DFT models for copper(II) bispidine complexes: Structures, stabilities, isomerism, spin distribution, and spectroscopy

Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry Vol. 27; no. 12; pp. 1263 - 1277
Main Authors: Atanasov, Mihail, Comba, Peter, Martin, Bodo, Müller, Vera, Rajaraman, Gopalan, Rohwer, Heidi, Wunderlich, Steffen
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.09.2006
Wiley Subscription Services, Inc
Subjects:
ISSN:0192-8651, 1096-987X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper–ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF‐DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1263–1277, 2006
AbstractList Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF-density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper-ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF-DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions.Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF-density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper-ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF-DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions.
Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper–ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF‐DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1263–1277, 2006
Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper–ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF‐DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions. © 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1263–1277, 2006
Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF-density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(II) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper-ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(II) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF-DFT and spectroscopically oriented CI methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions.
Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF-density functional theory (DFT), are used to compute the structures, relative stabilities, spin density distributions, and spectroscopic properties (electronic and EPR) of the two possible isomers of the copper(ll) complexes with derivatives of a rigid tetradentate bispidine ligand with two pyridine and two tertiary amine donors, and a chloride ion. The description of the bonding (covalency of the copper-ligand interactions) and the distribution of the unpaired electron strongly depend on the DFT functional used, specifically on the nonlocal DF correlation and the HF exchange. Various methods may be used to optimize the DFT method. Unfortunately, it appears that there is no general method for the accurate computation of copper(ll) complexes, and the choice of method depends on the type of ligands and the structural type of the chromophore. Also, it appears that the choice of method strongly depends on the problem to be solved. LF-DFT and spectroscopically oriented Cl methods (SORCI), provided a large enough reference space is chosen, yield accurate spectroscopic parameters; EDA may lead to a good understanding of relative stabilities; accurate spin density distributions are obtained by modification of the nuclear charge on copper; solvation models are needed for the accurate prediction of isomer distributions. [PUBLICATION ABSTRACT]
Author Rohwer, Heidi
Atanasov, Mihail
Müller, Vera
Martin, Bodo
Wunderlich, Steffen
Comba, Peter
Rajaraman, Gopalan
Author_xml – sequence: 1
  givenname: Mihail
  surname: Atanasov
  fullname: Atanasov, Mihail
  organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
– sequence: 2
  givenname: Peter
  surname: Comba
  fullname: Comba, Peter
  email: peter.comba@aci.uni-heidelberg.de
  organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
– sequence: 3
  givenname: Bodo
  surname: Martin
  fullname: Martin, Bodo
  organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
– sequence: 4
  givenname: Vera
  surname: Müller
  fullname: Müller, Vera
  organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
– sequence: 5
  givenname: Gopalan
  surname: Rajaraman
  fullname: Rajaraman, Gopalan
  organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
– sequence: 6
  givenname: Heidi
  surname: Rohwer
  fullname: Rohwer, Heidi
  organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
– sequence: 7
  givenname: Steffen
  surname: Wunderlich
  fullname: Wunderlich, Steffen
  organization: Universität Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16786541$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9v1DAQxS1URLctB74AijggKjWtnTiJzQ0t_bNVWw4UFXGxHHsseUniYDvQ_fb1stseKvDF8tPvzYzn7aGdwQ2A0BuCjwnGxclSqeMCU1K8QDOCeZ1z1nzfQTNMeJGzuiK7aC-EJca4rGr6Cu2SukkyJTP0-_PZbdY7DV3IjPOZcuMI_sNicZi1NoxW2wGS2I8d3EP4mH2NflJx8hCOshBlazsb7fphg-vB29AnfbRDpm2I3rZTtG44yuSgkwwqehdSi9UBemlkF-D19t5H385Ob-cX-dWX88X801WuaEXT7LyQlGttGFVYN7TEDTSFqZlhWhbAsSkpbUyrlASc9Kakqmxro6rWAGGy3EfvN3VH735NEKLobVDQdXIANwVRsxpXFWYJfPcMXLrJD2k2UaTDCt7gBL3dQlPbgxajt730K_G4zgScbACV_hk8GKFslOsVRC9tJwgW68BECkz8DSw5Dp85nor-g91W_2M7WP0fFJfz-aMj3zhSGHD_5JD-p0i7aipxd3MuMC_5j5trJu7KBzlotHw
CODEN JCCHDD
CitedBy_id crossref_primary_10_1002_chem_202303300
crossref_primary_10_1002_slct_202404961
crossref_primary_10_1021_ic8011052
crossref_primary_10_1002_ejic_200800899
crossref_primary_10_1002_ejic_200900183
crossref_primary_10_1016_j_poly_2021_115609
crossref_primary_10_1134_S0022476616070076
crossref_primary_10_1039_C3CC47148A
crossref_primary_10_1515_cppm_2024_0001
crossref_primary_10_1021_jacs_3c06709
crossref_primary_10_1021_ic100952q
crossref_primary_10_1002_chem_202101045
crossref_primary_10_1002_ejic_201200075
crossref_primary_10_1021_jacs_7b03292
crossref_primary_10_1016_j_ica_2020_119450
crossref_primary_10_1002_jcc_23349
crossref_primary_10_1016_j_ica_2011_02_047
crossref_primary_10_3390_nano9010089
crossref_primary_10_1016_j_cplett_2006_06_107
crossref_primary_10_1016_j_molstruc_2018_08_112
crossref_primary_10_1016_j_poly_2013_02_039
crossref_primary_10_1002_zaac_202000355
crossref_primary_10_1016_j_ica_2018_09_078
crossref_primary_10_1016_j_poly_2019_114277
crossref_primary_10_1021_ic702460t
crossref_primary_10_1021_ic061501
crossref_primary_10_1016_j_jinorgbio_2021_111536
crossref_primary_10_1039_b701083d
crossref_primary_10_1002_chem_200700865
crossref_primary_10_1002_chem_200701778
crossref_primary_10_1021_ja4078717
crossref_primary_10_1016_j_molstruc_2017_07_067
crossref_primary_10_1016_j_jinorgbio_2017_05_001
crossref_primary_10_1021_ic0618908
crossref_primary_10_1021_ic701161r
crossref_primary_10_1002_ejic_201201077
crossref_primary_10_1007_s00894_011_1162_9
crossref_primary_10_1016_j_ica_2018_11_032
crossref_primary_10_1016_j_comptc_2012_08_003
crossref_primary_10_1007_s00894_013_1811_2
crossref_primary_10_1039_b718603g
crossref_primary_10_1016_j_molstruc_2016_06_014
crossref_primary_10_1002_chem_202103452
crossref_primary_10_1007_s00214_013_1383_3
crossref_primary_10_1007_s00775_012_0972_2
crossref_primary_10_1016_j_comptc_2020_112952
crossref_primary_10_1016_j_jinorgbio_2023_112430
crossref_primary_10_3390_chemistry7020044
Cites_doi 10.1021/ar980111r
10.1093/oso/9780198551683.001.0001
10.1002/hlca.200590045
10.1021/ic020315a
10.1002/zaac.200500183
10.1021/ic00119a011
10.1002/(SICI)1521-3765(19990604)5:6<1716::AID-CHEM1716>3.0.CO;2-8
10.1063/1.1615956
10.1002/qua.560100211
10.1021/cr00088a005
10.1007/BF02401406
10.1002/jcc.1119
10.1021/ic00254a032
10.1016/S0010-8545(98)00181-7
10.1063/1.1419058
10.1002/ejic.200200618
10.1021/ic0513383
10.1007/BF03162236
10.1002/mrc.1456
10.1007/s007750100226
10.1021/j100860a007
10.1016/j.cplett.2004.10.041
10.1103/PhysRevLett.77.3865
10.1039/b008720n
10.1016/S0010-8545(02)00294-1
10.1063/1.1676210
10.1021/ja035802j
10.1007/b11308
10.1016/0040-4020(76)80122-6
10.1063/1.464913
10.1021/ic011114u
10.1021/ja044412
10.1021/ja002062v
10.1021/ic00057a038
10.1002/anie.200454125
10.1021/ja010715h
10.1002/ejic.200400518
10.1016/j.crci.2005.03.003
10.1021/ja00209a041
10.1021/jp014121c
10.1002/(SICI)1096-987X(19980415)19:5<512::AID-JCC4>3.0.CO;2-P
10.1103/PhysRevB.33.8822
10.1002/jcc.1056
10.1021/jp992303p
10.1002/jcc.20279
10.1007/s002140050269
10.1002/qua.1202
10.1063/1.463096
10.1063/1.1740588
10.1103/PhysRevLett.78.1396
10.1021/j100790a049
10.1021/jp003254f
10.1002/1521-3765(20021216)8:24<5750::AID-CHEM5750>3.0.CO;2-P
10.1002/3527600043
10.1016/j.cryseng.2004.04.002
10.1021/cr980390w
10.1002/anie.200351900
10.1021/ic010200r
10.1002/(SICI)1521-3765(20000303)6:5<914::AID-CHEM914>3.0.CO;2-K
10.1006/jmra.1995.9978
ContentType Journal Article
Copyright Copyright © 2006 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Sep 2006
Copyright_xml – notice: Copyright © 2006 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Sep 2006
DBID BSCLL
AAYXX
CITATION
NPM
JQ2
7X8
DOI 10.1002/jcc.20412
DatabaseName Istex
CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

PubMed
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 1277
ExternalDocumentID 1146142191
16786541
10_1002_jcc_20412
JCC20412
ark_67375_WNG_0939ZNM8_W
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Alexander von Humboldt Foundation (AvH)
– fundername: German Science Foundation (DFG)
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
186
1L6
1OB
1OC
1ZS
31~
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M21
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
UPT
V2E
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZCG
ZY4
ZZTAW
~IA
~KM
~WT
AAHHS
ABTAH
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ESX
RWI
RWK
WRC
YCJ
AAYXX
CITATION
O8X
NPM
VXZ
JQ2
7X8
ID FETCH-LOGICAL-c4542-892a49ddf84c0d74307e72f68f8da2e90f3447fbccae02f6734c3b6fc5bfe18a3
IEDL.DBID DRFUL
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239072600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0192-8651
IngestDate Thu Jul 10 22:32:01 EDT 2025
Fri Jul 25 19:19:36 EDT 2025
Wed Feb 19 01:45:41 EST 2025
Tue Nov 18 21:01:45 EST 2025
Sat Nov 29 02:55:33 EST 2025
Wed Jan 22 16:49:11 EST 2025
Sun Sep 21 06:18:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4542-892a49ddf84c0d74307e72f68f8da2e90f3447fbccae02f6734c3b6fc5bfe18a3
Notes ArticleID:JCC20412
ark:/67375/WNG-0939ZNM8-W
istex:B984A0C2A8FCDF55C69E5C94911E99F4FE5595F8
Alexander von Humboldt Foundation (AvH)
German Science Foundation (DFG)
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 16786541
PQID 222282970
PQPubID 48816
PageCount 15
ParticipantIDs proquest_miscellaneous_68605508
proquest_journals_222282970
pubmed_primary_16786541
crossref_citationtrail_10_1002_jcc_20412
crossref_primary_10_1002_jcc_20412
wiley_primary_10_1002_jcc_20412_JCC20412
istex_primary_ark_67375_WNG_0939ZNM8_W
PublicationCentury 2000
PublicationDate September 2006
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: September 2006
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J. Comput. Chem
PublicationYear 2006
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Comba, P.; Lienke, A. Inorg Chem 2001, 40, 5206.
Morokuma, K. J Chem Phys 1971, 55, 1236.
Börzel, H.; Comba, P.; Katsichtis, C.; Kiefer, W.; Lienke, A.; Nagel, V.; Pritzkow, H. Chem Eur J 1999, 5, 1716.
Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory, John Wiley & Sons, Inc.: Chichester, UK, 2001, 2nd ed.
te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J Comp Chem 2001, 22, 931.
Holthausen, M. C. J Comp Chem 2005, 26, 1505.
Bleiholder, C.; Börzel, H.; Comba, P.; Ferrari, R.; Heydt, A.; Kerscher, M.; Kuwata, S.; Laurenczy, G.; Lawrance, G. A.; Lienke, A.; Martin, B.; Merz, M.; Nuber, B.; Pritzkow, H. Inorg Chem 2005, 44, 8145.
Himo, F.; Siegbahn, P. E. M. J Am Chem Soc 2001, 123, 10280.
Bol, J. E.; Buning, C.; Comba, P.; Reedijk, J.; Ströhle, M. J Comput Chem 1998, 19, 512.
Comba, P.; Kerscher, M. Cryst Eng 2004, 6, 197.
Wiersema, A. J.; Windle, J. J. J Phys Chem, 68, 2316.
Szabo, A.; Kovacs, A.; Frenking, G. Z Anorg Allg Chem 2005, 631, 1803.
Didziulis, S. V.; Cohen, S. L.; Gewirth, A. A.; Solomon, E. I. J Am Chem Soc 1988, 110, 250.
Comba, P.; Kerscher, M.; Roodt, A. Eur J Inorg Chem 2004, 23, 4640.
Neese, F. J Phys Chem A 2001, 105, 4290.
DeBeer George, S.; Basumallick, L.; Szilagyi, R. K.; Randall, D. W.; Hill, M. G.; Nersissian, A. M.; Valentine, J. S.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J Am Chem Soc 2003, 125, 11314.
Comba, P.; Martin, B.; Prikhod'ko, A.; Pritzkow, H.; Rohwer, H. Comptes Rendus Chimie 2005, 6, 1506.
Wang, D.; Hanson, G. R. J Magn Reson A 1995, 117, 1.
Perdew, J. P. Phys Rev Lett 1996, 78, 1396.
Siegbahn, P. E. M.; Blomberg, M. R. A.; Wirstam nee Pavlov, M.; Crabtree, R. H. J Biol Inorg Chem 2001, 6, 460.
Frenking, G.; Wichmann, K.; Fröhlich, N.; Loschen, C.; Lein, M.; Frunzke, J.; Rayon, V. M. Coord Chem Rev 2002, 21, 3351.
Schaefer, A.; Horn, H.; Ahlrichs, R. J Chem Phys 1992, 97, 2571.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865.
Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, 1990.
Comba, P.; Hauser, A.; Kerscher, M.; Pritzkow, H. Angew Chem Int Ed 2003, 42, 4536.
Munzarova, M.; Kubacek, P.; Kaupp, M. J Am Chem Soc 2000, 122, 11900.
Siegbahn, P. E. M.; Crabtree, R. H. Structure and Bonding; Springer-Verlag: Berlin, 2000.
Perdew, J. P. Phys Rev B 1986, 33, 8822.
Kitaura, K.; Morokuma, K. Int J Quantum Chem 1976, 10, 325.
Reinen, D.; Atanasov, M.; Lee, S. Coord Chem Rev 1998, 175, 91.
Bertrand, P. Inorg Chem 1993, 32, 741.
Comba, P.; Merz, M.; Pritzkow, H. Eur J Inorg Chem 2003, 1711.
Neese, F. J Chem Phys 2003, 119, 9428.
Atanasov, M.; Baerends, E. J.; Baettig, P.; Daul, C.; Rauzy, C.; Zbiri, M.; Chem Phys Lett 2004, 399, 433.
Siegbahn, P. E. M. J Comp Chem 2001, 22, 1634.
Schatz, M.; Raab, V.; Foxon, S.; Brehm, G.; Schneider, S.; Reiher, M.; Holthausen, M. C.; Sundermeyer, J.; Schindler, S. Angew Chem, Int Ed 2004, 43, 4360.
Gewirth, A. A.; Cohen, S. L.; Schugar, H. J.; Solomon, E. I. Inorg Chem 1987, 26, 1933.
Mulliken, R. S. J Chem Phys 1955, 23, 1833.
Ziegler, T.; Rauk, A. Theor Chim Acta 1977, 46, 1.
Munzarova, M.; Kaupp, M. J Phys Chem 1999, 103, 9966.
Börzel, H.; Comba, P.; Hagen, K. S.; Kerscher, M.; Pritzkow, H.; Schatz, M.; Schindler, S.; Walter, O. Inorg Chem 2002, 41, 5440.
Atanasov, M.; Daul, C. A.; Rauzy, C. Struct Bond 2004, 106, 97.
Comba, P.; Hambley, T. W.; Okon, N.; Lauer, G. MOMEC97, a Molecular Modeling Package for Inorganic Compounds; Heidelberg, 1997.
Neese, F. Magn Reson Chem 2004, 42, 187.
Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem Rev 1988, 88, 899.
Comba, P.; Schiek, W. Coord Chem Rev 2003, 238-239, 21.
McGarvey, B. R. J Phys Chem 1967, 71, 51.
Siegbahn, P. E. M.; Blomberg, M. R. A. Chem Rev 2000, 100, 421.
Koszinowski, K.; Schoeder, D.; Schwarz, H.; Holthausen, M. C.; Sauer, J.; Soizumi, H.; Armentrout, P. B. Inorg Chem 2002, 41, 5882.
Weigand, F.; Haeser, M. Theor Chem Acc 1997, 97, 331.
Basumallick, L.; Sarangi, R.; DeBeer, G. S.; Elmore, B.; Hooper, A. B.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J Am Chem Soc 2005, 127, 3531.
Comba, P.; Lopez de Laorden, C.; Pritzkow, H. Helv Chim Acta 2005, 88, 647.
Wang, D.; Hanson, G. R. Appl Magn Reson 1996, 11, 401.
Friesner, R. A.; Dunietz, B. D. Acc Chem Res 2001, 34, 351.
Atkins, P. W.; Symons, M. C. R. The Structure of Inorganic Radicals; Elsevier: Amsterdam, 1967.
Börzel, H.; Comba, P.; Hagen, K. S.; Katsichtis, C.; Pritzkow, H. Chem Eur J 2000, 6, 914.
Neese, F. Int J Quantum Chem 2001, 83, 104.
Szilagyi, R. K.; Metz, M.; Solomon, E. I. J Phys Chem A 2002, 106, 2994.
Becke, A. D. J. J Chem Phys B 1993, 98, 5648.
Comba, P.; Hambley, T. W.; Hitchman, M. A.; Stratemeier, H. Inorg Chem 1995, 34, 3903.
Deeth, R. J. J Chem Soc, Dalton Trans 2001, 664.
Neese, F. J Chem Phys 2001, 115, 11080.
Gleiter, R.; Kobayashi, M.; Kuthan, J. Tetrahedron 1976, 32, 2775.
Comba, P.; Kerscher, M.; Merz, M.; Müller, V.; Pritzkow, H.; Remenyi, R.; Schiek, W.; Xiong, Y. Chem Eur J 2002, 8, 5750.
2003; 119
2000; 6
1986; 33
1995; 34
2004; 23
2004; 6
2005; 26
1992; 97
2001; 40
1996; 78
2001; 105
1996; 77
1976; 32
1971; 55
1998; 19
2001
2002; 41
1990
2000
1997; 97
1993; 32
2002; 106
1988; 88
2000; 122
2003; 125
2003; 42
2004; 43
68
2001; 123
2004; 42
2003; 238–239
2005; 631
2002; 8
1995; 117
1997
2004
1999; 103
2003
1977; 46
2001; 22
1999; 5
2004; 106
2005; 88
2005; 44
1955; 23
1998; 175
1996; 11
1976; 10
2001; 83
2004; 399
2001; 6
1967; 71
1993; 98
2005; 127
2002; 21
2005; 6
1988; 110
2000; 100
2001; 34
2001; 115
1987; 26
1967
e_1_2_5_27_2
e_1_2_5_25_2
e_1_2_5_46_2
e_1_2_5_23_2
e_1_2_5_44_2
e_1_2_5_21_2
e_1_2_5_42_2
Weigand F. (e_1_2_5_47_2) 1997; 97
e_1_2_5_65_2
Siegbahn P. E. M. (e_1_2_5_11_2) 2000
e_1_2_5_67_2
e_1_2_5_69_2
e_1_2_5_29_2
e_1_2_5_61_2
e_1_2_5_63_2
e_1_2_5_40_2
e_1_2_5_13_2
e_1_2_5_38_2
e_1_2_5_59_2
e_1_2_5_9_2
e_1_2_5_15_2
e_1_2_5_36_2
e_1_2_5_57_2
e_1_2_5_7_2
Atkins P. W. (e_1_2_5_56_2) 1967
e_1_2_5_34_2
e_1_2_5_55_2
e_1_2_5_5_2
e_1_2_5_32_2
e_1_2_5_53_2
e_1_2_5_3_2
Gewirth A. A. (e_1_2_5_17_2) 1987; 26
e_1_2_5_19_2
Frenking G. (e_1_2_5_48_2) 2002; 21
e_1_2_5_30_2
e_1_2_5_51_2
e_1_2_5_26_2
e_1_2_5_49_2
e_1_2_5_24_2
Wiersema A. J. (e_1_2_5_54_2); 68
e_1_2_5_22_2
e_1_2_5_45_2
e_1_2_5_20_2
e_1_2_5_43_2
e_1_2_5_66_2
e_1_2_5_68_2
e_1_2_5_28_2
e_1_2_5_60_2
e_1_2_5_62_2
e_1_2_5_41_2
Comba P. (e_1_2_5_64_2) 1997
e_1_2_5_14_2
e_1_2_5_37_2
e_1_2_5_16_2
e_1_2_5_35_2
e_1_2_5_58_2
e_1_2_5_8_2
e_1_2_5_10_2
e_1_2_5_33_2
e_1_2_5_6_2
e_1_2_5_12_2
e_1_2_5_31_2
e_1_2_5_4_2
e_1_2_5_2_2
e_1_2_5_18_2
e_1_2_5_39_2
e_1_2_5_52_2
e_1_2_5_50_2
References_xml – reference: Schaefer, A.; Horn, H.; Ahlrichs, R. J Chem Phys 1992, 97, 2571.
– reference: Holthausen, M. C. J Comp Chem 2005, 26, 1505.
– reference: Comba, P.; Kerscher, M.; Roodt, A. Eur J Inorg Chem 2004, 23, 4640.
– reference: Basumallick, L.; Sarangi, R.; DeBeer, G. S.; Elmore, B.; Hooper, A. B.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J Am Chem Soc 2005, 127, 3531.
– reference: Comba, P.; Schiek, W. Coord Chem Rev 2003, 238-239, 21.
– reference: Wang, D.; Hanson, G. R. Appl Magn Reson 1996, 11, 401.
– reference: Comba, P.; Kerscher, M. Cryst Eng 2004, 6, 197.
– reference: Mulliken, R. S. J Chem Phys 1955, 23, 1833.
– reference: Comba, P.; Hambley, T. W.; Hitchman, M. A.; Stratemeier, H. Inorg Chem 1995, 34, 3903.
– reference: Wiersema, A. J.; Windle, J. J. J Phys Chem, 68, 2316.
– reference: Morokuma, K. J Chem Phys 1971, 55, 1236.
– reference: Deeth, R. J. J Chem Soc, Dalton Trans 2001, 664.
– reference: Szilagyi, R. K.; Metz, M.; Solomon, E. I. J Phys Chem A 2002, 106, 2994.
– reference: DeBeer George, S.; Basumallick, L.; Szilagyi, R. K.; Randall, D. W.; Hill, M. G.; Nersissian, A. M.; Valentine, J. S.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J Am Chem Soc 2003, 125, 11314.
– reference: Frenking, G.; Wichmann, K.; Fröhlich, N.; Loschen, C.; Lein, M.; Frunzke, J.; Rayon, V. M. Coord Chem Rev 2002, 21, 3351.
– reference: Himo, F.; Siegbahn, P. E. M. J Am Chem Soc 2001, 123, 10280.
– reference: Perdew, J. P. Phys Rev Lett 1996, 78, 1396.
– reference: Börzel, H.; Comba, P.; Katsichtis, C.; Kiefer, W.; Lienke, A.; Nagel, V.; Pritzkow, H. Chem Eur J 1999, 5, 1716.
– reference: Comba, P.; Hauser, A.; Kerscher, M.; Pritzkow, H. Angew Chem Int Ed 2003, 42, 4536.
– reference: Munzarova, M.; Kaupp, M. J Phys Chem 1999, 103, 9966.
– reference: Comba, P.; Lienke, A. Inorg Chem 2001, 40, 5206.
– reference: Schatz, M.; Raab, V.; Foxon, S.; Brehm, G.; Schneider, S.; Reiher, M.; Holthausen, M. C.; Sundermeyer, J.; Schindler, S. Angew Chem, Int Ed 2004, 43, 4360.
– reference: Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem Rev 1988, 88, 899.
– reference: McGarvey, B. R. J Phys Chem 1967, 71, 51.
– reference: Atanasov, M.; Baerends, E. J.; Baettig, P.; Daul, C.; Rauzy, C.; Zbiri, M.; Chem Phys Lett 2004, 399, 433.
– reference: Kitaura, K.; Morokuma, K. Int J Quantum Chem 1976, 10, 325.
– reference: te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. J Comp Chem 2001, 22, 931.
– reference: Becke, A. D. J. J Chem Phys B 1993, 98, 5648.
– reference: Munzarova, M.; Kubacek, P.; Kaupp, M. J Am Chem Soc 2000, 122, 11900.
– reference: Szabo, A.; Kovacs, A.; Frenking, G. Z Anorg Allg Chem 2005, 631, 1803.
– reference: Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory, John Wiley & Sons, Inc.: Chichester, UK, 2001, 2nd ed.
– reference: Atkins, P. W.; Symons, M. C. R. The Structure of Inorganic Radicals; Elsevier: Amsterdam, 1967.
– reference: Gewirth, A. A.; Cohen, S. L.; Schugar, H. J.; Solomon, E. I. Inorg Chem 1987, 26, 1933.
– reference: Didziulis, S. V.; Cohen, S. L.; Gewirth, A. A.; Solomon, E. I. J Am Chem Soc 1988, 110, 250.
– reference: Comba, P.; Kerscher, M.; Merz, M.; Müller, V.; Pritzkow, H.; Remenyi, R.; Schiek, W.; Xiong, Y. Chem Eur J 2002, 8, 5750.
– reference: Ziegler, T.; Rauk, A. Theor Chim Acta 1977, 46, 1.
– reference: Bol, J. E.; Buning, C.; Comba, P.; Reedijk, J.; Ströhle, M. J Comput Chem 1998, 19, 512.
– reference: Siegbahn, P. E. M.; Crabtree, R. H. Structure and Bonding; Springer-Verlag: Berlin, 2000.
– reference: Börzel, H.; Comba, P.; Hagen, K. S.; Katsichtis, C.; Pritzkow, H. Chem Eur J 2000, 6, 914.
– reference: Bleiholder, C.; Börzel, H.; Comba, P.; Ferrari, R.; Heydt, A.; Kerscher, M.; Kuwata, S.; Laurenczy, G.; Lawrance, G. A.; Lienke, A.; Martin, B.; Merz, M.; Nuber, B.; Pritzkow, H. Inorg Chem 2005, 44, 8145.
– reference: Neese, F. Magn Reson Chem 2004, 42, 187.
– reference: Comba, P.; Martin, B.; Prikhod'ko, A.; Pritzkow, H.; Rohwer, H. Comptes Rendus Chimie 2005, 6, 1506.
– reference: Comba, P.; Lopez de Laorden, C.; Pritzkow, H. Helv Chim Acta 2005, 88, 647.
– reference: Börzel, H.; Comba, P.; Hagen, K. S.; Kerscher, M.; Pritzkow, H.; Schatz, M.; Schindler, S.; Walter, O. Inorg Chem 2002, 41, 5440.
– reference: Comba, P.; Hambley, T. W.; Okon, N.; Lauer, G. MOMEC97, a Molecular Modeling Package for Inorganic Compounds; Heidelberg, 1997.
– reference: Comba, P.; Merz, M.; Pritzkow, H. Eur J Inorg Chem 2003, 1711.
– reference: Neese, F. J Chem Phys 2003, 119, 9428.
– reference: Neese, F. Int J Quantum Chem 2001, 83, 104.
– reference: Siegbahn, P. E. M.; Blomberg, M. R. A.; Wirstam nee Pavlov, M.; Crabtree, R. H. J Biol Inorg Chem 2001, 6, 460.
– reference: Gleiter, R.; Kobayashi, M.; Kuthan, J. Tetrahedron 1976, 32, 2775.
– reference: Friesner, R. A.; Dunietz, B. D. Acc Chem Res 2001, 34, 351.
– reference: Neese, F. J Phys Chem A 2001, 105, 4290.
– reference: Koszinowski, K.; Schoeder, D.; Schwarz, H.; Holthausen, M. C.; Sauer, J.; Soizumi, H.; Armentrout, P. B. Inorg Chem 2002, 41, 5882.
– reference: Siegbahn, P. E. M.; Blomberg, M. R. A. Chem Rev 2000, 100, 421.
– reference: Wang, D.; Hanson, G. R. J Magn Reson A 1995, 117, 1.
– reference: Neese, F. J Chem Phys 2001, 115, 11080.
– reference: Bertrand, P. Inorg Chem 1993, 32, 741.
– reference: Reinen, D.; Atanasov, M.; Lee, S. Coord Chem Rev 1998, 175, 91.
– reference: Bader, R. F. W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, 1990.
– reference: Siegbahn, P. E. M. J Comp Chem 2001, 22, 1634.
– reference: Perdew, J. P. Phys Rev B 1986, 33, 8822.
– reference: Atanasov, M.; Daul, C. A.; Rauzy, C. Struct Bond 2004, 106, 97.
– reference: Weigand, F.; Haeser, M. Theor Chem Acc 1997, 97, 331.
– reference: Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys Rev Lett 1996, 77, 3865.
– volume: 399
  start-page: 433
  year: 2004
  publication-title: Chem Phys Lett
– volume: 22
  start-page: 1634
  year: 2001
  publication-title: J Comp Chem
– volume: 6
  start-page: 1506
  year: 2005
  publication-title: Comptes Rendus Chimie
– volume: 26
  start-page: 1933
  year: 1987
  publication-title: Inorg Chem
– volume: 123
  start-page: 10280
  year: 2001
  publication-title: J Am Chem Soc
– volume: 631
  start-page: 1803
  year: 2005
  publication-title: Z Anorg Allg Chem
– volume: 175
  start-page: 91
  year: 1998
  publication-title: Coord Chem Rev
– volume: 115
  start-page: 11080
  year: 2001
  publication-title: J Chem Phys
– year: 2001
– volume: 6
  start-page: 460
  year: 2001
  publication-title: J Biol Inorg Chem
– volume: 41
  start-page: 5440
  year: 2002
  publication-title: Inorg Chem
– volume: 22
  start-page: 931
  year: 2001
  publication-title: J Comp Chem
– start-page: 1711
  year: 2003
  publication-title: Eur J Inorg Chem
– volume: 43
  start-page: 4360
  year: 2004
  publication-title: Angew Chem, Int Ed
– volume: 83
  start-page: 104
  year: 2001
  publication-title: Int J Quantum Chem
– volume: 26
  start-page: 1505
  year: 2005
  publication-title: J Comp Chem
– volume: 42
  start-page: 4536
  year: 2003
  publication-title: Angew Chem Int Ed
– year: 1990
– volume: 122
  start-page: 11900
  year: 2000
  publication-title: J Am Chem Soc
– volume: 106
  start-page: 97
  year: 2004
  publication-title: Struct Bond
– volume: 55
  start-page: 1236
  year: 1971
  publication-title: J Chem Phys
– volume: 42
  start-page: 187
  year: 2004
  publication-title: Magn Reson Chem
– volume: 11
  start-page: 401
  year: 1996
  publication-title: Appl Magn Reson
– volume: 98
  start-page: 5648
  year: 1993
  publication-title: J Chem Phys B
– volume: 127
  start-page: 3531
  year: 2005
  publication-title: J Am Chem Soc
– volume: 19
  start-page: 512
  year: 1998
  publication-title: J Comput Chem
– volume: 33
  start-page: 8822
  year: 1986
  publication-title: Phys Rev B
– start-page: 664
  year: 2001
  publication-title: J Chem Soc, Dalton Trans
– volume: 103
  start-page: 9966
  year: 1999
  publication-title: J Phys Chem
– volume: 88
  start-page: 647
  year: 2005
  publication-title: Helv Chim Acta
– volume: 40
  start-page: 5206
  year: 2001
  publication-title: Inorg Chem
– year: 2004
– year: 1997
– volume: 6
  start-page: 197
  year: 2004
  publication-title: Cryst Eng
– volume: 97
  start-page: 2571
  year: 1992
  publication-title: J Chem Phys
– volume: 110
  start-page: 250
  year: 1988
  publication-title: J Am Chem Soc
– volume: 44
  start-page: 8145
  year: 2005
  publication-title: Inorg Chem
– volume: 41
  start-page: 5882
  year: 2002
  publication-title: Inorg Chem
– volume: 97
  start-page: 331
  year: 1997
  publication-title: Theor Chem Acc
– volume: 119
  start-page: 9428
  year: 2003
  publication-title: J Chem Phys
– volume: 68
  start-page: 2316
  publication-title: J Phys Chem
– volume: 34
  start-page: 3903
  year: 1995
  publication-title: Inorg Chem
– volume: 32
  start-page: 2775
  year: 1976
  publication-title: Tetrahedron
– volume: 71
  start-page: 51
  year: 1967
  publication-title: J Phys Chem
– volume: 10
  start-page: 325
  year: 1976
  publication-title: Int J Quantum Chem
– year: 2000
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys Rev Lett
– volume: 23
  start-page: 4640
  year: 2004
  publication-title: Eur J Inorg Chem
– volume: 88
  start-page: 899
  year: 1988
  publication-title: Chem Rev
– volume: 34
  start-page: 351
  year: 2001
  publication-title: Acc Chem Res
– volume: 106
  start-page: 2994
  year: 2002
  publication-title: J Phys Chem A
– volume: 105
  start-page: 4290
  year: 2001
  publication-title: J Phys Chem A
– volume: 238–239
  start-page: 21
  year: 2003
  publication-title: Coord Chem Rev
– volume: 46
  start-page: 1
  year: 1977
  publication-title: Theor Chim Acta
– year: 1967
– volume: 100
  start-page: 421
  year: 2000
  publication-title: Chem Rev
– volume: 5
  start-page: 1716
  year: 1999
  publication-title: Chem Eur J
– volume: 32
  start-page: 741
  year: 1993
  publication-title: Inorg Chem
– volume: 125
  start-page: 11314
  year: 2003
  publication-title: J Am Chem Soc
– volume: 23
  start-page: 1833
  year: 1955
  publication-title: J Chem Phys
– volume: 21
  start-page: 3351
  year: 2002
  publication-title: Coord Chem Rev
– volume: 6
  start-page: 914
  year: 2000
  publication-title: Chem Eur J
– volume: 78
  start-page: 1396
  year: 1996
  publication-title: Phys Rev Lett
– volume: 8
  start-page: 5750
  year: 2002
  publication-title: Chem Eur J
– volume: 117
  start-page: 1
  year: 1995
  publication-title: J Magn Reson A
– ident: e_1_2_5_3_2
  doi: 10.1021/ar980111r
– ident: e_1_2_5_45_2
  doi: 10.1093/oso/9780198551683.001.0001
– ident: e_1_2_5_25_2
  doi: 10.1002/hlca.200590045
– ident: e_1_2_5_9_2
  doi: 10.1021/ic020315a
– ident: e_1_2_5_49_2
  doi: 10.1002/zaac.200500183
– ident: e_1_2_5_57_2
  doi: 10.1021/ic00119a011
– ident: e_1_2_5_29_2
  doi: 10.1002/(SICI)1521-3765(19990604)5:6<1716::AID-CHEM1716>3.0.CO;2-8
– ident: e_1_2_5_38_2
  doi: 10.1063/1.1615956
– ident: e_1_2_5_63_2
  doi: 10.1002/qua.560100211
– ident: e_1_2_5_40_2
– ident: e_1_2_5_44_2
  doi: 10.1021/cr00088a005
– ident: e_1_2_5_51_2
  doi: 10.1007/BF02401406
– ident: e_1_2_5_4_2
  doi: 10.1002/jcc.1119
– volume-title: Structure and Bonding
  year: 2000
  ident: e_1_2_5_11_2
– volume: 26
  start-page: 1933
  year: 1987
  ident: e_1_2_5_17_2
  publication-title: Inorg Chem
  doi: 10.1021/ic00254a032
– ident: e_1_2_5_53_2
  doi: 10.1016/S0010-8545(98)00181-7
– ident: e_1_2_5_37_2
– ident: e_1_2_5_52_2
  doi: 10.1063/1.1419058
– ident: e_1_2_5_28_2
  doi: 10.1002/ejic.200200618
– ident: e_1_2_5_26_2
  doi: 10.1021/ic0513383
– ident: e_1_2_5_36_2
  doi: 10.1007/BF03162236
– ident: e_1_2_5_68_2
  doi: 10.1002/mrc.1456
– ident: e_1_2_5_7_2
  doi: 10.1007/s007750100226
– ident: e_1_2_5_58_2
  doi: 10.1021/j100860a007
– ident: e_1_2_5_69_2
  doi: 10.1016/j.cplett.2004.10.041
– ident: e_1_2_5_66_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_5_19_2
  doi: 10.1039/b008720n
– ident: e_1_2_5_34_2
– ident: e_1_2_5_21_2
  doi: 10.1016/S0010-8545(02)00294-1
– ident: e_1_2_5_50_2
  doi: 10.1063/1.1676210
– ident: e_1_2_5_14_2
  doi: 10.1021/ja035802j
– ident: e_1_2_5_42_2
  doi: 10.1007/b11308
– ident: e_1_2_5_62_2
  doi: 10.1016/0040-4020(76)80122-6
– ident: e_1_2_5_15_2
  doi: 10.1063/1.464913
– ident: e_1_2_5_32_2
  doi: 10.1021/ic011114u
– ident: e_1_2_5_6_2
  doi: 10.1021/ja044412
– ident: e_1_2_5_61_2
  doi: 10.1021/ja002062v
– ident: e_1_2_5_55_2
  doi: 10.1021/ic00057a038
– ident: e_1_2_5_10_2
  doi: 10.1002/anie.200454125
– ident: e_1_2_5_12_2
  doi: 10.1021/ja010715h
– ident: e_1_2_5_33_2
  doi: 10.1002/ejic.200400518
– ident: e_1_2_5_24_2
  doi: 10.1016/j.crci.2005.03.003
– volume-title: The Structure of Inorganic Radicals
  year: 1967
  ident: e_1_2_5_56_2
– ident: e_1_2_5_18_2
  doi: 10.1021/ja00209a041
– ident: e_1_2_5_8_2
  doi: 10.1021/jp014121c
– ident: e_1_2_5_27_2
– ident: e_1_2_5_65_2
  doi: 10.1002/(SICI)1096-987X(19980415)19:5<512::AID-JCC4>3.0.CO;2-P
– ident: e_1_2_5_16_2
  doi: 10.1103/PhysRevB.33.8822
– volume-title: MOMEC97, a Molecular Modeling Package for Inorganic Compounds
  year: 1997
  ident: e_1_2_5_64_2
– ident: e_1_2_5_41_2
  doi: 10.1002/jcc.1056
– ident: e_1_2_5_60_2
  doi: 10.1021/jp992303p
– ident: e_1_2_5_13_2
  doi: 10.1002/jcc.20279
– volume: 97
  start-page: 331
  year: 1997
  ident: e_1_2_5_47_2
  publication-title: Theor Chem Acc
  doi: 10.1007/s002140050269
– ident: e_1_2_5_39_2
  doi: 10.1002/qua.1202
– ident: e_1_2_5_46_2
  doi: 10.1063/1.463096
– ident: e_1_2_5_43_2
  doi: 10.1063/1.1740588
– ident: e_1_2_5_67_2
  doi: 10.1103/PhysRevLett.78.1396
– volume: 68
  start-page: 2316
  ident: e_1_2_5_54_2
  publication-title: J Phys Chem
  doi: 10.1021/j100790a049
– ident: e_1_2_5_59_2
  doi: 10.1021/jp003254f
– ident: e_1_2_5_20_2
  doi: 10.1002/1521-3765(20021216)8:24<5750::AID-CHEM5750>3.0.CO;2-P
– ident: e_1_2_5_5_2
  doi: 10.1002/3527600043
– ident: e_1_2_5_22_2
  doi: 10.1016/j.cryseng.2004.04.002
– ident: e_1_2_5_2_2
  doi: 10.1021/cr980390w
– volume: 21
  start-page: 3351
  year: 2002
  ident: e_1_2_5_48_2
  publication-title: Coord Chem Rev
– ident: e_1_2_5_23_2
  doi: 10.1002/anie.200351900
– ident: e_1_2_5_31_2
  doi: 10.1021/ic010200r
– ident: e_1_2_5_30_2
  doi: 10.1002/(SICI)1521-3765(20000303)6:5<914::AID-CHEM914>3.0.CO;2-K
– ident: e_1_2_5_35_2
  doi: 10.1006/jmra.1995.9978
SSID ssj0003564
Score 2.1301858
Snippet Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative...
Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF‐density functional theory (DFT), are used to compute the structures, relative...
Various DFT and ab initio methods, including B3LYP, HF, SORCI, and LF-density functional theory (DFT), are used to compute the structures, relative...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1263
SubjectTerms ab initio methods
Biochemistry
Copper
copper(II) bispidine complexes
DFT models
Molecular structure
Spectrum analysis
Title DFT models for copper(II) bispidine complexes: Structures, stabilities, isomerism, spin distribution, and spectroscopy
URI https://api.istex.fr/ark:/67375/WNG-0939ZNM8-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.20412
https://www.ncbi.nlm.nih.gov/pubmed/16786541
https://www.proquest.com/docview/222282970
https://www.proquest.com/docview/68605508
Volume 27
WOSCitedRecordID wos000239072600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9UwFD_MewX94lt3nc4gIhNW1ps-kuonufPqZF5E97j4JaRJCp3alhs35n_vSfoYgwmC39r0lKbnkfzy-h2AF1SiaRWLAprkJsAuwASZiXUwLVI21Uob41OyHO2zxYIvl9nnNXjTn4Vp-SGGCTcXGb69dgEuc7tzQRp6ohwDYewyDI8p-m08gvHul_nh_tAQR0nLHoUgJuBpMu2JhUK6M7x8qTsaO82eX4U1L0NX3_fMb_9Xre_ArQ5ykretj9yFNVPdgxuzPtPbfTjbnR8QnxLHEsSwRNVNY1Zbe3uvSF7apsTuzRC_99ycG_uafPWcs6c4UN8mCC799trS3ZS2dgtA9ieWN2VFtPtAl1Brm8hKE3-w0xFo1s3vB3A4f3cw-xB0-RgCFScx6jCjMs60LnisQo3QI2SG0SLlBdeSmiwsHH1gkaNTmBDLWRSryB0mSvLCTLmMHsKoqiuzDoRrjU1BkXMlEQAVMosynapUc6MoioYT2OrNIlRHVu5yZvwQLc0yFahI4RU5geeDaNMydFwl9NLbdpCQq-9uSxtLxPHivQjx-98Wn7g4nsBGb3zRRbMV1E2T0YxhtZ4NT9FGbm1FVqY-tSLlOC5EsDuBR63HXNQF4YBLto6_5B3j75UUH2czf_H430U34GY7KeR2vT2BETqAeQrX1dmv0q424Rpb8s0uLv4AqMMPtw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB_KnVC_-H6cVbuISIWG5javjfhFrp49vQbRqy1-WTb7gPhIwsWW-t87u3mUQgXBb8lmQjY7Mzu_ff0G4DkVqFqZBB6Ncu1hCNBeqkPlTU2cTJVUWruULF-WSZaxk5P04wa87s_CtPwQw4Sb9QzXX1sHtxPSexesod-kpSAMbYrhcYhmFI1gvP9pfrQceuIgaumjEMV4LI6mPbOQT_eGly_Fo7Ft2vOrwOZl7OqCz_zm_1X7FtzoQCd501rJbdjQ5R3YnPW53u7C2f58RVxSnIYgiiWyqmu93lksXpK8aOoCA5wmbve5PtfNK_LZsc6e4lB9lyC8dBtsC3tTNJVdAmp-YnldlETZD3QptXaJKBVxRzsthWZV_74HR_O3q9mB12Vk8GQYhdiIKRVhqpRhofQVgg8_0Qk1MTNMCapT31gCQZOjWWgfy5MglIE9ThTlRk-ZCO7DqKxK_RAIUwo7A5MzKRACGZEGqYplrJiWFEX9Cez0euGyoyu3WTN-8JZomXJsSO4acgLPBtG65ei4SuiFU-4gIdbf7aa2JOLH2Tvu4_e_ZoeMH09gq9c-7_y54dROlNE0wWptD09RR3Z1RZS6Om14zHBkiHB3Ag9ak7moCwICm24df8lZxt8ryd_PZu7i0b-LbsPmwepwyZeL7MMWXG-niOweuMcwQmPQT-CaPPtVNOunnXv8AXw6Er8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEF9KT9Qv1nfPql1EpEJDc5vXpvhF7oyenqFoX_hlSXZnIVWTcLGl_e87u3mUQgXBb8lmQiY7M7u_ff2GkNcsQ9PKyHNYkIODXQA4MfjKmegwmiipAGxKlsNFlKb8-DjeWyHv-rMwLT_EMOFmIsO21ybAoVZ654o19EQaCkLfpBge-UEcYliOZt-Sg8XQEntBSx-FKMbhYTDpmYVctjO8fK0_GpmqPb8JbF7HrrbzSdb-T-375F4HOun71ksekBUoH5I70z7X2yNyNkv2qU2K01BEsVRWdQ3Lrfn8Lc2Lpi6wgwNqd5_DOTS79LtlnT3Fofo2RXhpN9gW5qZoKrME1PzG8rooqTIf6FJqbdOsVNQe7TQUmlV98ZgcJB_2p5-cLiODI_3Ax0qMWebHSmnuS1ch-HAjiJgOueYqYxC72hAI6hzdAlwsjzxfeuY4UZBrmPDMe0JWy6qEdUK5UtgY6JzLDCGQzmIvVqEMFQfJUNQdk63eLkJ2dOUma8Yv0RItM4EVKWxFjsmrQbRuOTpuEnpjjTtIZMufZlNbFIij9KNw8fs_0q9cHI3JRm990cVzI5iZKGNxhGptDk_RRmZ1JSuhOm1EyHFkiHB3TJ62LnOlCwICk24df8l6xt-VFJ-nU3vx7N9FN8ntvVkiFvP0ywa5284QmS1wz8kq-gK8ILfk2Z-iWb7souMS7KcSOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DFT+models+for+copper%28II%29+bispidine+complexes%3A+Structures%2C+stabilities%2C+isomerism%2C+spin+distribution%2C+and+spectroscopy&rft.jtitle=Journal+of+computational+chemistry&rft.au=Atanasov%2C+Mihail&rft.au=Comba%2C+Peter&rft.au=Martin%2C+Bodo&rft.au=M%C3%BCller%2C+Vera&rft.date=2006-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=27&rft.issue=12&rft.spage=1263&rft.epage=1277&rft_id=info:doi/10.1002%2Fjcc.20412&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0939ZNM8_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon