AMPK/mTOR pathway significance in healthy liver and non‐alcoholic fatty liver disease and its progression

Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate‐activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of gastroenterology and hepatology Ročník 38; číslo 11; s. 1868 - 1876
Hlavní autori: Marcondes‐de‐Castro, Ilitch Aquino, Reis‐Barbosa, Pedro Henrique, Marinho, Thatiany Souza, Aguila, Marcia Barbosa, Mandarim‐de‐Lacerda, Carlos Alberto
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Australia Wiley Subscription Services, Inc 01.11.2023
Predmet:
ISSN:0815-9319, 1440-1746, 1440-1746
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate‐activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. Together, these pathways are involved in obesity, insulin resistance, non‐alcoholic fatty liver disease (NAFLD) and its progression, and autophagy. During energy demand, liver kinase B (LKB) phosphorylation helps activate the AMPK/mTOR pathways. Likewise, the protein forkhead box O family (FOXO) negatively regulates adipogenesis by binding to the promoter sites of peroxisome proliferator‐activated receptor‐gamma coactivator 1‐alpha, initiating adipogenesis. In addition, acetyl‐CoA carboxylase, which regulates de novo lipogenesis, is linked to LKB and FOXO in developing NAFLD. The kinase complex, consisting of Unc‐51‐like autophagy‐activating kinase 1 or 2 (ULK1, ULK2) by stimulating autophagy, and eliminating fat droplets in NAFLD, is regulated by mTORC1 and negatively regulated by AMPK that suppresses liver lipogenesis and increases fatty acid oxidation. Also, ULK1 is essential for initiating phagophore formation, establishing macrophagy, and generating autophagosomes. The selective breakdown of lipid droplets through macroautophagy, or macrolipophagy, occurs on a cellular energy level using free fatty acids. In addition, mTORC1 promotes lipogenesis by activating sterol regulatory element‐binding protein. Finding new components and novel regulatory modes in signaling is significant for a better understanding of the AMPK/mTOR pathways, potentially facilitating the development of future diagnostic and therapeutic strategies for NAFLD and its progression to non‐alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. AMPK activation appears in a healthy liver during fasting in response to energy generation needs. AMPK enhances FA oxidation and autophagy, reducing lipid accumulation. mTORC1 activation occurs in high food intake in a diseased liver, leading to lipogenesis, reducing FA oxidation, lipolysis, and autophagy, leading to liver lipid accumulation and NAFLD. ACC2, acetyl‐Coa carboxylase 2; AKT, protein kinase B; AMPK, AMP‐activated protein kinase; CPT1, carnitine palmitoyl transferase I; DNL, de novo lipogenesis; FA, fatty acid; GTP, GTPase‐activating protein; HSL, hormone‐sensitive lipase; IR, insulin receptor; LKB, liver kinase B; mTOR, mechanistic target of rapamycin; NAFLD, non‐alcoholic fatty liver disease; PGC‐1α, peroxisome proliferator‐activated receptor‐gamma coactivator‐1 alpha; PI3K, phosphoinositide 3‐ kinase; PPARa, peroxisome proliferator‐activated receptors alpha; RHEB, Ras homolog enriched in the brain; TSC, tuberous sclerosis complex; ULK1, unc‐51‐like kinase 1.
AbstractList Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate‐activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. Together, these pathways are involved in obesity, insulin resistance, non‐alcoholic fatty liver disease (NAFLD) and its progression, and autophagy. During energy demand, liver kinase B (LKB) phosphorylation helps activate the AMPK/mTOR pathways. Likewise, the protein forkhead box O family (FOXO) negatively regulates adipogenesis by binding to the promoter sites of peroxisome proliferator‐activated receptor‐gamma coactivator 1‐alpha, initiating adipogenesis. In addition, acetyl‐CoA carboxylase, which regulates de novo lipogenesis, is linked to LKB and FOXO in developing NAFLD. The kinase complex, consisting of Unc‐51‐like autophagy‐activating kinase 1 or 2 (ULK1, ULK2) by stimulating autophagy, and eliminating fat droplets in NAFLD, is regulated by mTORC1 and negatively regulated by AMPK that suppresses liver lipogenesis and increases fatty acid oxidation. Also, ULK1 is essential for initiating phagophore formation, establishing macrophagy, and generating autophagosomes. The selective breakdown of lipid droplets through macroautophagy, or macrolipophagy, occurs on a cellular energy level using free fatty acids. In addition, mTORC1 promotes lipogenesis by activating sterol regulatory element‐binding protein. Finding new components and novel regulatory modes in signaling is significant for a better understanding of the AMPK/mTOR pathways, potentially facilitating the development of future diagnostic and therapeutic strategies for NAFLD and its progression to non‐alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma.
Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. Together, these pathways are involved in obesity, insulin resistance, non-alcoholic fatty liver disease (NAFLD) and its progression, and autophagy. During energy demand, liver kinase B (LKB) phosphorylation helps activate the AMPK/mTOR pathways. Likewise, the protein forkhead box O family (FOXO) negatively regulates adipogenesis by binding to the promoter sites of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha, initiating adipogenesis. In addition, acetyl-CoA carboxylase, which regulates de novo lipogenesis, is linked to LKB and FOXO in developing NAFLD. The kinase complex, consisting of Unc-51-like autophagy-activating kinase 1 or 2 (ULK1, ULK2) by stimulating autophagy, and eliminating fat droplets in NAFLD, is regulated by mTORC1 and negatively regulated by AMPK that suppresses liver lipogenesis and increases fatty acid oxidation. Also, ULK1 is essential for initiating phagophore formation, establishing macrophagy, and generating autophagosomes. The selective breakdown of lipid droplets through macroautophagy, or macrolipophagy, occurs on a cellular energy level using free fatty acids. In addition, mTORC1 promotes lipogenesis by activating sterol regulatory element-binding protein. Finding new components and novel regulatory modes in signaling is significant for a better understanding of the AMPK/mTOR pathways, potentially facilitating the development of future diagnostic and therapeutic strategies for NAFLD and its progression to non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma.Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. Together, these pathways are involved in obesity, insulin resistance, non-alcoholic fatty liver disease (NAFLD) and its progression, and autophagy. During energy demand, liver kinase B (LKB) phosphorylation helps activate the AMPK/mTOR pathways. Likewise, the protein forkhead box O family (FOXO) negatively regulates adipogenesis by binding to the promoter sites of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha, initiating adipogenesis. In addition, acetyl-CoA carboxylase, which regulates de novo lipogenesis, is linked to LKB and FOXO in developing NAFLD. The kinase complex, consisting of Unc-51-like autophagy-activating kinase 1 or 2 (ULK1, ULK2) by stimulating autophagy, and eliminating fat droplets in NAFLD, is regulated by mTORC1 and negatively regulated by AMPK that suppresses liver lipogenesis and increases fatty acid oxidation. Also, ULK1 is essential for initiating phagophore formation, establishing macrophagy, and generating autophagosomes. The selective breakdown of lipid droplets through macroautophagy, or macrolipophagy, occurs on a cellular energy level using free fatty acids. In addition, mTORC1 promotes lipogenesis by activating sterol regulatory element-binding protein. Finding new components and novel regulatory modes in signaling is significant for a better understanding of the AMPK/mTOR pathways, potentially facilitating the development of future diagnostic and therapeutic strategies for NAFLD and its progression to non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma.
Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate‐activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. Together, these pathways are involved in obesity, insulin resistance, non‐alcoholic fatty liver disease (NAFLD) and its progression, and autophagy. During energy demand, liver kinase B (LKB) phosphorylation helps activate the AMPK/mTOR pathways. Likewise, the protein forkhead box O family (FOXO) negatively regulates adipogenesis by binding to the promoter sites of peroxisome proliferator‐activated receptor‐gamma coactivator 1‐alpha, initiating adipogenesis. In addition, acetyl‐CoA carboxylase, which regulates de novo lipogenesis, is linked to LKB and FOXO in developing NAFLD. The kinase complex, consisting of Unc‐51‐like autophagy‐activating kinase 1 or 2 (ULK1, ULK2) by stimulating autophagy, and eliminating fat droplets in NAFLD, is regulated by mTORC1 and negatively regulated by AMPK that suppresses liver lipogenesis and increases fatty acid oxidation. Also, ULK1 is essential for initiating phagophore formation, establishing macrophagy, and generating autophagosomes. The selective breakdown of lipid droplets through macroautophagy, or macrolipophagy, occurs on a cellular energy level using free fatty acids. In addition, mTORC1 promotes lipogenesis by activating sterol regulatory element‐binding protein. Finding new components and novel regulatory modes in signaling is significant for a better understanding of the AMPK/mTOR pathways, potentially facilitating the development of future diagnostic and therapeutic strategies for NAFLD and its progression to non‐alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. AMPK activation appears in a healthy liver during fasting in response to energy generation needs. AMPK enhances FA oxidation and autophagy, reducing lipid accumulation. mTORC1 activation occurs in high food intake in a diseased liver, leading to lipogenesis, reducing FA oxidation, lipolysis, and autophagy, leading to liver lipid accumulation and NAFLD. ACC2, acetyl‐Coa carboxylase 2; AKT, protein kinase B; AMPK, AMP‐activated protein kinase; CPT1, carnitine palmitoyl transferase I; DNL, de novo lipogenesis; FA, fatty acid; GTP, GTPase‐activating protein; HSL, hormone‐sensitive lipase; IR, insulin receptor; LKB, liver kinase B; mTOR, mechanistic target of rapamycin; NAFLD, non‐alcoholic fatty liver disease; PGC‐1α, peroxisome proliferator‐activated receptor‐gamma coactivator‐1 alpha; PI3K, phosphoinositide 3‐ kinase; PPARa, peroxisome proliferator‐activated receptors alpha; RHEB, Ras homolog enriched in the brain; TSC, tuberous sclerosis complex; ULK1, unc‐51‐like kinase 1.
Author Marinho, Thatiany Souza
Marcondes‐de‐Castro, Ilitch Aquino
Mandarim‐de‐Lacerda, Carlos Alberto
Reis‐Barbosa, Pedro Henrique
Aguila, Marcia Barbosa
Author_xml – sequence: 1
  givenname: Ilitch Aquino
  orcidid: 0000-0003-3104-4033
  surname: Marcondes‐de‐Castro
  fullname: Marcondes‐de‐Castro, Ilitch Aquino
  organization: Rio de Janeiro State University
– sequence: 2
  givenname: Pedro Henrique
  orcidid: 0000-0002-4731-7422
  surname: Reis‐Barbosa
  fullname: Reis‐Barbosa, Pedro Henrique
  organization: Rio de Janeiro State University
– sequence: 3
  givenname: Thatiany Souza
  orcidid: 0000-0001-9976-9466
  surname: Marinho
  fullname: Marinho, Thatiany Souza
  organization: Rio de Janeiro State University
– sequence: 4
  givenname: Marcia Barbosa
  orcidid: 0000-0003-3994-4589
  surname: Aguila
  fullname: Aguila, Marcia Barbosa
  organization: Rio de Janeiro State University
– sequence: 5
  givenname: Carlos Alberto
  orcidid: 0000-0003-4134-7978
  surname: Mandarim‐de‐Lacerda
  fullname: Mandarim‐de‐Lacerda, Carlos Alberto
  email: mandarim@uerj.br
  organization: Rio de Janeiro State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37438882$$D View this record in MEDLINE/PubMed
BookMark eNp90c1OGzEQAGALgZoQeuAFKku9wGGJvfbGmyNCJfwqqKLn1azXzjp1vKntEOXGI_CMfZIaAhyQig_2wd_M2DP7aNd1TiF0SMkJTWs4n7UndJSLfAf1Kecko4KPdlGflLTIxoyOe2g_hDkhhBNRfEE9JjgryzLvo9-nt3fXw8X99CdeQmzXsMHBzJzRRoKTChuHWwU2thtszYPyGFyDU_m_j09gZdd21kisIca3-8YEBUG9OBMDXvpu5lUIpnMHaE-DDerr6zlAv85_3J9dZDfTyeXZ6U0mecHzTBJCpZCc04IwTWitZUlE3hRlXUjasLqGMckLxjWoRnOA9NtaN5rlkDhwNkBH27yp9p-VCrFamCCVteBUtwpVXrJRKQQTRaLfP9B5t_IuvS6pcYKMpm2Avr2qVb1QTbX0ZgF-U721MYHjLZC-C8Er_U4oqZ5HVKURVS8jSnb4wUoTIab-RA_GfhaxNlZt_p-6uppcbCP-AfIYosM
CitedBy_id crossref_primary_10_3390_ph18030358
crossref_primary_10_1002_jat_4724
crossref_primary_10_1038_s41575_025_01099_z
crossref_primary_10_1038_s41598_025_97523_0
crossref_primary_10_5582_bst_2025_01193
crossref_primary_10_1007_s11033_025_10553_9
crossref_primary_10_1111_jgh_16407
crossref_primary_10_3390_nu16244282
crossref_primary_10_3390_nu16213663
crossref_primary_10_1021_acs_molpharmaceut_5c00145
crossref_primary_10_1155_jfbc_8272754
crossref_primary_10_4103_ed_ed_5_25
crossref_primary_10_5306_wjco_v16_i9_110686
crossref_primary_10_3390_ijms26167991
crossref_primary_10_1016_j_phymed_2024_156056
crossref_primary_10_3390_antiox14050595
crossref_primary_10_1016_j_cbi_2025_111743
crossref_primary_10_1002_iid3_1226
crossref_primary_10_1038_s41598_025_88773_z
crossref_primary_10_3390_nu17071126
crossref_primary_10_3390_cells14030221
crossref_primary_10_4254_wjh_v17_i2_101691
crossref_primary_10_1093_biolre_ioaf111
crossref_primary_10_1093_emph_eoaf010
crossref_primary_10_3389_fcvm_2025_1638515
crossref_primary_10_1155_2024_4777789
crossref_primary_10_1093_bbb_zbae129
crossref_primary_10_3390_antiox14060637
crossref_primary_10_1007_s00210_025_03908_3
crossref_primary_10_1016_j_intimp_2025_115172
crossref_primary_10_3389_fcell_2025_1639123
crossref_primary_10_1016_j_jep_2025_120333
crossref_primary_10_3390_medsci13030178
crossref_primary_10_1016_j_bioorg_2025_108755
crossref_primary_10_1002_mnfr_202400472
crossref_primary_10_1021_acs_jafc_5c03418
crossref_primary_10_1007_s12602_024_10262_y
crossref_primary_10_3389_fnut_2023_1327814
crossref_primary_10_4093_dmj_2025_0644
crossref_primary_10_1590_acb407025
crossref_primary_10_3892_mmr_2025_13664
crossref_primary_10_1016_j_foodhyd_2025_111344
crossref_primary_10_1007_s10522_025_10238_7
crossref_primary_10_1186_s12944_024_02212_y
crossref_primary_10_3390_ijms26188928
crossref_primary_10_1016_j_phrs_2025_107617
crossref_primary_10_1038_s41366_025_01793_7
crossref_primary_10_1016_j_molmet_2025_102192
crossref_primary_10_3390_genes15060658
Cites_doi 10.1038/ncomms11365
10.1146/annurev‐nutr‐062220‐105200
10.2174/1381612811319290006
10.1002/jcp.29727
10.3390/ijms21062061
10.14348/molcells.2016.2318
10.1111/1750‐3841.14723
10.1590/1414‐431X2021e11391
10.1016/j.canlet.2017.06.029
10.1016/j.clinre.2022.101922
10.18632/oncotarget.3044
10.1016/j.micpath.2018.03.021
10.1038/sj.onc.1204091
10.1080/15384101.2016.1151581
10.1097/MEG.0000000000001235
10.1038/nrdp.2015.80
10.1016/j.lfs.2021.119424
10.1007/s00109‐021‐02117‐8
10.1248/bpb.b17‐00724
10.1083/jcb.201711002
10.1002/hep.31420
10.1038/369756a0
10.1021/acs.jafc.0c07342
10.1080/15548627.2021.1895658
10.1038/s41580‐021‐00373‐7
10.1002/hep.28820
10.1158/0008‐5472.CAN‐21‐1259
10.1038/s41591‐018‐0104‐9
10.1038/s42255‐021‐00440‐5
10.1016/j.cmet.2017.07.008
10.1152/ajpendo.00660.2011
10.1002/hep.29302
10.1016/j.molcel.2017.05.030
10.1016/j.plefa.2018.11.005
10.1155/2021/6655599
10.1038/s41366‐021‐00955‐7
10.1111/j.1432‐1033.1991.tb16172.x
10.1007/s00428‐011‐1147‐1
10.1007/978‐1‐60327‐345‐9_17
10.2337/db20‐0619
10.1016/j.mam.2016.11.008
10.4103/1673‐5374.340406
10.1016/j.livres.2020.02.004
10.1371/journal.pbio.3001522
10.3390/cells9040837
10.1016/j.cellsig.2013.06.007
10.1002/path.2697
10.1016/s0960‐9822(02)01077‐1
10.1016/j.celrep.2017.04.042
10.1152/physrev.00026.2020
10.1002/hep.32066
10.1097/hc9.0000000000000112
10.3389/fcell.2021.655731
10.1016/j.cell.2021.04.015
10.3748/wjg.v27.i25.3837
10.1016/j.intimp.2016.11.015
10.1146/annurev‐pharmtox‐010611‐134537
10.1371/journal.pone.0165417
10.3350/cmh.2020.0169
10.1002/hep.30418
10.1146/annurev‐cellbio‐092910‐154005
10.1371/journal.pone.0146675
10.1016/j.mam.2021.100973
10.1016/j.molcel.2010.06.022
10.1001/jama.2015.5370
10.1007/s12011‐022‐03438‐6
10.1016/j.celrep.2019.07.084
10.1007/s13238‐017‐0409‐3
10.1016/j.biochi.2021.11.008
10.1152/japplphysiol.00915.2007
10.1152/ajpendo.00225.2016
10.4067/s0717‐95022017000401482
10.1016/j.bbagrm.2016.03.002
10.1038/s41467‐022‐29960‐8
10.1152/ajpgi.00451.2010
ContentType Journal Article
Copyright 2023 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
2023 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd
Copyright_xml – notice: 2023 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
– notice: 2023 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd
DBID AAYXX
CITATION
NPM
7T5
7U9
H94
K9.
7X8
DOI 10.1111/jgh.16272
DatabaseName CrossRef
PubMed
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1440-1746
EndPage 1876
ExternalDocumentID 37438882
10_1111_jgh_16272
JGH16272
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  funderid: 305993/2021‐6
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  funderid: Finance code 001
– fundername: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
  funderid: E‐26/200.796/2021; E‐26/200.936/2021
– fundername: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
  grantid: E-26/200.796/2021
– fundername: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
  grantid: E-26/200.936/2021
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 305993/2021-6
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: Finance code 001
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29K
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DTERQ
DU5
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
KMS
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOQ
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
NPM
7T5
7U9
H94
K9.
7X8
ID FETCH-LOGICAL-c4542-c001c7c441503f01bfc8072d58b5c1d3bba902534faedf4aa174bfdf32a3f0a43
IEDL.DBID DRFUL
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001026567400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0815-9319
1440-1746
IngestDate Thu Aug 07 15:04:41 EDT 2025
Tue Oct 07 07:11:42 EDT 2025
Thu Apr 03 07:04:06 EDT 2025
Sat Nov 29 08:03:21 EST 2025
Tue Nov 18 22:32:59 EST 2025
Sun Jul 06 04:45:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords autophagy
non-alcoholic fatty liver disease
AMPK/mTOR pathway
obesity
lipid metabolism
Language English
License 2023 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4542-c001c7c441503f01bfc8072d58b5c1d3bba902534faedf4aa174bfdf32a3f0a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3104-4033
0000-0002-4731-7422
0000-0001-9976-9466
0000-0003-3994-4589
0000-0003-4134-7978
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jgh.16272
PMID 37438882
PQID 2892833128
PQPubID 2045136
PageCount 1876
ParticipantIDs proquest_miscellaneous_2836877375
proquest_journals_2892833128
pubmed_primary_37438882
crossref_primary_10_1111_jgh_16272
crossref_citationtrail_10_1111_jgh_16272
wiley_primary_10_1111_jgh_16272_JGH16272
PublicationCentury 2000
PublicationDate November 2023
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationPlace Australia
PublicationPlace_xml – name: Australia
– name: Richmond
PublicationTitle Journal of gastroenterology and hepatology
PublicationTitleAlternate J Gastroenterol Hepatol
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 69
2021; 27
2017; 42
2013; 25
2021; 22
1991; 199
2023; 7
2002; 12
2010; 221
2018; 41
2022; 20
2008; 104
2016; 39
2021; 74
2021; 73
2012; 52
2021; 70
2013; 19
2017; 406
2018; 9
2020; 4
2000; 19
2022; 82
2018; 217
2016; 1859
2017; 35
2020; 9
2016; 311
2019; 28
2018; 30
2021; 276
2021; 82
2011; 27
2021; 2021
2021; 9
2015; 1
2015; 6
2022; 195
2019; 70
2011; 459
2021; 3
2017; 26
2021; 101
2023; 18
2010; 39
2017; 67
2022; 46
2021; 184
2019; 140
2012; 302
2016; 15
2018; 24
2016; 11
2016; 7
2011; 300
2021; 54
1994; 369
2019; 84
2021; 99
2015; 313
2022
2010; 611
2018; 118
2017; 54
2016; 64
2022; 13
2020; 26
2017
2017; 19
2020; 235
2020; 21
2022; 18
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_61_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 19
  start-page: 1083
  year: 2017
  end-page: 1090
  article-title: mTORC1 balances cellular amino acid supply with demand for protein synthesis through post‐transcriptional control of ATF4
  publication-title: Cell Rep.
– volume: 9
  start-page: 145
  year: 2018
  end-page: 151
  article-title: mTORC1 signaling in hepatic lipid metabolism
  publication-title: Protein Cell
– volume: 459
  start-page: 477
  year: 2011
  end-page: 485
  article-title: A critical analysis of three quantitative methods of assessment of hepatic steatosis in liver biopsies
  publication-title: Virchows Arch.
– volume: 184
  start-page: 2537
  year: 2021
  end-page: 2564
  article-title: Mechanisms and disease consequences of nonalcoholic fatty liver disease
  publication-title: Cell
– volume: 46
  start-page: 21
  year: 2022
  end-page: 29
  article-title: Obese mice weight loss role on nonalcoholic fatty liver disease and endoplasmic reticulum stress treated by a GLP‐1 receptor agonist
  publication-title: Int. J. Obes. (Lond)
– volume: 82
  start-page: 1055
  year: 2022
  end-page: 1069
  article-title: CircRPN2 inhibits aerobic glycolysis and metastasis in hepatocellular carcinoma
  publication-title: Cancer Res.
– volume: 70
  start-page: 214
  year: 2021
  end-page: 226
  article-title: ETV5 regulates hepatic fatty acid metabolism through PPAR signaling pathway
  publication-title: Diabetes
– volume: 195
  start-page: 100
  year: 2022
  end-page: 113
  article-title: Role of AMPK mediated pathways in autophagy and aging
  publication-title: Biochimie
– volume: 22
  start-page: 608
  year: 2021
  end-page: 624
  article-title: Liver regeneration and inflammation: from fundamental science to clinical applications
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 74
  start-page: 3056
  year: 2021
  end-page: 3073
  article-title: Salidroside activates the AMP‐activated protein kinase pathway to suppress nonalcoholic steatohepatitis in mice
  publication-title: Hepatology
– volume: 9
  year: 2020
  article-title: Role and mechanisms of mitophagy in liver diseases
  publication-title: Cell
– volume: 27
  start-page: 107
  year: 2011
  end-page: 132
  article-title: The role of Atg proteins in autophagosome formation
  publication-title: Annu. Rev. Cell Dev. Biol.
– year: 2022
  article-title: Reprogramming of hepatic metabolism and microenvironment in nonalcoholic steatohepatitis
  publication-title: Annu. Rev. Nutr.
– volume: 1859
  start-page: 1083
  year: 2016
  end-page: 1099
  article-title: Nuclear receptors and nonalcoholic fatty liver disease
  publication-title: Biochim. Biophys. Acta
– volume: 302
  start-page: E1453
  year: 2012
  end-page: E1460
  article-title: Role of PRAS40 in Akt and mTOR signaling in health and disease
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 19
  start-page: 6680
  year: 2000
  end-page: 6686
  article-title: The rapamycin‐sensitive signal transduction pathway as a target for cancer therapy
  publication-title: Oncogene
– volume: 18
  start-page: 50
  year: 2022
  end-page: 72
  article-title: The ménage à trois of autophagy, lipid droplets and liver disease
  publication-title: Autophagy
– volume: 46
  year: 2022
  article-title: The mTORC1/AMPK pathway plays a role in the beneficial effects of semaglutide (GLP‐1 receptor agonist) on the liver of obese mice
  publication-title: Clin. Res. Hepatol. Gastroenterol.
– volume: 140
  start-page: 64
  year: 2019
  end-page: 71
  article-title: Medium‐chain triglyceride reinforce the hepatic damage caused by fructose intake in mice
  publication-title: Prostaglandins Leukot. Essent. Fatty Acids
– volume: 12
  start-page: 1419
  year: 2002
  end-page: 1423
  article-title: Activation of AMP‐activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis
  publication-title: Curr. Biol.
– volume: 26
  start-page: 606
  year: 2020
  end-page: 617
  article-title: Autophagy and liver cancer
  publication-title: Clin. Mol. Hepatol.
– volume: 41
  start-page: 985
  year: 2018
  end-page: 993
  article-title: AMPK‐mediated regulation of lipid metabolism by phosphorylation
  publication-title: Biol. Pharm. Bull.
– volume: 24
  start-page: 908
  year: 2018
  end-page: 922
  article-title: Mechanisms of NAFLD development and therapeutic strategies
  publication-title: Nat. Med.
– volume: 6
  start-page: 7136
  year: 2015
  end-page: 7150
  article-title: Both mTORC1 and mTORC2 are involved in the regulation of cell adhesion
  publication-title: Oncotarget
– volume: 7
  year: 2023
  article-title: Clustering NAFLD: phenotypes of nonalcoholic fatty liver disease and their differing trajectories
  publication-title: Hepatol. Commun.
– volume: 27
  start-page: 3837
  year: 2021
  end-page: 3850
  article-title: Gut microbiota in obesity
  publication-title: World J. Gastroenterol.
– volume: 28
  start-page: 1971
  year: 2019
  end-page: 80 e8
  article-title: Suppression of p16 induces mTORC1‐mediated nucleotide metabolic reprogramming
  publication-title: Cell Rep.
– volume: 39
  start-page: 171
  year: 2010
  end-page: 183
  article-title: Activation of a metabolic gene regulatory network downstream of mTOR complex 1
  publication-title: Mol. Cell
– volume: 30
  start-page: 1103
  year: 2018
  end-page: 1115
  article-title: Nonalcoholic fatty liver disease: current concepts, epidemiology and management strategies
  publication-title: Eur. J. Gastroenterol. Hepatol.
– volume: 3
  start-page: 1150
  year: 2021
  end-page: 1162
  article-title: SREBP1‐induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation
  publication-title: Nat. Metab.
– volume: 54
  start-page: 78
  year: 2017
  end-page: 88
  article-title: Epigenetics in non‐alcoholic fatty liver disease
  publication-title: Mol. Aspects Med.
– volume: 13
  start-page: 2436
  year: 2022
  article-title: Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages
  publication-title: Nat. Commun.
– volume: 26
  start-page: 292
  year: 2017
  end-page: 300
  article-title: Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans
  publication-title: Cell Metab.
– volume: 99
  start-page: 1497
  year: 2021
  end-page: 1509
  article-title: Lipid metabolism, inflammation, and foam cell formation in health and metabolic disorders: targeting mTORC1
  publication-title: J. Mol. Med. (Berl)
– volume: 199
  start-page: 691
  year: 1991
  end-page: 697
  article-title: Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP‐activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion
  publication-title: Eur. J. Biochem.
– volume: 39
  start-page: 87
  year: 2016
  end-page: 95
  article-title: Sirt1 and the mitochondria
  publication-title: Mol. Cells
– volume: 21
  year: 2020
  article-title: PPARs as metabolic regulators in the liver: lessons from liver‐specific PPAR‐null mice
  publication-title: Int. J. Mol. Sci.
– volume: 42
  start-page: 176
  year: 2017
  end-page: 184
  article-title: Irbesartan ameliorates hyperlipidemia and liver steatosis in type 2 diabetic db/db mice via stimulating PPAR‐γ, AMPK/Akt/mTOR signaling and autophagy
  publication-title: Int. Immunopharmacol.
– volume: 313
  start-page: 2263
  year: 2015
  end-page: 2273
  article-title: Nonalcoholic fatty liver disease: a systematic review
  publication-title: JAMA
– volume: 54
  year: 2021
  article-title: α,β‐Amyrin prevents steatosis and insulin resistance in a high‐fat diet‐induced mouse model of NAFLD via the AMPK‐mTORC1‐SREBP1 signaling mechanism
  publication-title: Braz. J. Med. Biol. Res.
– volume: 217
  start-page: 3640
  year: 2018
  end-page: 3655
  article-title: Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy
  publication-title: J. Cell Biol.
– volume: 69
  start-page: 9157
  year: 2021
  end-page: 9166
  article-title: Lauric triglyceride ameliorates high‐fat‐diet‐induced obesity in rats by reducing lipogenesis and increasing lipolysis and β‐oxidation
  publication-title: J. Agric. Food Chem.
– year: 2017
  article-title: Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta‐analysis
  publication-title: Hepatology
– volume: 104
  start-page: 625
  year: 2008
  end-page: 632
  article-title: AMPK activation attenuates S6K1, 4E‐BP1, and eEF2 signaling responses to high‐frequency electrically stimulated skeletal muscle contractions
  publication-title: J. Appl. Physiol. (1985)
– volume: 73
  start-page: 1194
  year: 2021
  end-page: 1198
  article-title: From NAFLD to MAFLD: implications of a premature change in terminology
  publication-title: Hepatology
– volume: 611
  start-page: 211
  year: 2010
  end-page: 225
  article-title: Image analysis and quantitative morphology
  publication-title: Methods Mol. Biol.
– volume: 101
  start-page: 1371
  year: 2021
  end-page: 1426
  article-title: Regulation and metabolic functions of mTORC1 and mTORC2
  publication-title: Physiol. Rev.
– volume: 52
  start-page: 381
  year: 2012
  end-page: 400
  article-title: AMPK and mTOR in cellular energy homeostasis and drug targets
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 35
  start-page: 1482
  year: 2017
  end-page: 1494
  article-title: Tips for studies with quantitative morphology (morphometry and stereology)
  publication-title: Int. J. Morphol.
– volume: 64
  start-page: 1994
  year: 2016
  end-page: 2014
  article-title: Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice
  publication-title: Hepatology
– volume: 84
  start-page: 2101
  year: 2019
  end-page: 2111
  article-title: Promotion of mitochondrial biogenesis via activation of AMPK‐PGC1a signaling pathway by ginger ( Roscoe) extract, and its major active component 6‐gingerol
  publication-title: J. Food Sci.
– volume: 11
  year: 2016
  article-title: Effects of excess energy intake on glucose and lipid metabolism in C57BL/6 mice
  publication-title: PLoS ONE
– volume: 311
  start-page: E730
  year: 2016
  end-page: E740
  article-title: Treatment of nonalcoholic fatty liver disease: role of AMPK
  publication-title: Am. J. Physiol. Endocrinol. Metab.
– volume: 221
  start-page: 3
  year: 2010
  end-page: 12
  article-title: Autophagy: cellular and molecular mechanisms
  publication-title: J. Pathol.
– volume: 9
  year: 2021
  article-title: The mTOR‐autophagy axis and the control of metabolism
  publication-title: Front. Cell Dev. Biol.
– volume: 276
  year: 2021
  article-title: IL37 overexpression inhibits autophagy and apoptosis induced by hepatic ischemia reperfusion injury via modulating AMPK/mTOR/ULLK1 signalling pathways
  publication-title: Life Sci.
– volume: 19
  start-page: 5239
  year: 2013
  end-page: 5249
  article-title: From NAFLD to NASH and HCC: pathogenetic mechanisms and therapeutic insights
  publication-title: Curr. Pharm. Des.
– volume: 20
  year: 2022
  article-title: Rab2A regulates the progression of nonalcoholic fatty liver disease downstream of AMPK‐TBC1D1 axis by stabilizing PPARγ
  publication-title: PLoS Biol.
– volume: 406
  start-page: 105
  year: 2017
  end-page: 115
  article-title: Aspirin disrupts the mTOR‐raptor complex and potentiates the anti‐cancer activities of sorafenib via mTORC1 inhibition
  publication-title: Cancer Lett.
– volume: 67
  start-page: 128
  year: 2017
  end-page: 38 e7
  article-title: mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystine‐glutamate antiporter xCT
  publication-title: Mol. Cell
– volume: 18
  start-page: 31
  year: 2023
  end-page: 37
  article-title: Sex‐biased autophagy as a potential mechanism mediating sex differences in ischemic stroke outcome
  publication-title: Neural Regen. Res.
– volume: 25
  start-page: 1939
  year: 2013
  end-page: 1948
  article-title: Antagonistic crosstalk between NF‐κB and SIRT1 in the regulation of inflammation and metabolic disorders
  publication-title: Cell. Signal.
– volume: 70
  start-page: 522
  year: 2019
  end-page: 531
  article-title: Improvements in histologic features and diagnosis associated with improvement in fibrosis in nonalcoholic steatohepatitis: results from the nonalcoholic steatohepatitis clinical research network treatment trials
  publication-title: Hepatology
– volume: 2021
  year: 2021
  article-title: Beneficial Effect of via the activation of LKB1‐AMPK signaling pathway on obesity
  publication-title: Evid. Based Complement. Alternat. Med.
– volume: 11
  year: 2016
  article-title: Upregulation of mitochondrial content in cytochrome c oxidase deficient fibroblasts
  publication-title: PLoS ONE
– volume: 4
  start-page: 15
  year: 2020
  end-page: 22
  article-title: Nutrient mTORC1 signaling contributes to hepatic lipid metabolism in the pathogenesis of non‐alcoholic fatty liver disease
  publication-title: Liver Res.
– volume: 82
  year: 2021
  article-title: Autophagy in liver diseases: a review
  publication-title: Mol. Aspects Med.
– volume: 369
  start-page: 756
  year: 1994
  end-page: 758
  article-title: A mammalian protein targeted by G1‐arresting rapamycin‐receptor complex
  publication-title: Nature
– volume: 15
  start-page: 781
  year: 2016
  end-page: 786
  article-title: 4E‐BP1, a multifactor regulated multifunctional protein
  publication-title: Cell Cycle
– volume: 300
  start-page: G709
  year: 2011
  end-page: G715
  article-title: Therapeutic targets in liver fibrosis
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– year: 2022
  article-title: Magnesium supplementation stimulates autophagy to reduce lipid accumulation in hepatocytes via the AMPK/mTOR pathway
  publication-title: Biol. Trace Elem. Res.
– volume: 118
  start-page: 98
  year: 2018
  end-page: 104
  article-title: Gut microbiota and mTOR signaling: Insight on a new pathophysiological interaction
  publication-title: Microb. Pathog.
– volume: 1
  year: 2015
  article-title: Nonalcoholic fatty liver disease
  publication-title: Nat. Rev. Dis. Primers.
– volume: 235
  start-page: 8839
  year: 2020
  end-page: 8851
  article-title: SIRT3 deficiency is resistant to autophagy‐dependent ferroptosis by inhibiting the AMPK/mTOR pathway and promoting GPX4 levels
  publication-title: J. Cell. Physiol.
– volume: 7
  year: 2016
  article-title: Adipose tissue mTORC2 regulates ChREBP‐driven de novo lipogenesis and hepatic glucose metabolism
  publication-title: Nat. Commun.
– ident: e_1_2_10_54_1
  doi: 10.1038/ncomms11365
– ident: e_1_2_10_6_1
  doi: 10.1146/annurev‐nutr‐062220‐105200
– ident: e_1_2_10_13_1
  doi: 10.2174/1381612811319290006
– ident: e_1_2_10_66_1
  doi: 10.1002/jcp.29727
– ident: e_1_2_10_45_1
  doi: 10.3390/ijms21062061
– ident: e_1_2_10_28_1
  doi: 10.14348/molcells.2016.2318
– ident: e_1_2_10_29_1
  doi: 10.1111/1750‐3841.14723
– ident: e_1_2_10_9_1
  doi: 10.1590/1414‐431X2021e11391
– ident: e_1_2_10_34_1
  doi: 10.1016/j.canlet.2017.06.029
– ident: e_1_2_10_22_1
  doi: 10.1016/j.clinre.2022.101922
– ident: e_1_2_10_58_1
  doi: 10.18632/oncotarget.3044
– ident: e_1_2_10_33_1
  doi: 10.1016/j.micpath.2018.03.021
– ident: e_1_2_10_26_1
  doi: 10.1038/sj.onc.1204091
– ident: e_1_2_10_60_1
  doi: 10.1080/15384101.2016.1151581
– ident: e_1_2_10_15_1
  doi: 10.1097/MEG.0000000000001235
– ident: e_1_2_10_8_1
  doi: 10.1038/nrdp.2015.80
– ident: e_1_2_10_43_1
  doi: 10.1016/j.lfs.2021.119424
– ident: e_1_2_10_38_1
  doi: 10.1007/s00109‐021‐02117‐8
– ident: e_1_2_10_73_1
  doi: 10.1248/bpb.b17‐00724
– ident: e_1_2_10_68_1
  doi: 10.1083/jcb.201711002
– ident: e_1_2_10_2_1
  doi: 10.1002/hep.31420
– ident: e_1_2_10_25_1
  doi: 10.1038/369756a0
– ident: e_1_2_10_30_1
  doi: 10.1021/acs.jafc.0c07342
– ident: e_1_2_10_65_1
  doi: 10.1080/15548627.2021.1895658
– ident: e_1_2_10_12_1
  doi: 10.1038/s41580‐021‐00373‐7
– ident: e_1_2_10_62_1
  doi: 10.1002/hep.28820
– ident: e_1_2_10_76_1
  doi: 10.1158/0008‐5472.CAN‐21‐1259
– ident: e_1_2_10_10_1
  doi: 10.1038/s41591‐018‐0104‐9
– ident: e_1_2_10_52_1
  doi: 10.1038/s42255‐021‐00440‐5
– ident: e_1_2_10_3_1
  doi: 10.1016/j.cmet.2017.07.008
– ident: e_1_2_10_57_1
  doi: 10.1152/ajpendo.00660.2011
– ident: e_1_2_10_16_1
  doi: 10.1002/hep.29302
– ident: e_1_2_10_55_1
  doi: 10.1016/j.molcel.2017.05.030
– ident: e_1_2_10_7_1
  doi: 10.1016/j.plefa.2018.11.005
– ident: e_1_2_10_27_1
  doi: 10.1155/2021/6655599
– ident: e_1_2_10_74_1
  doi: 10.1038/s41366‐021‐00955‐7
– ident: e_1_2_10_24_1
  doi: 10.1111/j.1432‐1033.1991.tb16172.x
– ident: e_1_2_10_18_1
  doi: 10.1007/s00428‐011‐1147‐1
– ident: e_1_2_10_20_1
  doi: 10.1007/978‐1‐60327‐345‐9_17
– ident: e_1_2_10_46_1
  doi: 10.2337/db20‐0619
– ident: e_1_2_10_53_1
  doi: 10.1016/j.mam.2016.11.008
– ident: e_1_2_10_69_1
  doi: 10.4103/1673‐5374.340406
– ident: e_1_2_10_21_1
  doi: 10.1016/j.livres.2020.02.004
– ident: e_1_2_10_39_1
  doi: 10.1371/journal.pbio.3001522
– ident: e_1_2_10_48_1
  doi: 10.3390/cells9040837
– ident: e_1_2_10_44_1
  doi: 10.1016/j.cellsig.2013.06.007
– ident: e_1_2_10_35_1
  doi: 10.1002/path.2697
– ident: e_1_2_10_41_1
  doi: 10.1016/s0960‐9822(02)01077‐1
– ident: e_1_2_10_37_1
  doi: 10.1016/j.celrep.2017.04.042
– ident: e_1_2_10_40_1
  doi: 10.1152/physrev.00026.2020
– ident: e_1_2_10_47_1
  doi: 10.1002/hep.32066
– ident: e_1_2_10_4_1
  doi: 10.1097/hc9.0000000000000112
– ident: e_1_2_10_49_1
  doi: 10.3389/fcell.2021.655731
– ident: e_1_2_10_11_1
  doi: 10.1016/j.cell.2021.04.015
– ident: e_1_2_10_32_1
  doi: 10.3748/wjg.v27.i25.3837
– ident: e_1_2_10_71_1
  doi: 10.1016/j.intimp.2016.11.015
– ident: e_1_2_10_23_1
  doi: 10.1146/annurev‐pharmtox‐010611‐134537
– ident: e_1_2_10_36_1
  doi: 10.1371/journal.pone.0165417
– ident: e_1_2_10_64_1
  doi: 10.3350/cmh.2020.0169
– ident: e_1_2_10_17_1
  doi: 10.1002/hep.30418
– ident: e_1_2_10_67_1
  doi: 10.1146/annurev‐cellbio‐092910‐154005
– ident: e_1_2_10_14_1
  doi: 10.1371/journal.pone.0146675
– ident: e_1_2_10_61_1
  doi: 10.1016/j.mam.2021.100973
– ident: e_1_2_10_56_1
  doi: 10.1016/j.molcel.2010.06.022
– ident: e_1_2_10_5_1
  doi: 10.1001/jama.2015.5370
– ident: e_1_2_10_72_1
  doi: 10.1007/s12011‐022‐03438‐6
– ident: e_1_2_10_50_1
  doi: 10.1016/j.celrep.2019.07.084
– ident: e_1_2_10_51_1
  doi: 10.1007/s13238‐017‐0409‐3
– ident: e_1_2_10_70_1
  doi: 10.1016/j.biochi.2021.11.008
– ident: e_1_2_10_59_1
  doi: 10.1152/japplphysiol.00915.2007
– ident: e_1_2_10_42_1
  doi: 10.1152/ajpendo.00225.2016
– ident: e_1_2_10_19_1
  doi: 10.4067/s0717‐95022017000401482
– ident: e_1_2_10_31_1
  doi: 10.1016/j.bbagrm.2016.03.002
– ident: e_1_2_10_75_1
  doi: 10.1038/s41467‐022‐29960‐8
– ident: e_1_2_10_63_1
  doi: 10.1152/ajpgi.00451.2010
SSID ssj0004075
Score 2.5918446
SecondaryResourceType review_article
Snippet Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate‐activated protein kinase (AMPK) is a cellular energy...
Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1868
SubjectTerms Adenosine kinase
Adipogenesis
AMP
AMPK/mTOR pathway
Autophagy
Cell survival
Cirrhosis
Fatty acids
Fatty liver
Forkhead protein
Glucose metabolism
Hepatocellular carcinoma
Insulin resistance
Kinases
Lipid metabolism
Lipogenesis
Liver diseases
Metabolism
non‐alcoholic fatty liver disease
Obesity
Phagosomes
Phosphorylation
Protein kinase
Protein turnover
Proteins
Rapamycin
TOR protein
Title AMPK/mTOR pathway significance in healthy liver and non‐alcoholic fatty liver disease and its progression
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjgh.16272
https://www.ncbi.nlm.nih.gov/pubmed/37438882
https://www.proquest.com/docview/2892833128
https://www.proquest.com/docview/2836877375
Volume 38
WOSCitedRecordID wos001026567400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1440-1746
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004075
  issn: 0815-9319
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3bTtsw9IgVNPGyC7eVMeRNPOwlkMZO7WhP1aCgbS0IgdS3yHZiqCjpRMNQ3_YJ-8Z9yY7tJBvakJD2FsknsZVz97kB7OhQo2hE6ZeZRAaMKhpIarMIO90InSAqeKLcsAk-HIrRKDlZgA91LYzvD9FcuFnOcPLaMrhUsz-Z_OJyFz_IUf4uRki3cQsW90_7519-l0X6Pruo9OIgQVKrGgu5RJ765fvq6C8b877J6nRO__l_nfYFPKtMTdLztPESFvJiBZ4OqmD6Klz1Bief967Pjk-JnUt8J-fEZnPY3CFLCmRcEF8lOScTm71BZJGRYlr8_P5D-sG6Y02MLMt6vQr2OLhxOSMu98v3_ViD8_7B2cejoJq9EGgWsyjQqL4019bbCqkJO8poEfIoi4WKdSejSkkboKTMyDwzTEr0bJTJDI0kgktG16GFJ8pfARG6q2JhaJ4zybTkIomUUdp0I9NB84O14X2NglRXjcntfIxJ2jgoF5ep-3lteNeAfvXdOP4FtFXjMa0YcpaiX4mGFEVt3Ia3zTKyko2PyCKf3loY2hWcUx63YcPjv9mFWrpFbwQP69D88Pbpp8Mj97D5eNDXsGzH2Psaxy1olTe3-RtY0t_K8exmG57wkdiuqPsXBI38QQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-hMm17GftidMDmTXvYS6CNnTqReKmArls_hlAr8RbZTgwVEFCbbuobfwJ_I38JZzvJqLZJk_YWyZfYin_nu_N9AXxSDYVHI55-iY6Ex6iknqAmirDZ8tEIoiGPpG02wYfD8OQkOlqBvTIXxtWHqC7cDGfY89owuLmQfsjlp2c7-EWOB_AqQxghvlcPjjvj_q-8SFdoF6Ve4EWItaKykI3kKV9elke_KZnLOqsVOp21_1vuc3hWKJuk7dDxAlbS7CU8HhTu9Fdw3h4c9XYvR9-PielM_FMsiInnMNFDBgxkkhGXJ7kgFyZ-g4gsIdlVdndzK1xr3YkiWuR5OV64eyzdJJ8RG_3lKn-8hnHncLTf9YruC55iAfM9hQJMcWXsrQbVjabUKmxwPwlCGahmQqUUxkVJmRZpopkQaNtInWjqCyQXjK5DDVeUbgAJVUsGoaZpygRTgoeRL7VUuuXrJiogrA6fyz2IVVGa3HTIuIgrE-X0LLY_rw4fK9JrV4_jT0Rb5UbGBUvOYrQsUZWiKI_r8KEaRmYyHhKRpVdzQ0NbIeeUB3V44wBQzUINctEewcXaff779PG3L1378PbfSd_Dk-5o0I_7X4e9TXhqmtq7jMctqOXTeboNj9SPfDKbvitAfg8obf9J
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5CBaG9wNi1XDYz7WEvGWns1Im0FwTrYLRdhajUt8h2YqiAULUBxBs_gd_IL-HYTjLQNglpb5F8kljxueZcPoDPyleoGlH7pToWHqOSeoKaKsJWO8AgiEY8lhZsgvf70WgUD-bgW9UL4-ZD1D_cjGRYfW0EPJuk-rGUH598xSdyVMDzzIDINGB-97Az7P7ui3SDdtHqhV6MvFZOFrKVPNXNT-3RH07mU5_VGp3O8v9t9yUslc4m2XbcsQJzWf4KFntlOv01nG73Bgdb50e_DolBJr4WN8TUc5jqIcMMZJwT1yd5Q85M_QYReUryi_z-9k44aN2xIloURbVepnss3biYEVv95SZ_vIFh5_vRzp5Xoi94ioUs8BQaMMWVibd8qv2W1CryeZCGkQxVK6VSCpOipEyLLNVMCIxtpE41DQSSC0bfQgN3lL0HEqm2DCNNs4wJpgSP4kBqqXQ70C10QFgTvlRnkKhyNLlByDhL6hDl-CSxH68Jn2rSiZvH8Tei9eogk1IkZwlGluhKUbTHTdisl1GYTIZE5NnFpaGh7YhzysMmvHMMUL-FGs7FeAQ3a8_5369Pfv7Ysxerzyf9CIuD3U7S3e8frMELg2nvGh7XoVFML7MNWFBXxXg2_VDy-AO04_7E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMPK%2FmTOR+pathway+significance+in+healthy+liver+and+non-alcoholic+fatty+liver+disease+and+its+progression&rft.jtitle=Journal+of+gastroenterology+and+hepatology&rft.au=Marcondes-de-Castro%2C+Ilitch+Aquino&rft.au=Reis-Barbosa%2C+Pedro+Henrique&rft.au=Marinho%2C+Thatiany+Souza&rft.au=Aguila%2C+Marcia+Barbosa&rft.date=2023-11-01&rft.issn=1440-1746&rft.eissn=1440-1746&rft.volume=38&rft.issue=11&rft.spage=1868&rft_id=info:doi/10.1111%2Fjgh.16272&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0815-9319&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0815-9319&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0815-9319&client=summon