AMPK/mTOR pathway significance in healthy liver and non‐alcoholic fatty liver disease and its progression
Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate‐activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating...
Uložené v:
| Vydané v: | Journal of gastroenterology and hepatology Ročník 38; číslo 11; s. 1868 - 1876 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Australia
Wiley Subscription Services, Inc
01.11.2023
|
| Predmet: | |
| ISSN: | 0815-9319, 1440-1746, 1440-1746 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate‐activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. Together, these pathways are involved in obesity, insulin resistance, non‐alcoholic fatty liver disease (NAFLD) and its progression, and autophagy. During energy demand, liver kinase B (LKB) phosphorylation helps activate the AMPK/mTOR pathways. Likewise, the protein forkhead box O family (FOXO) negatively regulates adipogenesis by binding to the promoter sites of peroxisome proliferator‐activated receptor‐gamma coactivator 1‐alpha, initiating adipogenesis. In addition, acetyl‐CoA carboxylase, which regulates de novo lipogenesis, is linked to LKB and FOXO in developing NAFLD. The kinase complex, consisting of Unc‐51‐like autophagy‐activating kinase 1 or 2 (ULK1, ULK2) by stimulating autophagy, and eliminating fat droplets in NAFLD, is regulated by mTORC1 and negatively regulated by AMPK that suppresses liver lipogenesis and increases fatty acid oxidation. Also, ULK1 is essential for initiating phagophore formation, establishing macrophagy, and generating autophagosomes. The selective breakdown of lipid droplets through macroautophagy, or macrolipophagy, occurs on a cellular energy level using free fatty acids. In addition, mTORC1 promotes lipogenesis by activating sterol regulatory element‐binding protein. Finding new components and novel regulatory modes in signaling is significant for a better understanding of the AMPK/mTOR pathways, potentially facilitating the development of future diagnostic and therapeutic strategies for NAFLD and its progression to non‐alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma.
AMPK activation appears in a healthy liver during fasting in response to energy generation needs. AMPK enhances FA oxidation and autophagy, reducing lipid accumulation. mTORC1 activation occurs in high food intake in a diseased liver, leading to lipogenesis, reducing FA oxidation, lipolysis, and autophagy, leading to liver lipid accumulation and NAFLD. ACC2, acetyl‐Coa carboxylase 2; AKT, protein kinase B; AMPK, AMP‐activated protein kinase; CPT1, carnitine palmitoyl transferase I; DNL, de novo lipogenesis; FA, fatty acid; GTP, GTPase‐activating protein; HSL, hormone‐sensitive lipase; IR, insulin receptor; LKB, liver kinase B; mTOR, mechanistic target of rapamycin; NAFLD, non‐alcoholic fatty liver disease; PGC‐1α, peroxisome proliferator‐activated receptor‐gamma coactivator‐1 alpha; PI3K, phosphoinositide 3‐ kinase; PPARa, peroxisome proliferator‐activated receptors alpha; RHEB, Ras homolog enriched in the brain; TSC, tuberous sclerosis complex; ULK1, unc‐51‐like kinase 1. |
|---|---|
| AbstractList | Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate‐activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. Together, these pathways are involved in obesity, insulin resistance, non‐alcoholic fatty liver disease (NAFLD) and its progression, and autophagy. During energy demand, liver kinase B (LKB) phosphorylation helps activate the AMPK/mTOR pathways. Likewise, the protein forkhead box O family (FOXO) negatively regulates adipogenesis by binding to the promoter sites of peroxisome proliferator‐activated receptor‐gamma coactivator 1‐alpha, initiating adipogenesis. In addition, acetyl‐CoA carboxylase, which regulates de novo lipogenesis, is linked to LKB and FOXO in developing NAFLD. The kinase complex, consisting of Unc‐51‐like autophagy‐activating kinase 1 or 2 (ULK1, ULK2) by stimulating autophagy, and eliminating fat droplets in NAFLD, is regulated by mTORC1 and negatively regulated by AMPK that suppresses liver lipogenesis and increases fatty acid oxidation. Also, ULK1 is essential for initiating phagophore formation, establishing macrophagy, and generating autophagosomes. The selective breakdown of lipid droplets through macroautophagy, or macrolipophagy, occurs on a cellular energy level using free fatty acids. In addition, mTORC1 promotes lipogenesis by activating sterol regulatory element‐binding protein. Finding new components and novel regulatory modes in signaling is significant for a better understanding of the AMPK/mTOR pathways, potentially facilitating the development of future diagnostic and therapeutic strategies for NAFLD and its progression to non‐alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. Together, these pathways are involved in obesity, insulin resistance, non-alcoholic fatty liver disease (NAFLD) and its progression, and autophagy. During energy demand, liver kinase B (LKB) phosphorylation helps activate the AMPK/mTOR pathways. Likewise, the protein forkhead box O family (FOXO) negatively regulates adipogenesis by binding to the promoter sites of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha, initiating adipogenesis. In addition, acetyl-CoA carboxylase, which regulates de novo lipogenesis, is linked to LKB and FOXO in developing NAFLD. The kinase complex, consisting of Unc-51-like autophagy-activating kinase 1 or 2 (ULK1, ULK2) by stimulating autophagy, and eliminating fat droplets in NAFLD, is regulated by mTORC1 and negatively regulated by AMPK that suppresses liver lipogenesis and increases fatty acid oxidation. Also, ULK1 is essential for initiating phagophore formation, establishing macrophagy, and generating autophagosomes. The selective breakdown of lipid droplets through macroautophagy, or macrolipophagy, occurs on a cellular energy level using free fatty acids. In addition, mTORC1 promotes lipogenesis by activating sterol regulatory element-binding protein. Finding new components and novel regulatory modes in signaling is significant for a better understanding of the AMPK/mTOR pathways, potentially facilitating the development of future diagnostic and therapeutic strategies for NAFLD and its progression to non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma.Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. Together, these pathways are involved in obesity, insulin resistance, non-alcoholic fatty liver disease (NAFLD) and its progression, and autophagy. During energy demand, liver kinase B (LKB) phosphorylation helps activate the AMPK/mTOR pathways. Likewise, the protein forkhead box O family (FOXO) negatively regulates adipogenesis by binding to the promoter sites of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha, initiating adipogenesis. In addition, acetyl-CoA carboxylase, which regulates de novo lipogenesis, is linked to LKB and FOXO in developing NAFLD. The kinase complex, consisting of Unc-51-like autophagy-activating kinase 1 or 2 (ULK1, ULK2) by stimulating autophagy, and eliminating fat droplets in NAFLD, is regulated by mTORC1 and negatively regulated by AMPK that suppresses liver lipogenesis and increases fatty acid oxidation. Also, ULK1 is essential for initiating phagophore formation, establishing macrophagy, and generating autophagosomes. The selective breakdown of lipid droplets through macroautophagy, or macrolipophagy, occurs on a cellular energy level using free fatty acids. In addition, mTORC1 promotes lipogenesis by activating sterol regulatory element-binding protein. Finding new components and novel regulatory modes in signaling is significant for a better understanding of the AMPK/mTOR pathways, potentially facilitating the development of future diagnostic and therapeutic strategies for NAFLD and its progression to non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate‐activated protein kinase (AMPK) is a cellular energy sensor and regulator of liver lipid dysfunction and glucose metabolism. The mechanistic target of rapamycin (mTOR) is a protein kinase regulating cell growth, survival, metabolism, and immunity. Together, these pathways are involved in obesity, insulin resistance, non‐alcoholic fatty liver disease (NAFLD) and its progression, and autophagy. During energy demand, liver kinase B (LKB) phosphorylation helps activate the AMPK/mTOR pathways. Likewise, the protein forkhead box O family (FOXO) negatively regulates adipogenesis by binding to the promoter sites of peroxisome proliferator‐activated receptor‐gamma coactivator 1‐alpha, initiating adipogenesis. In addition, acetyl‐CoA carboxylase, which regulates de novo lipogenesis, is linked to LKB and FOXO in developing NAFLD. The kinase complex, consisting of Unc‐51‐like autophagy‐activating kinase 1 or 2 (ULK1, ULK2) by stimulating autophagy, and eliminating fat droplets in NAFLD, is regulated by mTORC1 and negatively regulated by AMPK that suppresses liver lipogenesis and increases fatty acid oxidation. Also, ULK1 is essential for initiating phagophore formation, establishing macrophagy, and generating autophagosomes. The selective breakdown of lipid droplets through macroautophagy, or macrolipophagy, occurs on a cellular energy level using free fatty acids. In addition, mTORC1 promotes lipogenesis by activating sterol regulatory element‐binding protein. Finding new components and novel regulatory modes in signaling is significant for a better understanding of the AMPK/mTOR pathways, potentially facilitating the development of future diagnostic and therapeutic strategies for NAFLD and its progression to non‐alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. AMPK activation appears in a healthy liver during fasting in response to energy generation needs. AMPK enhances FA oxidation and autophagy, reducing lipid accumulation. mTORC1 activation occurs in high food intake in a diseased liver, leading to lipogenesis, reducing FA oxidation, lipolysis, and autophagy, leading to liver lipid accumulation and NAFLD. ACC2, acetyl‐Coa carboxylase 2; AKT, protein kinase B; AMPK, AMP‐activated protein kinase; CPT1, carnitine palmitoyl transferase I; DNL, de novo lipogenesis; FA, fatty acid; GTP, GTPase‐activating protein; HSL, hormone‐sensitive lipase; IR, insulin receptor; LKB, liver kinase B; mTOR, mechanistic target of rapamycin; NAFLD, non‐alcoholic fatty liver disease; PGC‐1α, peroxisome proliferator‐activated receptor‐gamma coactivator‐1 alpha; PI3K, phosphoinositide 3‐ kinase; PPARa, peroxisome proliferator‐activated receptors alpha; RHEB, Ras homolog enriched in the brain; TSC, tuberous sclerosis complex; ULK1, unc‐51‐like kinase 1. |
| Author | Marinho, Thatiany Souza Marcondes‐de‐Castro, Ilitch Aquino Mandarim‐de‐Lacerda, Carlos Alberto Reis‐Barbosa, Pedro Henrique Aguila, Marcia Barbosa |
| Author_xml | – sequence: 1 givenname: Ilitch Aquino orcidid: 0000-0003-3104-4033 surname: Marcondes‐de‐Castro fullname: Marcondes‐de‐Castro, Ilitch Aquino organization: Rio de Janeiro State University – sequence: 2 givenname: Pedro Henrique orcidid: 0000-0002-4731-7422 surname: Reis‐Barbosa fullname: Reis‐Barbosa, Pedro Henrique organization: Rio de Janeiro State University – sequence: 3 givenname: Thatiany Souza orcidid: 0000-0001-9976-9466 surname: Marinho fullname: Marinho, Thatiany Souza organization: Rio de Janeiro State University – sequence: 4 givenname: Marcia Barbosa orcidid: 0000-0003-3994-4589 surname: Aguila fullname: Aguila, Marcia Barbosa organization: Rio de Janeiro State University – sequence: 5 givenname: Carlos Alberto orcidid: 0000-0003-4134-7978 surname: Mandarim‐de‐Lacerda fullname: Mandarim‐de‐Lacerda, Carlos Alberto email: mandarim@uerj.br organization: Rio de Janeiro State University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37438882$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90c1OGzEQAGALgZoQeuAFKku9wGGJvfbGmyNCJfwqqKLn1azXzjp1vKntEOXGI_CMfZIaAhyQig_2wd_M2DP7aNd1TiF0SMkJTWs4n7UndJSLfAf1Kecko4KPdlGflLTIxoyOe2g_hDkhhBNRfEE9JjgryzLvo9-nt3fXw8X99CdeQmzXsMHBzJzRRoKTChuHWwU2thtszYPyGFyDU_m_j09gZdd21kisIca3-8YEBUG9OBMDXvpu5lUIpnMHaE-DDerr6zlAv85_3J9dZDfTyeXZ6U0mecHzTBJCpZCc04IwTWitZUlE3hRlXUjasLqGMckLxjWoRnOA9NtaN5rlkDhwNkBH27yp9p-VCrFamCCVteBUtwpVXrJRKQQTRaLfP9B5t_IuvS6pcYKMpm2Avr2qVb1QTbX0ZgF-U721MYHjLZC-C8Er_U4oqZ5HVKURVS8jSnb4wUoTIab-RA_GfhaxNlZt_p-6uppcbCP-AfIYosM |
| CitedBy_id | crossref_primary_10_3390_ph18030358 crossref_primary_10_1002_jat_4724 crossref_primary_10_1038_s41575_025_01099_z crossref_primary_10_1038_s41598_025_97523_0 crossref_primary_10_5582_bst_2025_01193 crossref_primary_10_1007_s11033_025_10553_9 crossref_primary_10_1111_jgh_16407 crossref_primary_10_3390_nu16244282 crossref_primary_10_3390_nu16213663 crossref_primary_10_1021_acs_molpharmaceut_5c00145 crossref_primary_10_1155_jfbc_8272754 crossref_primary_10_4103_ed_ed_5_25 crossref_primary_10_5306_wjco_v16_i9_110686 crossref_primary_10_3390_ijms26167991 crossref_primary_10_1016_j_phymed_2024_156056 crossref_primary_10_3390_antiox14050595 crossref_primary_10_1016_j_cbi_2025_111743 crossref_primary_10_1002_iid3_1226 crossref_primary_10_1038_s41598_025_88773_z crossref_primary_10_3390_nu17071126 crossref_primary_10_3390_cells14030221 crossref_primary_10_4254_wjh_v17_i2_101691 crossref_primary_10_1093_biolre_ioaf111 crossref_primary_10_1093_emph_eoaf010 crossref_primary_10_3389_fcvm_2025_1638515 crossref_primary_10_1155_2024_4777789 crossref_primary_10_1093_bbb_zbae129 crossref_primary_10_3390_antiox14060637 crossref_primary_10_1007_s00210_025_03908_3 crossref_primary_10_1016_j_intimp_2025_115172 crossref_primary_10_3389_fcell_2025_1639123 crossref_primary_10_1016_j_jep_2025_120333 crossref_primary_10_3390_medsci13030178 crossref_primary_10_1016_j_bioorg_2025_108755 crossref_primary_10_1002_mnfr_202400472 crossref_primary_10_1021_acs_jafc_5c03418 crossref_primary_10_1007_s12602_024_10262_y crossref_primary_10_3389_fnut_2023_1327814 crossref_primary_10_4093_dmj_2025_0644 crossref_primary_10_1590_acb407025 crossref_primary_10_3892_mmr_2025_13664 crossref_primary_10_1016_j_foodhyd_2025_111344 crossref_primary_10_1007_s10522_025_10238_7 crossref_primary_10_1186_s12944_024_02212_y crossref_primary_10_3390_ijms26188928 crossref_primary_10_1016_j_phrs_2025_107617 crossref_primary_10_1038_s41366_025_01793_7 crossref_primary_10_1016_j_molmet_2025_102192 crossref_primary_10_3390_genes15060658 |
| Cites_doi | 10.1038/ncomms11365 10.1146/annurev‐nutr‐062220‐105200 10.2174/1381612811319290006 10.1002/jcp.29727 10.3390/ijms21062061 10.14348/molcells.2016.2318 10.1111/1750‐3841.14723 10.1590/1414‐431X2021e11391 10.1016/j.canlet.2017.06.029 10.1016/j.clinre.2022.101922 10.18632/oncotarget.3044 10.1016/j.micpath.2018.03.021 10.1038/sj.onc.1204091 10.1080/15384101.2016.1151581 10.1097/MEG.0000000000001235 10.1038/nrdp.2015.80 10.1016/j.lfs.2021.119424 10.1007/s00109‐021‐02117‐8 10.1248/bpb.b17‐00724 10.1083/jcb.201711002 10.1002/hep.31420 10.1038/369756a0 10.1021/acs.jafc.0c07342 10.1080/15548627.2021.1895658 10.1038/s41580‐021‐00373‐7 10.1002/hep.28820 10.1158/0008‐5472.CAN‐21‐1259 10.1038/s41591‐018‐0104‐9 10.1038/s42255‐021‐00440‐5 10.1016/j.cmet.2017.07.008 10.1152/ajpendo.00660.2011 10.1002/hep.29302 10.1016/j.molcel.2017.05.030 10.1016/j.plefa.2018.11.005 10.1155/2021/6655599 10.1038/s41366‐021‐00955‐7 10.1111/j.1432‐1033.1991.tb16172.x 10.1007/s00428‐011‐1147‐1 10.1007/978‐1‐60327‐345‐9_17 10.2337/db20‐0619 10.1016/j.mam.2016.11.008 10.4103/1673‐5374.340406 10.1016/j.livres.2020.02.004 10.1371/journal.pbio.3001522 10.3390/cells9040837 10.1016/j.cellsig.2013.06.007 10.1002/path.2697 10.1016/s0960‐9822(02)01077‐1 10.1016/j.celrep.2017.04.042 10.1152/physrev.00026.2020 10.1002/hep.32066 10.1097/hc9.0000000000000112 10.3389/fcell.2021.655731 10.1016/j.cell.2021.04.015 10.3748/wjg.v27.i25.3837 10.1016/j.intimp.2016.11.015 10.1146/annurev‐pharmtox‐010611‐134537 10.1371/journal.pone.0165417 10.3350/cmh.2020.0169 10.1002/hep.30418 10.1146/annurev‐cellbio‐092910‐154005 10.1371/journal.pone.0146675 10.1016/j.mam.2021.100973 10.1016/j.molcel.2010.06.022 10.1001/jama.2015.5370 10.1007/s12011‐022‐03438‐6 10.1016/j.celrep.2019.07.084 10.1007/s13238‐017‐0409‐3 10.1016/j.biochi.2021.11.008 10.1152/japplphysiol.00915.2007 10.1152/ajpendo.00225.2016 10.4067/s0717‐95022017000401482 10.1016/j.bbagrm.2016.03.002 10.1038/s41467‐022‐29960‐8 10.1152/ajpgi.00451.2010 |
| ContentType | Journal Article |
| Copyright | 2023 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd. 2023 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd |
| Copyright_xml | – notice: 2023 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd. – notice: 2023 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd |
| DBID | AAYXX CITATION NPM 7T5 7U9 H94 K9. 7X8 |
| DOI | 10.1111/jgh.16272 |
| DatabaseName | CrossRef PubMed Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts MEDLINE - Academic |
| DatabaseTitleList | CrossRef AIDS and Cancer Research Abstracts MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1440-1746 |
| EndPage | 1876 |
| ExternalDocumentID | 37438882 10_1111_jgh_16272 JGH16272 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 305993/2021‐6 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior funderid: Finance code 001 – fundername: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro funderid: E‐26/200.796/2021; E‐26/200.936/2021 – fundername: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro grantid: E-26/200.796/2021 – fundername: Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro grantid: E-26/200.936/2021 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 305993/2021-6 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: Finance code 001 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29K 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AIACR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F D-I DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DTERQ DU5 EBS EJD EMOBN EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO KMS LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 W8V W99 WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOQ WOW WQJ WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~WT AAYXX AIQQE CITATION O8X AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE NPM 7T5 7U9 H94 K9. 7X8 |
| ID | FETCH-LOGICAL-c4542-c001c7c441503f01bfc8072d58b5c1d3bba902534faedf4aa174bfdf32a3f0a43 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001026567400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0815-9319 1440-1746 |
| IngestDate | Thu Aug 07 15:04:41 EDT 2025 Tue Oct 07 07:11:42 EDT 2025 Thu Apr 03 07:04:06 EDT 2025 Sat Nov 29 08:03:21 EST 2025 Tue Nov 18 22:32:59 EST 2025 Sun Jul 06 04:45:54 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | autophagy non-alcoholic fatty liver disease AMPK/mTOR pathway obesity lipid metabolism |
| Language | English |
| License | 2023 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4542-c001c7c441503f01bfc8072d58b5c1d3bba902534faedf4aa174bfdf32a3f0a43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-3104-4033 0000-0002-4731-7422 0000-0001-9976-9466 0000-0003-3994-4589 0000-0003-4134-7978 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/jgh.16272 |
| PMID | 37438882 |
| PQID | 2892833128 |
| PQPubID | 2045136 |
| PageCount | 1876 |
| ParticipantIDs | proquest_miscellaneous_2836877375 proquest_journals_2892833128 pubmed_primary_37438882 crossref_primary_10_1111_jgh_16272 crossref_citationtrail_10_1111_jgh_16272 wiley_primary_10_1111_jgh_16272_JGH16272 |
| PublicationCentury | 2000 |
| PublicationDate | November 2023 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Australia |
| PublicationPlace_xml | – name: Australia – name: Richmond |
| PublicationTitle | Journal of gastroenterology and hepatology |
| PublicationTitleAlternate | J Gastroenterol Hepatol |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 69 2021; 27 2017; 42 2013; 25 2021; 22 1991; 199 2023; 7 2002; 12 2010; 221 2018; 41 2022; 20 2008; 104 2016; 39 2021; 74 2021; 73 2012; 52 2021; 70 2013; 19 2017; 406 2018; 9 2020; 4 2000; 19 2022; 82 2018; 217 2016; 1859 2017; 35 2020; 9 2016; 311 2019; 28 2018; 30 2021; 276 2021; 82 2011; 27 2021; 2021 2021; 9 2015; 1 2015; 6 2022; 195 2019; 70 2011; 459 2021; 3 2017; 26 2021; 101 2023; 18 2010; 39 2017; 67 2022; 46 2021; 184 2019; 140 2012; 302 2016; 15 2018; 24 2016; 11 2016; 7 2011; 300 2021; 54 1994; 369 2019; 84 2021; 99 2015; 313 2022 2010; 611 2018; 118 2017; 54 2016; 64 2022; 13 2020; 26 2017 2017; 19 2020; 235 2020; 21 2022; 18 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_61_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_62_1 e_1_2_10_64_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
| References_xml | – volume: 19 start-page: 1083 year: 2017 end-page: 1090 article-title: mTORC1 balances cellular amino acid supply with demand for protein synthesis through post‐transcriptional control of ATF4 publication-title: Cell Rep. – volume: 9 start-page: 145 year: 2018 end-page: 151 article-title: mTORC1 signaling in hepatic lipid metabolism publication-title: Protein Cell – volume: 459 start-page: 477 year: 2011 end-page: 485 article-title: A critical analysis of three quantitative methods of assessment of hepatic steatosis in liver biopsies publication-title: Virchows Arch. – volume: 184 start-page: 2537 year: 2021 end-page: 2564 article-title: Mechanisms and disease consequences of nonalcoholic fatty liver disease publication-title: Cell – volume: 46 start-page: 21 year: 2022 end-page: 29 article-title: Obese mice weight loss role on nonalcoholic fatty liver disease and endoplasmic reticulum stress treated by a GLP‐1 receptor agonist publication-title: Int. J. Obes. (Lond) – volume: 82 start-page: 1055 year: 2022 end-page: 1069 article-title: CircRPN2 inhibits aerobic glycolysis and metastasis in hepatocellular carcinoma publication-title: Cancer Res. – volume: 70 start-page: 214 year: 2021 end-page: 226 article-title: ETV5 regulates hepatic fatty acid metabolism through PPAR signaling pathway publication-title: Diabetes – volume: 195 start-page: 100 year: 2022 end-page: 113 article-title: Role of AMPK mediated pathways in autophagy and aging publication-title: Biochimie – volume: 22 start-page: 608 year: 2021 end-page: 624 article-title: Liver regeneration and inflammation: from fundamental science to clinical applications publication-title: Nat. Rev. Mol. Cell Biol. – volume: 74 start-page: 3056 year: 2021 end-page: 3073 article-title: Salidroside activates the AMP‐activated protein kinase pathway to suppress nonalcoholic steatohepatitis in mice publication-title: Hepatology – volume: 9 year: 2020 article-title: Role and mechanisms of mitophagy in liver diseases publication-title: Cell – volume: 27 start-page: 107 year: 2011 end-page: 132 article-title: The role of Atg proteins in autophagosome formation publication-title: Annu. Rev. Cell Dev. Biol. – year: 2022 article-title: Reprogramming of hepatic metabolism and microenvironment in nonalcoholic steatohepatitis publication-title: Annu. Rev. Nutr. – volume: 1859 start-page: 1083 year: 2016 end-page: 1099 article-title: Nuclear receptors and nonalcoholic fatty liver disease publication-title: Biochim. Biophys. Acta – volume: 302 start-page: E1453 year: 2012 end-page: E1460 article-title: Role of PRAS40 in Akt and mTOR signaling in health and disease publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 19 start-page: 6680 year: 2000 end-page: 6686 article-title: The rapamycin‐sensitive signal transduction pathway as a target for cancer therapy publication-title: Oncogene – volume: 18 start-page: 50 year: 2022 end-page: 72 article-title: The ménage à trois of autophagy, lipid droplets and liver disease publication-title: Autophagy – volume: 46 year: 2022 article-title: The mTORC1/AMPK pathway plays a role in the beneficial effects of semaglutide (GLP‐1 receptor agonist) on the liver of obese mice publication-title: Clin. Res. Hepatol. Gastroenterol. – volume: 140 start-page: 64 year: 2019 end-page: 71 article-title: Medium‐chain triglyceride reinforce the hepatic damage caused by fructose intake in mice publication-title: Prostaglandins Leukot. Essent. Fatty Acids – volume: 12 start-page: 1419 year: 2002 end-page: 1423 article-title: Activation of AMP‐activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis publication-title: Curr. Biol. – volume: 26 start-page: 606 year: 2020 end-page: 617 article-title: Autophagy and liver cancer publication-title: Clin. Mol. Hepatol. – volume: 41 start-page: 985 year: 2018 end-page: 993 article-title: AMPK‐mediated regulation of lipid metabolism by phosphorylation publication-title: Biol. Pharm. Bull. – volume: 24 start-page: 908 year: 2018 end-page: 922 article-title: Mechanisms of NAFLD development and therapeutic strategies publication-title: Nat. Med. – volume: 6 start-page: 7136 year: 2015 end-page: 7150 article-title: Both mTORC1 and mTORC2 are involved in the regulation of cell adhesion publication-title: Oncotarget – volume: 7 year: 2023 article-title: Clustering NAFLD: phenotypes of nonalcoholic fatty liver disease and their differing trajectories publication-title: Hepatol. Commun. – volume: 27 start-page: 3837 year: 2021 end-page: 3850 article-title: Gut microbiota in obesity publication-title: World J. Gastroenterol. – volume: 28 start-page: 1971 year: 2019 end-page: 80 e8 article-title: Suppression of p16 induces mTORC1‐mediated nucleotide metabolic reprogramming publication-title: Cell Rep. – volume: 39 start-page: 171 year: 2010 end-page: 183 article-title: Activation of a metabolic gene regulatory network downstream of mTOR complex 1 publication-title: Mol. Cell – volume: 30 start-page: 1103 year: 2018 end-page: 1115 article-title: Nonalcoholic fatty liver disease: current concepts, epidemiology and management strategies publication-title: Eur. J. Gastroenterol. Hepatol. – volume: 3 start-page: 1150 year: 2021 end-page: 1162 article-title: SREBP1‐induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation publication-title: Nat. Metab. – volume: 54 start-page: 78 year: 2017 end-page: 88 article-title: Epigenetics in non‐alcoholic fatty liver disease publication-title: Mol. Aspects Med. – volume: 13 start-page: 2436 year: 2022 article-title: Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages publication-title: Nat. Commun. – volume: 26 start-page: 292 year: 2017 end-page: 300 article-title: Causes, characteristics, and consequences of metabolically unhealthy normal weight in humans publication-title: Cell Metab. – volume: 99 start-page: 1497 year: 2021 end-page: 1509 article-title: Lipid metabolism, inflammation, and foam cell formation in health and metabolic disorders: targeting mTORC1 publication-title: J. Mol. Med. (Berl) – volume: 199 start-page: 691 year: 1991 end-page: 697 article-title: Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP‐activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion publication-title: Eur. J. Biochem. – volume: 39 start-page: 87 year: 2016 end-page: 95 article-title: Sirt1 and the mitochondria publication-title: Mol. Cells – volume: 21 year: 2020 article-title: PPARs as metabolic regulators in the liver: lessons from liver‐specific PPAR‐null mice publication-title: Int. J. Mol. Sci. – volume: 42 start-page: 176 year: 2017 end-page: 184 article-title: Irbesartan ameliorates hyperlipidemia and liver steatosis in type 2 diabetic db/db mice via stimulating PPAR‐γ, AMPK/Akt/mTOR signaling and autophagy publication-title: Int. Immunopharmacol. – volume: 313 start-page: 2263 year: 2015 end-page: 2273 article-title: Nonalcoholic fatty liver disease: a systematic review publication-title: JAMA – volume: 54 year: 2021 article-title: α,β‐Amyrin prevents steatosis and insulin resistance in a high‐fat diet‐induced mouse model of NAFLD via the AMPK‐mTORC1‐SREBP1 signaling mechanism publication-title: Braz. J. Med. Biol. Res. – volume: 217 start-page: 3640 year: 2018 end-page: 3655 article-title: Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy publication-title: J. Cell Biol. – volume: 69 start-page: 9157 year: 2021 end-page: 9166 article-title: Lauric triglyceride ameliorates high‐fat‐diet‐induced obesity in rats by reducing lipogenesis and increasing lipolysis and β‐oxidation publication-title: J. Agric. Food Chem. – year: 2017 article-title: Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta‐analysis publication-title: Hepatology – volume: 104 start-page: 625 year: 2008 end-page: 632 article-title: AMPK activation attenuates S6K1, 4E‐BP1, and eEF2 signaling responses to high‐frequency electrically stimulated skeletal muscle contractions publication-title: J. Appl. Physiol. (1985) – volume: 73 start-page: 1194 year: 2021 end-page: 1198 article-title: From NAFLD to MAFLD: implications of a premature change in terminology publication-title: Hepatology – volume: 611 start-page: 211 year: 2010 end-page: 225 article-title: Image analysis and quantitative morphology publication-title: Methods Mol. Biol. – volume: 101 start-page: 1371 year: 2021 end-page: 1426 article-title: Regulation and metabolic functions of mTORC1 and mTORC2 publication-title: Physiol. Rev. – volume: 52 start-page: 381 year: 2012 end-page: 400 article-title: AMPK and mTOR in cellular energy homeostasis and drug targets publication-title: Annu. Rev. Pharmacol. Toxicol. – volume: 35 start-page: 1482 year: 2017 end-page: 1494 article-title: Tips for studies with quantitative morphology (morphometry and stereology) publication-title: Int. J. Morphol. – volume: 64 start-page: 1994 year: 2016 end-page: 2014 article-title: Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice publication-title: Hepatology – volume: 84 start-page: 2101 year: 2019 end-page: 2111 article-title: Promotion of mitochondrial biogenesis via activation of AMPK‐PGC1a signaling pathway by ginger ( Roscoe) extract, and its major active component 6‐gingerol publication-title: J. Food Sci. – volume: 11 year: 2016 article-title: Effects of excess energy intake on glucose and lipid metabolism in C57BL/6 mice publication-title: PLoS ONE – volume: 311 start-page: E730 year: 2016 end-page: E740 article-title: Treatment of nonalcoholic fatty liver disease: role of AMPK publication-title: Am. J. Physiol. Endocrinol. Metab. – volume: 221 start-page: 3 year: 2010 end-page: 12 article-title: Autophagy: cellular and molecular mechanisms publication-title: J. Pathol. – volume: 9 year: 2021 article-title: The mTOR‐autophagy axis and the control of metabolism publication-title: Front. Cell Dev. Biol. – volume: 276 year: 2021 article-title: IL37 overexpression inhibits autophagy and apoptosis induced by hepatic ischemia reperfusion injury via modulating AMPK/mTOR/ULLK1 signalling pathways publication-title: Life Sci. – volume: 19 start-page: 5239 year: 2013 end-page: 5249 article-title: From NAFLD to NASH and HCC: pathogenetic mechanisms and therapeutic insights publication-title: Curr. Pharm. Des. – volume: 20 year: 2022 article-title: Rab2A regulates the progression of nonalcoholic fatty liver disease downstream of AMPK‐TBC1D1 axis by stabilizing PPARγ publication-title: PLoS Biol. – volume: 406 start-page: 105 year: 2017 end-page: 115 article-title: Aspirin disrupts the mTOR‐raptor complex and potentiates the anti‐cancer activities of sorafenib via mTORC1 inhibition publication-title: Cancer Lett. – volume: 67 start-page: 128 year: 2017 end-page: 38 e7 article-title: mTORC2 regulates amino acid metabolism in cancer by phosphorylation of the cystine‐glutamate antiporter xCT publication-title: Mol. Cell – volume: 18 start-page: 31 year: 2023 end-page: 37 article-title: Sex‐biased autophagy as a potential mechanism mediating sex differences in ischemic stroke outcome publication-title: Neural Regen. Res. – volume: 25 start-page: 1939 year: 2013 end-page: 1948 article-title: Antagonistic crosstalk between NF‐κB and SIRT1 in the regulation of inflammation and metabolic disorders publication-title: Cell. Signal. – volume: 70 start-page: 522 year: 2019 end-page: 531 article-title: Improvements in histologic features and diagnosis associated with improvement in fibrosis in nonalcoholic steatohepatitis: results from the nonalcoholic steatohepatitis clinical research network treatment trials publication-title: Hepatology – volume: 2021 year: 2021 article-title: Beneficial Effect of via the activation of LKB1‐AMPK signaling pathway on obesity publication-title: Evid. Based Complement. Alternat. Med. – volume: 11 year: 2016 article-title: Upregulation of mitochondrial content in cytochrome c oxidase deficient fibroblasts publication-title: PLoS ONE – volume: 4 start-page: 15 year: 2020 end-page: 22 article-title: Nutrient mTORC1 signaling contributes to hepatic lipid metabolism in the pathogenesis of non‐alcoholic fatty liver disease publication-title: Liver Res. – volume: 82 year: 2021 article-title: Autophagy in liver diseases: a review publication-title: Mol. Aspects Med. – volume: 369 start-page: 756 year: 1994 end-page: 758 article-title: A mammalian protein targeted by G1‐arresting rapamycin‐receptor complex publication-title: Nature – volume: 15 start-page: 781 year: 2016 end-page: 786 article-title: 4E‐BP1, a multifactor regulated multifunctional protein publication-title: Cell Cycle – volume: 300 start-page: G709 year: 2011 end-page: G715 article-title: Therapeutic targets in liver fibrosis publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – year: 2022 article-title: Magnesium supplementation stimulates autophagy to reduce lipid accumulation in hepatocytes via the AMPK/mTOR pathway publication-title: Biol. Trace Elem. Res. – volume: 118 start-page: 98 year: 2018 end-page: 104 article-title: Gut microbiota and mTOR signaling: Insight on a new pathophysiological interaction publication-title: Microb. Pathog. – volume: 1 year: 2015 article-title: Nonalcoholic fatty liver disease publication-title: Nat. Rev. Dis. Primers. – volume: 235 start-page: 8839 year: 2020 end-page: 8851 article-title: SIRT3 deficiency is resistant to autophagy‐dependent ferroptosis by inhibiting the AMPK/mTOR pathway and promoting GPX4 levels publication-title: J. Cell. Physiol. – volume: 7 year: 2016 article-title: Adipose tissue mTORC2 regulates ChREBP‐driven de novo lipogenesis and hepatic glucose metabolism publication-title: Nat. Commun. – ident: e_1_2_10_54_1 doi: 10.1038/ncomms11365 – ident: e_1_2_10_6_1 doi: 10.1146/annurev‐nutr‐062220‐105200 – ident: e_1_2_10_13_1 doi: 10.2174/1381612811319290006 – ident: e_1_2_10_66_1 doi: 10.1002/jcp.29727 – ident: e_1_2_10_45_1 doi: 10.3390/ijms21062061 – ident: e_1_2_10_28_1 doi: 10.14348/molcells.2016.2318 – ident: e_1_2_10_29_1 doi: 10.1111/1750‐3841.14723 – ident: e_1_2_10_9_1 doi: 10.1590/1414‐431X2021e11391 – ident: e_1_2_10_34_1 doi: 10.1016/j.canlet.2017.06.029 – ident: e_1_2_10_22_1 doi: 10.1016/j.clinre.2022.101922 – ident: e_1_2_10_58_1 doi: 10.18632/oncotarget.3044 – ident: e_1_2_10_33_1 doi: 10.1016/j.micpath.2018.03.021 – ident: e_1_2_10_26_1 doi: 10.1038/sj.onc.1204091 – ident: e_1_2_10_60_1 doi: 10.1080/15384101.2016.1151581 – ident: e_1_2_10_15_1 doi: 10.1097/MEG.0000000000001235 – ident: e_1_2_10_8_1 doi: 10.1038/nrdp.2015.80 – ident: e_1_2_10_43_1 doi: 10.1016/j.lfs.2021.119424 – ident: e_1_2_10_38_1 doi: 10.1007/s00109‐021‐02117‐8 – ident: e_1_2_10_73_1 doi: 10.1248/bpb.b17‐00724 – ident: e_1_2_10_68_1 doi: 10.1083/jcb.201711002 – ident: e_1_2_10_2_1 doi: 10.1002/hep.31420 – ident: e_1_2_10_25_1 doi: 10.1038/369756a0 – ident: e_1_2_10_30_1 doi: 10.1021/acs.jafc.0c07342 – ident: e_1_2_10_65_1 doi: 10.1080/15548627.2021.1895658 – ident: e_1_2_10_12_1 doi: 10.1038/s41580‐021‐00373‐7 – ident: e_1_2_10_62_1 doi: 10.1002/hep.28820 – ident: e_1_2_10_76_1 doi: 10.1158/0008‐5472.CAN‐21‐1259 – ident: e_1_2_10_10_1 doi: 10.1038/s41591‐018‐0104‐9 – ident: e_1_2_10_52_1 doi: 10.1038/s42255‐021‐00440‐5 – ident: e_1_2_10_3_1 doi: 10.1016/j.cmet.2017.07.008 – ident: e_1_2_10_57_1 doi: 10.1152/ajpendo.00660.2011 – ident: e_1_2_10_16_1 doi: 10.1002/hep.29302 – ident: e_1_2_10_55_1 doi: 10.1016/j.molcel.2017.05.030 – ident: e_1_2_10_7_1 doi: 10.1016/j.plefa.2018.11.005 – ident: e_1_2_10_27_1 doi: 10.1155/2021/6655599 – ident: e_1_2_10_74_1 doi: 10.1038/s41366‐021‐00955‐7 – ident: e_1_2_10_24_1 doi: 10.1111/j.1432‐1033.1991.tb16172.x – ident: e_1_2_10_18_1 doi: 10.1007/s00428‐011‐1147‐1 – ident: e_1_2_10_20_1 doi: 10.1007/978‐1‐60327‐345‐9_17 – ident: e_1_2_10_46_1 doi: 10.2337/db20‐0619 – ident: e_1_2_10_53_1 doi: 10.1016/j.mam.2016.11.008 – ident: e_1_2_10_69_1 doi: 10.4103/1673‐5374.340406 – ident: e_1_2_10_21_1 doi: 10.1016/j.livres.2020.02.004 – ident: e_1_2_10_39_1 doi: 10.1371/journal.pbio.3001522 – ident: e_1_2_10_48_1 doi: 10.3390/cells9040837 – ident: e_1_2_10_44_1 doi: 10.1016/j.cellsig.2013.06.007 – ident: e_1_2_10_35_1 doi: 10.1002/path.2697 – ident: e_1_2_10_41_1 doi: 10.1016/s0960‐9822(02)01077‐1 – ident: e_1_2_10_37_1 doi: 10.1016/j.celrep.2017.04.042 – ident: e_1_2_10_40_1 doi: 10.1152/physrev.00026.2020 – ident: e_1_2_10_47_1 doi: 10.1002/hep.32066 – ident: e_1_2_10_4_1 doi: 10.1097/hc9.0000000000000112 – ident: e_1_2_10_49_1 doi: 10.3389/fcell.2021.655731 – ident: e_1_2_10_11_1 doi: 10.1016/j.cell.2021.04.015 – ident: e_1_2_10_32_1 doi: 10.3748/wjg.v27.i25.3837 – ident: e_1_2_10_71_1 doi: 10.1016/j.intimp.2016.11.015 – ident: e_1_2_10_23_1 doi: 10.1146/annurev‐pharmtox‐010611‐134537 – ident: e_1_2_10_36_1 doi: 10.1371/journal.pone.0165417 – ident: e_1_2_10_64_1 doi: 10.3350/cmh.2020.0169 – ident: e_1_2_10_17_1 doi: 10.1002/hep.30418 – ident: e_1_2_10_67_1 doi: 10.1146/annurev‐cellbio‐092910‐154005 – ident: e_1_2_10_14_1 doi: 10.1371/journal.pone.0146675 – ident: e_1_2_10_61_1 doi: 10.1016/j.mam.2021.100973 – ident: e_1_2_10_56_1 doi: 10.1016/j.molcel.2010.06.022 – ident: e_1_2_10_5_1 doi: 10.1001/jama.2015.5370 – ident: e_1_2_10_72_1 doi: 10.1007/s12011‐022‐03438‐6 – ident: e_1_2_10_50_1 doi: 10.1016/j.celrep.2019.07.084 – ident: e_1_2_10_51_1 doi: 10.1007/s13238‐017‐0409‐3 – ident: e_1_2_10_70_1 doi: 10.1016/j.biochi.2021.11.008 – ident: e_1_2_10_59_1 doi: 10.1152/japplphysiol.00915.2007 – ident: e_1_2_10_42_1 doi: 10.1152/ajpendo.00225.2016 – ident: e_1_2_10_19_1 doi: 10.4067/s0717‐95022017000401482 – ident: e_1_2_10_31_1 doi: 10.1016/j.bbagrm.2016.03.002 – ident: e_1_2_10_75_1 doi: 10.1038/s41467‐022‐29960‐8 – ident: e_1_2_10_63_1 doi: 10.1152/ajpgi.00451.2010 |
| SSID | ssj0004075 |
| Score | 2.5918446 |
| SecondaryResourceType | review_article |
| Snippet | Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate‐activated protein kinase (AMPK) is a cellular energy... Obesity is related to several organs, but the liver is particularly affected. Adenosine monophosphate-activated protein kinase (AMPK) is a cellular energy... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1868 |
| SubjectTerms | Adenosine kinase Adipogenesis AMP AMPK/mTOR pathway Autophagy Cell survival Cirrhosis Fatty acids Fatty liver Forkhead protein Glucose metabolism Hepatocellular carcinoma Insulin resistance Kinases Lipid metabolism Lipogenesis Liver diseases Metabolism non‐alcoholic fatty liver disease Obesity Phagosomes Phosphorylation Protein kinase Protein turnover Proteins Rapamycin TOR protein |
| Title | AMPK/mTOR pathway significance in healthy liver and non‐alcoholic fatty liver disease and its progression |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjgh.16272 https://www.ncbi.nlm.nih.gov/pubmed/37438882 https://www.proquest.com/docview/2892833128 https://www.proquest.com/docview/2836877375 |
| Volume | 38 |
| WOSCitedRecordID | wos001026567400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1440-1746 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004075 issn: 0815-9319 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3bTtsw9IgVNPGyC7eVMeRNPOwlkMZO7WhP1aCgbS0IgdS3yHZiqCjpRMNQ3_YJ-8Z9yY7tJBvakJD2FsknsZVz97kB7OhQo2hE6ZeZRAaMKhpIarMIO90InSAqeKLcsAk-HIrRKDlZgA91LYzvD9FcuFnOcPLaMrhUsz-Z_OJyFz_IUf4uRki3cQsW90_7519-l0X6Pruo9OIgQVKrGgu5RJ765fvq6C8b877J6nRO__l_nfYFPKtMTdLztPESFvJiBZ4OqmD6Klz1Bief967Pjk-JnUt8J-fEZnPY3CFLCmRcEF8lOScTm71BZJGRYlr8_P5D-sG6Y02MLMt6vQr2OLhxOSMu98v3_ViD8_7B2cejoJq9EGgWsyjQqL4019bbCqkJO8poEfIoi4WKdSejSkkboKTMyDwzTEr0bJTJDI0kgktG16GFJ8pfARG6q2JhaJ4zybTkIomUUdp0I9NB84O14X2NglRXjcntfIxJ2jgoF5ep-3lteNeAfvXdOP4FtFXjMa0YcpaiX4mGFEVt3Ia3zTKyko2PyCKf3loY2hWcUx63YcPjv9mFWrpFbwQP69D88Pbpp8Mj97D5eNDXsGzH2Psaxy1olTe3-RtY0t_K8exmG57wkdiuqPsXBI38QQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-hMm17GftidMDmTXvYS6CNnTqReKmArls_hlAr8RbZTgwVEFCbbuobfwJ_I38JZzvJqLZJk_YWyZfYin_nu_N9AXxSDYVHI55-iY6Ex6iknqAmirDZ8tEIoiGPpG02wYfD8OQkOlqBvTIXxtWHqC7cDGfY89owuLmQfsjlp2c7-EWOB_AqQxghvlcPjjvj_q-8SFdoF6Ve4EWItaKykI3kKV9elke_KZnLOqsVOp21_1vuc3hWKJuk7dDxAlbS7CU8HhTu9Fdw3h4c9XYvR9-PielM_FMsiInnMNFDBgxkkhGXJ7kgFyZ-g4gsIdlVdndzK1xr3YkiWuR5OV64eyzdJJ8RG_3lKn-8hnHncLTf9YruC55iAfM9hQJMcWXsrQbVjabUKmxwPwlCGahmQqUUxkVJmRZpopkQaNtInWjqCyQXjK5DDVeUbgAJVUsGoaZpygRTgoeRL7VUuuXrJiogrA6fyz2IVVGa3HTIuIgrE-X0LLY_rw4fK9JrV4_jT0Rb5UbGBUvOYrQsUZWiKI_r8KEaRmYyHhKRpVdzQ0NbIeeUB3V44wBQzUINctEewcXaff779PG3L1378PbfSd_Dk-5o0I_7X4e9TXhqmtq7jMctqOXTeboNj9SPfDKbvitAfg8obf9J |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5CBaG9wNi1XDYz7WEvGWns1Im0FwTrYLRdhajUt8h2YqiAULUBxBs_gd_IL-HYTjLQNglpb5F8kljxueZcPoDPyleoGlH7pToWHqOSeoKaKsJWO8AgiEY8lhZsgvf70WgUD-bgW9UL4-ZD1D_cjGRYfW0EPJuk-rGUH598xSdyVMDzzIDINGB-97Az7P7ui3SDdtHqhV6MvFZOFrKVPNXNT-3RH07mU5_VGp3O8v9t9yUslc4m2XbcsQJzWf4KFntlOv01nG73Bgdb50e_DolBJr4WN8TUc5jqIcMMZJwT1yd5Q85M_QYReUryi_z-9k44aN2xIloURbVepnss3biYEVv95SZ_vIFh5_vRzp5Xoi94ioUs8BQaMMWVibd8qv2W1CryeZCGkQxVK6VSCpOipEyLLNVMCIxtpE41DQSSC0bfQgN3lL0HEqm2DCNNs4wJpgSP4kBqqXQ70C10QFgTvlRnkKhyNLlByDhL6hDl-CSxH68Jn2rSiZvH8Tei9eogk1IkZwlGluhKUbTHTdisl1GYTIZE5NnFpaGh7YhzysMmvHMMUL-FGs7FeAQ3a8_5369Pfv7Ysxerzyf9CIuD3U7S3e8frMELg2nvGh7XoVFML7MNWFBXxXg2_VDy-AO04_7E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMPK%2FmTOR+pathway+significance+in+healthy+liver+and+non-alcoholic+fatty+liver+disease+and+its+progression&rft.jtitle=Journal+of+gastroenterology+and+hepatology&rft.au=Marcondes-de-Castro%2C+Ilitch+Aquino&rft.au=Reis-Barbosa%2C+Pedro+Henrique&rft.au=Marinho%2C+Thatiany+Souza&rft.au=Aguila%2C+Marcia+Barbosa&rft.date=2023-11-01&rft.issn=1440-1746&rft.eissn=1440-1746&rft.volume=38&rft.issue=11&rft.spage=1868&rft_id=info:doi/10.1111%2Fjgh.16272&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0815-9319&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0815-9319&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0815-9319&client=summon |