DFT models for copper(II) bispidine complexes: Structures, stabilities, isomerism, spin distribution, and spectroscopy
Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with...
Saved in:
| Published in: | Journal of computational chemistry Vol. 27; no. 12; pp. 1263 - 1277 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.09.2006
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0192-8651, 1096-987X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper–ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF‐DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1263–1277, 2006 |
|---|---|
| AbstractList | Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF-density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper-ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF-DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions.Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF-density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper-ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF-DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions. Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper–ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF‐DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1263–1277, 2006 Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper–ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF‐DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1263–1277, 2006 Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF-density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper-ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF-DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions. Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF-density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(ll) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper-ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(ll) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF-DFT and spectroscopically oriented Cl methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions. [PUBLICATION ABSTRACT] |
| Author | Rohwer, Heidi Atanasov, Mihail Müller, Vera Martin, Bodo Wunderlich, Steffen Comba, Peter Rajaraman, Gopalan |
| Author_xml | – sequence: 1 givenname: Mihail surname: Atanasov fullname: Atanasov, Mihail organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany – sequence: 2 givenname: Peter surname: Comba fullname: Comba, Peter email: peter.comba@aci.uni-heidelberg.de organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany – sequence: 3 givenname: Bodo surname: Martin fullname: Martin, Bodo organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany – sequence: 4 givenname: Vera surname: Müller fullname: Müller, Vera organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany – sequence: 5 givenname: Gopalan surname: Rajaraman fullname: Rajaraman, Gopalan organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany – sequence: 6 givenname: Heidi surname: Rohwer fullname: Rohwer, Heidi organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany – sequence: 7 givenname: Steffen surname: Wunderlich fullname: Wunderlich, Steffen organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16786541$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kU9v1DAQxS1URLctB74AijggKjWtnTiJzQ0t_bNVWw4UFXGxHHsseUniYDvQ_fb1stseKvDF8tPvzYzn7aGdwQ2A0BuCjwnGxclSqeMCU1K8QDOCeZ1z1nzfQTNMeJGzuiK7aC-EJca4rGr6Cu2SukkyJTP0-_PZbdY7DV3IjPOZcuMI_sNicZi1NoxW2wGS2I8d3EP4mH2NflJx8hCOshBlazsb7fphg-vB29AnfbRDpm2I3rZTtG44yuSgkwwqehdSi9UBemlkF-D19t5H385Ob-cX-dWX88X801WuaEXT7LyQlGttGFVYN7TEDTSFqZlhWhbAsSkpbUyrlASc9Kakqmxro6rWAGGy3EfvN3VH735NEKLobVDQdXIANwVRsxpXFWYJfPcMXLrJD2k2UaTDCt7gBL3dQlPbgxajt730K_G4zgScbACV_hk8GKFslOsVRC9tJwgW68BECkz8DSw5Dp85nor-g91W_2M7WP0fFJfz-aMj3zhSGHD_5JD-p0i7aipxd3MuMC_5j5trJu7KBzlotHw |
| CODEN | JCCHDD |
| CitedBy_id | crossref_primary_10_1002_chem_202303300 crossref_primary_10_1002_slct_202404961 crossref_primary_10_1021_ic8011052 crossref_primary_10_1002_ejic_200800899 crossref_primary_10_1002_ejic_200900183 crossref_primary_10_1016_j_poly_2021_115609 crossref_primary_10_1134_S0022476616070076 crossref_primary_10_1039_C3CC47148A crossref_primary_10_1515_cppm_2024_0001 crossref_primary_10_1021_jacs_3c06709 crossref_primary_10_1021_ic100952q crossref_primary_10_1002_chem_202101045 crossref_primary_10_1002_ejic_201200075 crossref_primary_10_1021_jacs_7b03292 crossref_primary_10_1016_j_ica_2020_119450 crossref_primary_10_1002_jcc_23349 crossref_primary_10_1016_j_ica_2011_02_047 crossref_primary_10_3390_nano9010089 crossref_primary_10_1016_j_cplett_2006_06_107 crossref_primary_10_1016_j_molstruc_2018_08_112 crossref_primary_10_1016_j_poly_2013_02_039 crossref_primary_10_1002_zaac_202000355 crossref_primary_10_1016_j_ica_2018_09_078 crossref_primary_10_1016_j_poly_2019_114277 crossref_primary_10_1021_ic702460t crossref_primary_10_1021_ic061501 crossref_primary_10_1016_j_jinorgbio_2021_111536 crossref_primary_10_1039_b701083d crossref_primary_10_1002_chem_200700865 crossref_primary_10_1002_chem_200701778 crossref_primary_10_1021_ja4078717 crossref_primary_10_1016_j_molstruc_2017_07_067 crossref_primary_10_1016_j_jinorgbio_2017_05_001 crossref_primary_10_1021_ic0618908 crossref_primary_10_1021_ic701161r crossref_primary_10_1002_ejic_201201077 crossref_primary_10_1007_s00894_011_1162_9 crossref_primary_10_1016_j_ica_2018_11_032 crossref_primary_10_1016_j_comptc_2012_08_003 crossref_primary_10_1007_s00894_013_1811_2 crossref_primary_10_1039_b718603g crossref_primary_10_1016_j_molstruc_2016_06_014 crossref_primary_10_1002_chem_202103452 crossref_primary_10_1007_s00214_013_1383_3 crossref_primary_10_1007_s00775_012_0972_2 crossref_primary_10_1016_j_comptc_2020_112952 crossref_primary_10_1016_j_jinorgbio_2023_112430 crossref_primary_10_3390_chemistry7020044 |
| Cites_doi | 10.1021/ar980111r 10.1093/oso/9780198551683.001.0001 10.1002/hlca.200590045 10.1021/ic020315a 10.1002/zaac.200500183 10.1021/ic00119a011 10.1002/(SICI)1521-3765(19990604)5:6<1716::AID-CHEM1716>3.0.CO;2-8 10.1063/1.1615956 10.1002/qua.560100211 10.1021/cr00088a005 10.1007/BF02401406 10.1002/jcc.1119 10.1021/ic00254a032 10.1016/S0010-8545(98)00181-7 10.1063/1.1419058 10.1002/ejic.200200618 10.1021/ic0513383 10.1007/BF03162236 10.1002/mrc.1456 10.1007/s007750100226 10.1021/j100860a007 10.1016/j.cplett.2004.10.041 10.1103/PhysRevLett.77.3865 10.1039/b008720n 10.1016/S0010-8545(02)00294-1 10.1063/1.1676210 10.1021/ja035802j 10.1007/b11308 10.1016/0040-4020(76)80122-6 10.1063/1.464913 10.1021/ic011114u 10.1021/ja044412 10.1021/ja002062v 10.1021/ic00057a038 10.1002/anie.200454125 10.1021/ja010715h 10.1002/ejic.200400518 10.1016/j.crci.2005.03.003 10.1021/ja00209a041 10.1021/jp014121c 10.1002/(SICI)1096-987X(19980415)19:5<512::AID-JCC4>3.0.CO;2-P 10.1103/PhysRevB.33.8822 10.1002/jcc.1056 10.1021/jp992303p 10.1002/jcc.20279 10.1007/s002140050269 10.1002/qua.1202 10.1063/1.463096 10.1063/1.1740588 10.1103/PhysRevLett.78.1396 10.1021/j100790a049 10.1021/jp003254f 10.1002/1521-3765(20021216)8:24<5750::AID-CHEM5750>3.0.CO;2-P 10.1002/3527600043 10.1016/j.cryseng.2004.04.002 10.1021/cr980390w 10.1002/anie.200351900 10.1021/ic010200r 10.1002/(SICI)1521-3765(20000303)6:5<914::AID-CHEM914>3.0.CO;2-K 10.1006/jmra.1995.9978 |
| ContentType | Journal Article |
| Copyright | Copyright © 2006 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Sep 2006 |
| Copyright_xml | – notice: Copyright © 2006 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Sep 2006 |
| DBID | BSCLL AAYXX CITATION NPM JQ2 7X8 |
| DOI | 10.1002/jcc.20412 |
| DatabaseName | Istex CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed ProQuest Computer Science Collection |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1096-987X |
| EndPage | 1277 |
| ExternalDocumentID | 1146142191 16786541 10_1002_jcc_20412 JCC20412 ark_67375_WNG_0939ZNM8_W |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
| GrantInformation_xml | – fundername: Alexander von Humboldt Foundation (AvH) – fundername: German Science Foundation (DFG) |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 31~ 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIAGR AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M21 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E V8K VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YQT ZCG ZY4 ZZTAW ~IA ~KM ~WT AAHHS ABTAH ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ESX RWI RWK WRC YCJ AAYXX CITATION O8X NPM VXZ JQ2 7X8 |
| ID | FETCH-LOGICAL-c4542-892a49ddf84c0d74307e72f68f8da2e90f3447fbccae02f6734c3b6fc5bfe18a3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 74 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239072600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0192-8651 |
| IngestDate | Thu Jul 10 22:32:01 EDT 2025 Fri Jul 25 19:19:36 EDT 2025 Wed Feb 19 01:45:41 EST 2025 Tue Nov 18 21:01:45 EST 2025 Sat Nov 29 02:55:33 EST 2025 Wed Jan 22 16:49:11 EST 2025 Sun Sep 21 06:18:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4542-892a49ddf84c0d74307e72f68f8da2e90f3447fbccae02f6734c3b6fc5bfe18a3 |
| Notes | ArticleID:JCC20412 ark:/67375/WNG-0939ZNM8-W istex:B984A0C2A8FCDF55C69E5C94911E99F4FE5595F8 Alexander von Humboldt Foundation (AvH) German Science Foundation (DFG) SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PMID | 16786541 |
| PQID | 222282970 |
| PQPubID | 48816 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_68605508 proquest_journals_222282970 pubmed_primary_16786541 crossref_citationtrail_10_1002_jcc_20412 crossref_primary_10_1002_jcc_20412 wiley_primary_10_1002_jcc_20412_JCC20412 istex_primary_ark_67375_WNG_0939ZNM8_W |
| PublicationCentury | 2000 |
| PublicationDate | September 2006 |
| PublicationDateYYYYMMDD | 2006-09-01 |
| PublicationDate_xml | – month: 09 year: 2006 text: September 2006 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States – name: New York |
| PublicationTitle | Journal of computational chemistry |
| PublicationTitleAlternate | J. Comput. Chem |
| PublicationYear | 2006 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
| References | Comba, P.; Lienke, A. Inorg Chem 2001, 40, 5206. Morokuma, K. J Chem Phys 1971, 55, 1236. Börzel, H.; Comba, P.; Katsichtis, C.; Kiefer, W.; Lienke, A.; Nagel, V.; Pritzkow, H. Chem Eur J 1999, 5, 1716. Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory, John Wiley & Sons, Inc.: Chichester, UK, 2001, 2nd ed. te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J Comp Chem 2001, 22, 931. Holthausen, M. C. J Comp Chem 2005, 26, 1505. Bleiholder, C.; Börzel, H.; Comba, P.; Ferrari, R.; Heydt, A.; Kerscher, M.; Kuwata, S.; Laurenczy, G.; Lawrance, G. A.; Lienke, A.; Martin, B.; Merz, M.; Nuber, B.; Pritzkow, H. Inorg Chem 2005, 44, 8145. Himo, F.; Siegbahn, P. E. M. J Am Chem Soc 2001, 123, 10280. Bol, J. E.; Buning, C.; Comba, P.; Reedijk, J.; Ströhle, M. J Comput Chem 1998, 19, 512. Comba, P.; Kerscher, M. Cryst Eng 2004, 6, 197. Wiersema, A. J.; Windle, J. J. J Phys Chem, 68, 2316. Szabo, A.; Kovacs, A.; Frenking, G. Z Anorg Allg Chem 2005, 631, 1803. Didziulis, S. V.; Cohen, S. L.; Gewirth, A. A.; Solomon, E. I. J Am Chem Soc 1988, 110, 250. Comba, P.; Kerscher, M.; Roodt, A. Eur J Inorg Chem 2004, 23, 4640. Neese, F. J Phys Chem A 2001, 105, 4290. DeBeer George, S.; Basumallick, L.; Szilagyi, R. K.; Randall, D. W.; Hill, M. G.; Nersissian, A. M.; Valentine, J. S.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J Am Chem Soc 2003, 125, 11314. Comba, P.; Martin, B.; Prikhod'ko, A.; Pritzkow, H.; Rohwer, H. Comptes Rendus Chimie 2005, 6, 1506. Wang, D.; Hanson, G. R. J Magn Reson A 1995, 117, 1. Perdew, J. P. Phys Rev Lett 1996, 78, 1396. Siegbahn, P. E. M.; Blomberg, M. R. A.; Wirstam nee Pavlov, M.; Crabtree, R. H. J Biol Inorg Chem 2001, 6, 460. Frenking, G.; Wichmann, K.; Fröhlich, N.; Loschen, C.; Lein, M.; Frunzke, J.; Rayon, V. M. Coord Chem Rev 2002, 21, 3351. Schaefer, A.; Horn, H.; Ahlrichs, R. J Chem Phys 1992, 97, 2571. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865. Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, 1990. Comba, P.; Hauser, A.; Kerscher, M.; Pritzkow, H. Angew Chem Int Ed 2003, 42, 4536. Munzarova, M.; Kubacek, P.; Kaupp, M. J Am Chem Soc 2000, 122, 11900. Siegbahn, P. E. M.; Crabtree, R. H. Structure and Bonding; Springer-Verlag: Berlin, 2000. Perdew, J. P. Phys Rev B 1986, 33, 8822. Kitaura, K.; Morokuma, K. Int J Quantum Chem 1976, 10, 325. Reinen, D.; Atanasov, M.; Lee, S. Coord Chem Rev 1998, 175, 91. Bertrand, P. Inorg Chem 1993, 32, 741. Comba, P.; Merz, M.; Pritzkow, H. Eur J Inorg Chem 2003, 1711. Neese, F. J Chem Phys 2003, 119, 9428. Atanasov, M.; Baerends, E. J.; Baettig, P.; Daul, C.; Rauzy, C.; Zbiri, M.; Chem Phys Lett 2004, 399, 433. Siegbahn, P. E. M. J Comp Chem 2001, 22, 1634. Schatz, M.; Raab, V.; Foxon, S.; Brehm, G.; Schneider, S.; Reiher, M.; Holthausen, M. C.; Sundermeyer, J.; Schindler, S. Angew Chem, Int Ed 2004, 43, 4360. Gewirth, A. A.; Cohen, S. L.; Schugar, H. J.; Solomon, E. I. Inorg Chem 1987, 26, 1933. Mulliken, R. S. J Chem Phys 1955, 23, 1833. Ziegler, T.; Rauk, A. Theor Chim Acta 1977, 46, 1. Munzarova, M.; Kaupp, M. J Phys Chem 1999, 103, 9966. Börzel, H.; Comba, P.; Hagen, K. S.; Kerscher, M.; Pritzkow, H.; Schatz, M.; Schindler, S.; Walter, O. Inorg Chem 2002, 41, 5440. Atanasov, M.; Daul, C. A.; Rauzy, C. Struct Bond 2004, 106, 97. Comba, P.; Hambley, T. W.; Okon, N.; Lauer, G. MOMEC97, a Molecular Modeling Package for Inorganic Compounds; Heidelberg, 1997. Neese, F. Magn Reson Chem 2004, 42, 187. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem Rev 1988, 88, 899. Comba, P.; Schiek, W. Coord Chem Rev 2003, 238-239, 21. McGarvey, B. R. J Phys Chem 1967, 71, 51. Siegbahn, P. E. M.; Blomberg, M. R. A. Chem Rev 2000, 100, 421. Koszinowski, K.; Schoeder, D.; Schwarz, H.; Holthausen, M. C.; Sauer, J.; Soizumi, H.; Armentrout, P. B. Inorg Chem 2002, 41, 5882. Weigand, F.; Haeser, M. Theor Chem Acc 1997, 97, 331. Basumallick, L.; Sarangi, R.; DeBeer, G. S.; Elmore, B.; Hooper, A. B.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J Am Chem Soc 2005, 127, 3531. Comba, P.; Lopez de Laorden, C.; Pritzkow, H. Helv Chim Acta 2005, 88, 647. Wang, D.; Hanson, G. R. Appl Magn Reson 1996, 11, 401. Friesner, R. A.; Dunietz, B. D. Acc Chem Res 2001, 34, 351. Atkins, P. W.; Symons, M. C. R. The Structure of Inorganic Radicals; Elsevier: Amsterdam, 1967. Börzel, H.; Comba, P.; Hagen, K. S.; Katsichtis, C.; Pritzkow, H. Chem Eur J 2000, 6, 914. Neese, F. Int J Quantum Chem 2001, 83, 104. Szilagyi, R. K.; Metz, M.; Solomon, E. I. J Phys Chem A 2002, 106, 2994. Becke, A. D. J. J Chem Phys B 1993, 98, 5648. Comba, P.; Hambley, T. W.; Hitchman, M. A.; Stratemeier, H. Inorg Chem 1995, 34, 3903. Deeth, R. J. J Chem Soc, Dalton Trans 2001, 664. Neese, F. J Chem Phys 2001, 115, 11080. Gleiter, R.; Kobayashi, M.; Kuthan, J. Tetrahedron 1976, 32, 2775. Comba, P.; Kerscher, M.; Merz, M.; Müller, V.; Pritzkow, H.; Remenyi, R.; Schiek, W.; Xiong, Y. Chem Eur J 2002, 8, 5750. 2003; 119 2000; 6 1986; 33 1995; 34 2004; 23 2004; 6 2005; 26 1992; 97 2001; 40 1996; 78 2001; 105 1996; 77 1976; 32 1971; 55 1998; 19 2001 2002; 41 1990 2000 1997; 97 1993; 32 2002; 106 1988; 88 2000; 122 2003; 125 2003; 42 2004; 43 68 2001; 123 2004; 42 2003; 238–239 2005; 631 2002; 8 1995; 117 1997 2004 1999; 103 2003 1977; 46 2001; 22 1999; 5 2004; 106 2005; 88 2005; 44 1955; 23 1998; 175 1996; 11 1976; 10 2001; 83 2004; 399 2001; 6 1967; 71 1993; 98 2005; 127 2002; 21 2005; 6 1988; 110 2000; 100 2001; 34 2001; 115 1987; 26 1967 e_1_2_5_27_2 e_1_2_5_25_2 e_1_2_5_46_2 e_1_2_5_23_2 e_1_2_5_44_2 e_1_2_5_21_2 e_1_2_5_42_2 Weigand F. (e_1_2_5_47_2) 1997; 97 e_1_2_5_65_2 Siegbahn P. E. M. (e_1_2_5_11_2) 2000 e_1_2_5_67_2 e_1_2_5_69_2 e_1_2_5_29_2 e_1_2_5_61_2 e_1_2_5_63_2 e_1_2_5_40_2 e_1_2_5_13_2 e_1_2_5_38_2 e_1_2_5_59_2 e_1_2_5_9_2 e_1_2_5_15_2 e_1_2_5_36_2 e_1_2_5_57_2 e_1_2_5_7_2 Atkins P. W. (e_1_2_5_56_2) 1967 e_1_2_5_34_2 e_1_2_5_55_2 e_1_2_5_5_2 e_1_2_5_32_2 e_1_2_5_53_2 e_1_2_5_3_2 Gewirth A. A. (e_1_2_5_17_2) 1987; 26 e_1_2_5_19_2 Frenking G. (e_1_2_5_48_2) 2002; 21 e_1_2_5_30_2 e_1_2_5_51_2 e_1_2_5_26_2 e_1_2_5_49_2 e_1_2_5_24_2 Wiersema A. J. (e_1_2_5_54_2); 68 e_1_2_5_22_2 e_1_2_5_45_2 e_1_2_5_20_2 e_1_2_5_43_2 e_1_2_5_66_2 e_1_2_5_68_2 e_1_2_5_28_2 e_1_2_5_60_2 e_1_2_5_62_2 e_1_2_5_41_2 Comba P. (e_1_2_5_64_2) 1997 e_1_2_5_14_2 e_1_2_5_37_2 e_1_2_5_16_2 e_1_2_5_35_2 e_1_2_5_58_2 e_1_2_5_8_2 e_1_2_5_10_2 e_1_2_5_33_2 e_1_2_5_6_2 e_1_2_5_12_2 e_1_2_5_31_2 e_1_2_5_4_2 e_1_2_5_2_2 e_1_2_5_18_2 e_1_2_5_39_2 e_1_2_5_52_2 e_1_2_5_50_2 |
| References_xml | – reference: Schaefer, A.; Horn, H.; Ahlrichs, R. J Chem Phys 1992, 97, 2571. – reference: Holthausen, M. C. J Comp Chem 2005, 26, 1505. – reference: Comba, P.; Kerscher, M.; Roodt, A. Eur J Inorg Chem 2004, 23, 4640. – reference: Basumallick, L.; Sarangi, R.; DeBeer, G. S.; Elmore, B.; Hooper, A. B.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J Am Chem Soc 2005, 127, 3531. – reference: Comba, P.; Schiek, W. Coord Chem Rev 2003, 238-239, 21. – reference: Wang, D.; Hanson, G. R. Appl Magn Reson 1996, 11, 401. – reference: Comba, P.; Kerscher, M. Cryst Eng 2004, 6, 197. – reference: Mulliken, R. S. J Chem Phys 1955, 23, 1833. – reference: Comba, P.; Hambley, T. W.; Hitchman, M. A.; Stratemeier, H. Inorg Chem 1995, 34, 3903. – reference: Wiersema, A. J.; Windle, J. J. J Phys Chem, 68, 2316. – reference: Morokuma, K. J Chem Phys 1971, 55, 1236. – reference: Deeth, R. J. J Chem Soc, Dalton Trans 2001, 664. – reference: Szilagyi, R. K.; Metz, M.; Solomon, E. I. J Phys Chem A 2002, 106, 2994. – reference: DeBeer George, S.; Basumallick, L.; Szilagyi, R. K.; Randall, D. W.; Hill, M. G.; Nersissian, A. M.; Valentine, J. S.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J Am Chem Soc 2003, 125, 11314. – reference: Frenking, G.; Wichmann, K.; Fröhlich, N.; Loschen, C.; Lein, M.; Frunzke, J.; Rayon, V. M. Coord Chem Rev 2002, 21, 3351. – reference: Himo, F.; Siegbahn, P. E. M. J Am Chem Soc 2001, 123, 10280. – reference: Perdew, J. P. Phys Rev Lett 1996, 78, 1396. – reference: Börzel, H.; Comba, P.; Katsichtis, C.; Kiefer, W.; Lienke, A.; Nagel, V.; Pritzkow, H. Chem Eur J 1999, 5, 1716. – reference: Comba, P.; Hauser, A.; Kerscher, M.; Pritzkow, H. Angew Chem Int Ed 2003, 42, 4536. – reference: Munzarova, M.; Kaupp, M. J Phys Chem 1999, 103, 9966. – reference: Comba, P.; Lienke, A. Inorg Chem 2001, 40, 5206. – reference: Schatz, M.; Raab, V.; Foxon, S.; Brehm, G.; Schneider, S.; Reiher, M.; Holthausen, M. C.; Sundermeyer, J.; Schindler, S. Angew Chem, Int Ed 2004, 43, 4360. – reference: Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem Rev 1988, 88, 899. – reference: McGarvey, B. R. J Phys Chem 1967, 71, 51. – reference: Atanasov, M.; Baerends, E. J.; Baettig, P.; Daul, C.; Rauzy, C.; Zbiri, M.; Chem Phys Lett 2004, 399, 433. – reference: Kitaura, K.; Morokuma, K. Int J Quantum Chem 1976, 10, 325. – reference: te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J Comp Chem 2001, 22, 931. – reference: Becke, A. D. J. J Chem Phys B 1993, 98, 5648. – reference: Munzarova, M.; Kubacek, P.; Kaupp, M. J Am Chem Soc 2000, 122, 11900. – reference: Szabo, A.; Kovacs, A.; Frenking, G. Z Anorg Allg Chem 2005, 631, 1803. – reference: Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory, John Wiley & Sons, Inc.: Chichester, UK, 2001, 2nd ed. – reference: Atkins, P. W.; Symons, M. C. R. The Structure of Inorganic Radicals; Elsevier: Amsterdam, 1967. – reference: Gewirth, A. A.; Cohen, S. L.; Schugar, H. J.; Solomon, E. I. Inorg Chem 1987, 26, 1933. – reference: Didziulis, S. V.; Cohen, S. L.; Gewirth, A. A.; Solomon, E. I. J Am Chem Soc 1988, 110, 250. – reference: Comba, P.; Kerscher, M.; Merz, M.; Müller, V.; Pritzkow, H.; Remenyi, R.; Schiek, W.; Xiong, Y. Chem Eur J 2002, 8, 5750. – reference: Ziegler, T.; Rauk, A. Theor Chim Acta 1977, 46, 1. – reference: Bol, J. E.; Buning, C.; Comba, P.; Reedijk, J.; Ströhle, M. J Comput Chem 1998, 19, 512. – reference: Siegbahn, P. E. M.; Crabtree, R. H. Structure and Bonding; Springer-Verlag: Berlin, 2000. – reference: Börzel, H.; Comba, P.; Hagen, K. S.; Katsichtis, C.; Pritzkow, H. Chem Eur J 2000, 6, 914. – reference: Bleiholder, C.; Börzel, H.; Comba, P.; Ferrari, R.; Heydt, A.; Kerscher, M.; Kuwata, S.; Laurenczy, G.; Lawrance, G. A.; Lienke, A.; Martin, B.; Merz, M.; Nuber, B.; Pritzkow, H. Inorg Chem 2005, 44, 8145. – reference: Neese, F. Magn Reson Chem 2004, 42, 187. – reference: Comba, P.; Martin, B.; Prikhod'ko, A.; Pritzkow, H.; Rohwer, H. Comptes Rendus Chimie 2005, 6, 1506. – reference: Comba, P.; Lopez de Laorden, C.; Pritzkow, H. Helv Chim Acta 2005, 88, 647. – reference: Börzel, H.; Comba, P.; Hagen, K. S.; Kerscher, M.; Pritzkow, H.; Schatz, M.; Schindler, S.; Walter, O. Inorg Chem 2002, 41, 5440. – reference: Comba, P.; Hambley, T. W.; Okon, N.; Lauer, G. MOMEC97, a Molecular Modeling Package for Inorganic Compounds; Heidelberg, 1997. – reference: Comba, P.; Merz, M.; Pritzkow, H. Eur J Inorg Chem 2003, 1711. – reference: Neese, F. J Chem Phys 2003, 119, 9428. – reference: Neese, F. Int J Quantum Chem 2001, 83, 104. – reference: Siegbahn, P. E. M.; Blomberg, M. R. A.; Wirstam nee Pavlov, M.; Crabtree, R. H. J Biol Inorg Chem 2001, 6, 460. – reference: Gleiter, R.; Kobayashi, M.; Kuthan, J. Tetrahedron 1976, 32, 2775. – reference: Friesner, R. A.; Dunietz, B. D. Acc Chem Res 2001, 34, 351. – reference: Neese, F. J Phys Chem A 2001, 105, 4290. – reference: Koszinowski, K.; Schoeder, D.; Schwarz, H.; Holthausen, M. C.; Sauer, J.; Soizumi, H.; Armentrout, P. B. Inorg Chem 2002, 41, 5882. – reference: Siegbahn, P. E. M.; Blomberg, M. R. A. Chem Rev 2000, 100, 421. – reference: Wang, D.; Hanson, G. R. J Magn Reson A 1995, 117, 1. – reference: Neese, F. J Chem Phys 2001, 115, 11080. – reference: Bertrand, P. Inorg Chem 1993, 32, 741. – reference: Reinen, D.; Atanasov, M.; Lee, S. Coord Chem Rev 1998, 175, 91. – reference: Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, 1990. – reference: Siegbahn, P. E. M. J Comp Chem 2001, 22, 1634. – reference: Perdew, J. P. Phys Rev B 1986, 33, 8822. – reference: Atanasov, M.; Daul, C. A.; Rauzy, C. Struct Bond 2004, 106, 97. – reference: Weigand, F.; Haeser, M. Theor Chem Acc 1997, 97, 331. – reference: Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865. – volume: 399 start-page: 433 year: 2004 publication-title: Chem Phys Lett – volume: 22 start-page: 1634 year: 2001 publication-title: J Comp Chem – volume: 6 start-page: 1506 year: 2005 publication-title: Comptes Rendus Chimie – volume: 26 start-page: 1933 year: 1987 publication-title: Inorg Chem – volume: 123 start-page: 10280 year: 2001 publication-title: J Am Chem Soc – volume: 631 start-page: 1803 year: 2005 publication-title: Z Anorg Allg Chem – volume: 175 start-page: 91 year: 1998 publication-title: Coord Chem Rev – volume: 115 start-page: 11080 year: 2001 publication-title: J Chem Phys – year: 2001 – volume: 6 start-page: 460 year: 2001 publication-title: J Biol Inorg Chem – volume: 41 start-page: 5440 year: 2002 publication-title: Inorg Chem – volume: 22 start-page: 931 year: 2001 publication-title: J Comp Chem – start-page: 1711 year: 2003 publication-title: Eur J Inorg Chem – volume: 43 start-page: 4360 year: 2004 publication-title: Angew Chem, Int Ed – volume: 83 start-page: 104 year: 2001 publication-title: Int J Quantum Chem – volume: 26 start-page: 1505 year: 2005 publication-title: J Comp Chem – volume: 42 start-page: 4536 year: 2003 publication-title: Angew Chem Int Ed – year: 1990 – volume: 122 start-page: 11900 year: 2000 publication-title: J Am Chem Soc – volume: 106 start-page: 97 year: 2004 publication-title: Struct Bond – volume: 55 start-page: 1236 year: 1971 publication-title: J Chem Phys – volume: 42 start-page: 187 year: 2004 publication-title: Magn Reson Chem – volume: 11 start-page: 401 year: 1996 publication-title: Appl Magn Reson – volume: 98 start-page: 5648 year: 1993 publication-title: J Chem Phys B – volume: 127 start-page: 3531 year: 2005 publication-title: J Am Chem Soc – volume: 19 start-page: 512 year: 1998 publication-title: J Comput Chem – volume: 33 start-page: 8822 year: 1986 publication-title: Phys Rev B – start-page: 664 year: 2001 publication-title: J Chem Soc, Dalton Trans – volume: 103 start-page: 9966 year: 1999 publication-title: J Phys Chem – volume: 88 start-page: 647 year: 2005 publication-title: Helv Chim Acta – volume: 40 start-page: 5206 year: 2001 publication-title: Inorg Chem – year: 2004 – year: 1997 – volume: 6 start-page: 197 year: 2004 publication-title: Cryst Eng – volume: 97 start-page: 2571 year: 1992 publication-title: J Chem Phys – volume: 110 start-page: 250 year: 1988 publication-title: J Am Chem Soc – volume: 44 start-page: 8145 year: 2005 publication-title: Inorg Chem – volume: 41 start-page: 5882 year: 2002 publication-title: Inorg Chem – volume: 97 start-page: 331 year: 1997 publication-title: Theor Chem Acc – volume: 119 start-page: 9428 year: 2003 publication-title: J Chem Phys – volume: 68 start-page: 2316 publication-title: J Phys Chem – volume: 34 start-page: 3903 year: 1995 publication-title: Inorg Chem – volume: 32 start-page: 2775 year: 1976 publication-title: Tetrahedron – volume: 71 start-page: 51 year: 1967 publication-title: J Phys Chem – volume: 10 start-page: 325 year: 1976 publication-title: Int J Quantum Chem – year: 2000 – volume: 77 start-page: 3865 year: 1996 publication-title: Phys Rev Lett – volume: 23 start-page: 4640 year: 2004 publication-title: Eur J Inorg Chem – volume: 88 start-page: 899 year: 1988 publication-title: Chem Rev – volume: 34 start-page: 351 year: 2001 publication-title: Acc Chem Res – volume: 106 start-page: 2994 year: 2002 publication-title: J Phys Chem A – volume: 105 start-page: 4290 year: 2001 publication-title: J Phys Chem A – volume: 238–239 start-page: 21 year: 2003 publication-title: Coord Chem Rev – volume: 46 start-page: 1 year: 1977 publication-title: Theor Chim Acta – year: 1967 – volume: 100 start-page: 421 year: 2000 publication-title: Chem Rev – volume: 5 start-page: 1716 year: 1999 publication-title: Chem Eur J – volume: 32 start-page: 741 year: 1993 publication-title: Inorg Chem – volume: 125 start-page: 11314 year: 2003 publication-title: J Am Chem Soc – volume: 23 start-page: 1833 year: 1955 publication-title: J Chem Phys – volume: 21 start-page: 3351 year: 2002 publication-title: Coord Chem Rev – volume: 6 start-page: 914 year: 2000 publication-title: Chem Eur J – volume: 78 start-page: 1396 year: 1996 publication-title: Phys Rev Lett – volume: 8 start-page: 5750 year: 2002 publication-title: Chem Eur J – volume: 117 start-page: 1 year: 1995 publication-title: J Magn Reson A – ident: e_1_2_5_3_2 doi: 10.1021/ar980111r – ident: e_1_2_5_45_2 doi: 10.1093/oso/9780198551683.001.0001 – ident: e_1_2_5_25_2 doi: 10.1002/hlca.200590045 – ident: e_1_2_5_9_2 doi: 10.1021/ic020315a – ident: e_1_2_5_49_2 doi: 10.1002/zaac.200500183 – ident: e_1_2_5_57_2 doi: 10.1021/ic00119a011 – ident: e_1_2_5_29_2 doi: 10.1002/(SICI)1521-3765(19990604)5:6<1716::AID-CHEM1716>3.0.CO;2-8 – ident: e_1_2_5_38_2 doi: 10.1063/1.1615956 – ident: e_1_2_5_63_2 doi: 10.1002/qua.560100211 – ident: e_1_2_5_40_2 – ident: e_1_2_5_44_2 doi: 10.1021/cr00088a005 – ident: e_1_2_5_51_2 doi: 10.1007/BF02401406 – ident: e_1_2_5_4_2 doi: 10.1002/jcc.1119 – volume-title: Structure and Bonding year: 2000 ident: e_1_2_5_11_2 – volume: 26 start-page: 1933 year: 1987 ident: e_1_2_5_17_2 publication-title: Inorg Chem doi: 10.1021/ic00254a032 – ident: e_1_2_5_53_2 doi: 10.1016/S0010-8545(98)00181-7 – ident: e_1_2_5_37_2 – ident: e_1_2_5_52_2 doi: 10.1063/1.1419058 – ident: e_1_2_5_28_2 doi: 10.1002/ejic.200200618 – ident: e_1_2_5_26_2 doi: 10.1021/ic0513383 – ident: e_1_2_5_36_2 doi: 10.1007/BF03162236 – ident: e_1_2_5_68_2 doi: 10.1002/mrc.1456 – ident: e_1_2_5_7_2 doi: 10.1007/s007750100226 – ident: e_1_2_5_58_2 doi: 10.1021/j100860a007 – ident: e_1_2_5_69_2 doi: 10.1016/j.cplett.2004.10.041 – ident: e_1_2_5_66_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_5_19_2 doi: 10.1039/b008720n – ident: e_1_2_5_34_2 – ident: e_1_2_5_21_2 doi: 10.1016/S0010-8545(02)00294-1 – ident: e_1_2_5_50_2 doi: 10.1063/1.1676210 – ident: e_1_2_5_14_2 doi: 10.1021/ja035802j – ident: e_1_2_5_42_2 doi: 10.1007/b11308 – ident: e_1_2_5_62_2 doi: 10.1016/0040-4020(76)80122-6 – ident: e_1_2_5_15_2 doi: 10.1063/1.464913 – ident: e_1_2_5_32_2 doi: 10.1021/ic011114u – ident: e_1_2_5_6_2 doi: 10.1021/ja044412 – ident: e_1_2_5_61_2 doi: 10.1021/ja002062v – ident: e_1_2_5_55_2 doi: 10.1021/ic00057a038 – ident: e_1_2_5_10_2 doi: 10.1002/anie.200454125 – ident: e_1_2_5_12_2 doi: 10.1021/ja010715h – ident: e_1_2_5_33_2 doi: 10.1002/ejic.200400518 – ident: e_1_2_5_24_2 doi: 10.1016/j.crci.2005.03.003 – volume-title: The Structure of Inorganic Radicals year: 1967 ident: e_1_2_5_56_2 – ident: e_1_2_5_18_2 doi: 10.1021/ja00209a041 – ident: e_1_2_5_8_2 doi: 10.1021/jp014121c – ident: e_1_2_5_27_2 – ident: e_1_2_5_65_2 doi: 10.1002/(SICI)1096-987X(19980415)19:5<512::AID-JCC4>3.0.CO;2-P – ident: e_1_2_5_16_2 doi: 10.1103/PhysRevB.33.8822 – volume-title: MOMEC97, a Molecular Modeling Package for Inorganic Compounds year: 1997 ident: e_1_2_5_64_2 – ident: e_1_2_5_41_2 doi: 10.1002/jcc.1056 – ident: e_1_2_5_60_2 doi: 10.1021/jp992303p – ident: e_1_2_5_13_2 doi: 10.1002/jcc.20279 – volume: 97 start-page: 331 year: 1997 ident: e_1_2_5_47_2 publication-title: Theor Chem Acc doi: 10.1007/s002140050269 – ident: e_1_2_5_39_2 doi: 10.1002/qua.1202 – ident: e_1_2_5_46_2 doi: 10.1063/1.463096 – ident: e_1_2_5_43_2 doi: 10.1063/1.1740588 – ident: e_1_2_5_67_2 doi: 10.1103/PhysRevLett.78.1396 – volume: 68 start-page: 2316 ident: e_1_2_5_54_2 publication-title: J Phys Chem doi: 10.1021/j100790a049 – ident: e_1_2_5_59_2 doi: 10.1021/jp003254f – ident: e_1_2_5_20_2 doi: 10.1002/1521-3765(20021216)8:24<5750::AID-CHEM5750>3.0.CO;2-P – ident: e_1_2_5_5_2 doi: 10.1002/3527600043 – ident: e_1_2_5_22_2 doi: 10.1016/j.cryseng.2004.04.002 – ident: e_1_2_5_2_2 doi: 10.1021/cr980390w – volume: 21 start-page: 3351 year: 2002 ident: e_1_2_5_48_2 publication-title: Coord Chem Rev – ident: e_1_2_5_23_2 doi: 10.1002/anie.200351900 – ident: e_1_2_5_31_2 doi: 10.1021/ic010200r – ident: e_1_2_5_30_2 doi: 10.1002/(SICI)1521-3765(20000303)6:5<914::AID-CHEM914>3.0.CO;2-K – ident: e_1_2_5_35_2 doi: 10.1006/jmra.1995.9978 |
| SSID | ssj0003564 |
| Score | 2.1301858 |
| Snippet | Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative... Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative... Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF-density functional theory (DFT), are used to compute the structures, relative... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1263 |
| SubjectTerms | ab initio methods Biochemistry Copper copper(II) bispidine complexes DFT models Molecular structure Spectrum analysis |
| Title | DFT models for copper(II) bispidine complexes: Structures, stabilities, isomerism, spin distribution, and spectroscopy |
| URI | https://api.istex.fr/ark:/67375/WNG-0939ZNM8-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.20412 https://www.ncbi.nlm.nih.gov/pubmed/16786541 https://www.proquest.com/docview/222282970 https://www.proquest.com/docview/68605508 |
| Volume | 27 |
| WOSCitedRecordID | wos000239072600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1096-987X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003564 issn: 0192-8651 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9UwFD_MewX94lt3nc4gIhNW1ps-kuonufPqZF5E97j4JaRJCp3alhs35n_vSfoYgwmC39r0lKbnkfzy-h2AF1SiaRWLAprkJsAuwASZiXUwLVI21Uob41OyHO2zxYIvl9nnNXjTn4Vp-SGGCTcXGb69dgEuc7tzQRp6ohwDYewyDI8p-m08gvHul_nh_tAQR0nLHoUgJuBpMu2JhUK6M7x8qTsaO82eX4U1L0NX3_fMb_9Xre_ArQ5ykretj9yFNVPdgxuzPtPbfTjbnR8QnxLHEsSwRNVNY1Zbe3uvSF7apsTuzRC_99ycG_uafPWcs6c4UN8mCC799trS3ZS2dgtA9ieWN2VFtPtAl1Brm8hKE3-w0xFo1s3vB3A4f3cw-xB0-RgCFScx6jCjMs60LnisQo3QI2SG0SLlBdeSmiwsHH1gkaNTmBDLWRSryB0mSvLCTLmMHsKoqiuzDoRrjU1BkXMlEQAVMosynapUc6MoioYT2OrNIlRHVu5yZvwQLc0yFahI4RU5geeDaNMydFwl9NLbdpCQq-9uSxtLxPHivQjx-98Wn7g4nsBGb3zRRbMV1E2T0YxhtZ4NT9FGbm1FVqY-tSLlOC5EsDuBR63HXNQF4YBLto6_5B3j75UUH2czf_H430U34GY7KeR2vT2BETqAeQrX1dmv0q424Rpb8s0uLv4AqMMPtw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB_KnVC_-H6cVbuISIWG5javjfhFrp49vQbRqy1-WTb7gPhIwsWW-t87u3mUQgXBb8lmQjY7Mzu_ff0G4DkVqFqZBB6Ncu1hCNBeqkPlTU2cTJVUWruULF-WSZaxk5P04wa87s_CtPwQw4Sb9QzXX1sHtxPSexesod-kpSAMbYrhcYhmFI1gvP9pfrQceuIgaumjEMV4LI6mPbOQT_eGly_Fo7Ft2vOrwOZl7OqCz_zm_1X7FtzoQCd501rJbdjQ5R3YnPW53u7C2f58RVxSnIYgiiWyqmu93lksXpK8aOoCA5wmbve5PtfNK_LZsc6e4lB9lyC8dBtsC3tTNJVdAmp-YnldlETZD3QptXaJKBVxRzsthWZV_74HR_O3q9mB12Vk8GQYhdiIKRVhqpRhofQVgg8_0Qk1MTNMCapT31gCQZOjWWgfy5MglIE9ThTlRk-ZCO7DqKxK_RAIUwo7A5MzKRACGZEGqYplrJiWFEX9Cez0euGyoyu3WTN-8JZomXJsSO4acgLPBtG65ei4SuiFU-4gIdbf7aa2JOLH2Tvu4_e_ZoeMH09gq9c-7_y54dROlNE0wWptD09RR3Z1RZS6Om14zHBkiHB3Ag9ak7moCwICm24df8lZxt8ryd_PZu7i0b-LbsPmwepwyZeL7MMWXG-niOweuMcwQmPQT-CaPPtVNOunnXv8AXw6Er8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEF9KT9Qv1nfPql1EpEJDc5vXpvhF7oyenqFoX_hlSXZnIVWTcLGl_e87u3mUQgXBb8lmQiY7M7u_ff2GkNcsQ9PKyHNYkIODXQA4MfjKmegwmiipAGxKlsNFlKb8-DjeWyHv-rMwLT_EMOFmIsO21ybAoVZ654o19EQaCkLfpBge-UEcYliOZt-Sg8XQEntBSx-FKMbhYTDpmYVctjO8fK0_GpmqPb8JbF7HrrbzSdb-T-375F4HOun71ksekBUoH5I70z7X2yNyNkv2qU2K01BEsVRWdQ3Lrfn8Lc2Lpi6wgwNqd5_DOTS79LtlnT3Fofo2RXhpN9gW5qZoKrME1PzG8rooqTIf6FJqbdOsVNQe7TQUmlV98ZgcJB_2p5-cLiODI_3Ax0qMWebHSmnuS1ch-HAjiJgOueYqYxC72hAI6hzdAlwsjzxfeuY4UZBrmPDMe0JWy6qEdUK5UtgY6JzLDCGQzmIvVqEMFQfJUNQdk63eLkJ2dOUma8Yv0RItM4EVKWxFjsmrQbRuOTpuEnpjjTtIZMufZlNbFIij9KNw8fs_0q9cHI3JRm990cVzI5iZKGNxhGptDk_RRmZ1JSuhOm1EyHFkiHB3TJ62LnOlCwICk24df8l6xt-VFJ-nU3vx7N9FN8ntvVkiFvP0ywa5284QmS1wz8kq-gK8ILfk2Z-iWb7souMS7KcSOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT+models+for+copper%28II%29+bispidine+complexes%3A+Structures%2C+stabilities%2C+isomerism%2C+spin+distribution%2C+and+spectroscopy&rft.jtitle=Journal+of+computational+chemistry&rft.au=Atanasov%2C+Mihail&rft.au=Comba%2C+Peter&rft.au=Martin%2C+Bodo&rft.au=M%C3%BCller%2C+Vera&rft.date=2006-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=27&rft.issue=12&rft.spage=1263&rft.epage=1277&rft_id=info:doi/10.1002%2Fjcc.20412&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0939ZNM8_W |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |