_12_152_1
  doi: 10.1111/j.1600-0749.2006.00358.x
– ident: e_1_2_12_35_1
  doi: 10.1006/phrs.2000.0725
– ident: e_1_2_12_119_1
  doi: 10.1096/fj.10-162156
– ident: e_1_2_12_49_1
  doi: 10.1101/cshperspect.a008029
– ident: e_1_2_12_47_1
  doi: 10.1146/annurev.genet.38.072902.092717
– ident: e_1_2_12_179_1
  doi: 10.1096/fj.07-9080com
– ident: e_1_2_12_20_1
  doi: 10.2741/1966
– ident: e_1_2_12_92_1
  doi: 10.1371/journal.pbio.0040006
– ident: e_1_2_12_129_1
  doi: 10.1038/cdd.2015.117
– ident: e_1_2_12_158_1
  doi: 10.1111/j.1600-0625.2010.01074.x
– ident: e_1_2_12_17_1
  doi: 10.1016/j.jaad.2010.11.061
– ident: e_1_2_12_5_1
  doi: 10.1096/fj.06-6649rev
– ident: e_1_2_12_71_1
  doi: 10.1128/MCB.18.2.694
– ident: e_1_2_12_127_1
  doi: 10.1210/er.2014-1034
– ident: e_1_2_12_143_1
  doi: 10.1038/emm.2017.115
– ident: e_1_2_12_108_1
  doi: 10.1038/srep08238
– ident: e_1_2_12_177_1
  doi: 10.1074/jbc.M800130200
– ident: e_1_2_12_43_1
  doi: 10.3390/ijms15058293
– ident: e_1_2_12_44_1
  doi: 10.1111/j.1600-0749.1997.tb00488.x
– ident: e_1_2_12_21_1
  doi: 10.1016/j.ddmec.2008.04.004
– ident: e_1_2_12_22_1
  doi: 10.1002/jcp.20530
SSID ssj0004983
Score 2.5738328
SecondaryResourceType review_article
Snippet In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly...
In human skin, melanogenesis is a tightly regulated process. Indeed, several extracellular signals are transduced via dedicated signalling pathways and mostly...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 328
SubjectTerms computer modelling
Convergence
Environmental Pollutants - toxicity
environmental pollution
Enzymes
Humans
Irradiation
Keratinocytes
Melanin
Melanins - biosynthesis
Melanocytes
Melanocytes - metabolism
melanogenesis
Melanosomes
Melanosomes - metabolism
Microphthalmia-associated transcription factor
Microphthalmia-Associated Transcription Factor - metabolism
MicroRNAs - metabolism
miRNA
ncRNAs
Pigmentation
Pigments
Proteins
Receptors, G-Protein-Coupled - metabolism
RNA, Long Noncoding - metabolism
Signal processing
Signal transduction
Signaling
Skin
Skin - drug effects
Skin - metabolism
Skin - radiation effects
skin physiology/structure
Skin Pigmentation
Sunlight
Tyrosinase
Ultraviolet radiation
Title Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fics.12466
https://www.ncbi.nlm.nih.gov/pubmed/29752874
https://www.proquest.com/docview/2100344769
https://www.proquest.com/docview/2038277967
Volume 40
WOSCitedRecordID wos000443942500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1468-2494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004983
  issn: 0142-5463
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3ZbtQwcNRuUYEHjoWWhVIF1Ie-pMrh-BBPqLCiUg8EFO1bZDtOFdF6q82W72fsOKFVi1SJlyjHRLbmHtszA7CTZaamWtWxNqmMCcM4xRE3ZhmVQimqCr-Y8_OQHR_z2Ux8XYEPfS5MVx9iWHBzkuH1tRNwqdprQt7odg-NE6WrsJYh35IRrH36Nj09_JsWKboqnClx5f5pHgoLuYM8w883zdEtH_Omy-ptzvTpf832GTwJrmb0seON57Bi7Bge9pnI7RgeXytGOIb1o7DN_gJODuwSXyIBI2mrCPV3eFp0neuRltG8jnx_v6j91djowpxLOz9zirNp_U-XzdlFyGuyL-F0-vnH_pc4dF6INUFMxVLUquBMaFmnigq8kJTzAmPpKkdsGlGhwWMsNcRUBgM8xUxOK64wtNWmqLJ8A0Z2bs0riCRq0wQ5RRSVJNQkItGJIqzmJJNMyHwCuz0BSh3KkrvuGOdlH54gRkqPugm8H0Avu1ocdwFt9VQsgzi2Jca1vrQhFRN4N3xGQXK7I9Ka-RXCJDnPGBOUTWCzo_4wiks_do0BcLKeyP8evjzY_-5vXt8f9A08QjeMd8cKt2C0XFyZt_BA_1427WIbVtmMbwfe_gNDTPpQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcFS2iMKBx_bB0gIBceglVR6OHUtcqsKqK7YLghb1FtmOU0VtvdVm2-_v2HFCK0BC4hLlMZGteY_tmQH4kCS6okpWodKxCAnDOMUSN2QJFVxKKjO3mPNzymaz_PSUf1uBj10uTFsfol9ws5Lh9LUVcLsgfUfKa9XsoXWi9AGsEmSjbACrn76PT6a_8iJ5W4YzJrbeP019ZSF7kqf_-b49-s3JvO-zOqMzfvZ_030OT72zGey33PECVrQZwlqXi9wM4cmdcoRDeHTkN9rX4evELPElkjAQpgxQg_unRdu7HqkZzKvAdfgLmvPaBJf6Qpj5mVWddeN-uqrPLn1mk9mAk_Hn44PD0PdeCBVBVIWCVzLLGVeiiiXleCFxnmcYTZcpolPzEk0eY7EmutQY4kmmU1rmEoNbpbMySTdhYOZGv4RAoD6NkFd4VgpCdcQjFUnCqpwkgnGRjmC3o0ChfGFy2x_jougCFMRI4VA3gvc96FVbjeNPQDsdGQsvkE2Bka0rbkj5CN71n1GU7P6IMHp-jTBRmieMccpGsNWSvx_FJiDb1gA4WUflvw9fTA5-uJtX_w76FtYOj4-mxXQy-7INj9Epy9tDhjswWC6u9Wt4qG6WdbN441n8FlsO_Vg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dTxQxEJ8gGIQH1BPlEHU1PviyZD-67TbhxYAXL54nUTG8bdpul2yE3uX24O9n2u0uEDEx8WWzH7NpM9OZzrSd3wC8TxJdUSWrUOlYhIRhnGKFG7KECi4llZlbzPk1YdNpfnrKj1fgoMuFafEh-gU3qxnOXlsF1_OyuqXltWr2cXai9AGskYxTVMu1o--jk8lNXiRvYThjYvH-aeqRhexJnv7nu_PRH07mXZ_VTTqjx__X3Sew5Z3N4GM7Op7CijYDeNTlIjcD2LwFRziA9a9-o_0ZfBubJb5EEQbClAFacP-0aGvXozSDWRW4Cn9B87s2wYU-F2Z2Zk1n3bif5vXZhc9sMttwMvr08_Bz6GsvhIogq0LBK5nljCtRxZJyvJA4zzOMpssU2al5iVMeY7EmutQY4kmmU1rmEoNbpbMySZ_DqpkZvQOBQHsa4VjhWSkI1RGPVCQJq3KSCMZFOoQPnQQK5YHJbX2M86ILUJAjhWPdEN71pPMWjeM-or1OjIVXyKbAyNaBG1I-hLf9Z1Qluz8ijJ5dIk2U5gljnLIhvGjF37diE5BtaQDsrJPy35svxoc_3M3uv5O-gfXjo1ExGU-_vIQN9Mny9ozhHqwuF5f6FTxUV8u6Wbz2I_wa6dH80w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+and+extrinsic+regulation+of+human+skin+melanogenesis+and+pigmentation&rft.jtitle=International+journal+of+cosmetic+science&rft.au=Serre%2C+C&rft.au=Busuttil%2C+V&rft.au=Botto%2C+J-M&rft.date=2018-08-01&rft.eissn=1468-2494&rft.volume=40&rft.issue=4&rft.spage=328&rft_id=info:doi/10.1111%2Fics.12466&rft_id=info%3Apmid%2F29752874&rft.externalDocID=29752874
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-5463&client=summon