The influence of the metal cations and microhydration on the reaction trajectory of the N3 ↔ O2 thymine proton transfer: Quantum mechanical study

This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+, Zn2+, and Hg2+. Our results point out that this reaction corresponds to a two‐stage...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry Vol. 38; no. 31; pp. 2680 - 2692
Main Authors: Šebesta, Filip, Brela, Mateusz Z, Diaz, Silvia, Miranda, Sebastian, Murray, Jane S, Gutiérrez‐Oliva, Soledad, Toro‐Labbé, Alejandro, Michalak, Artur, Burda, Jaroslav V
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 05.12.2017
Subjects:
ISSN:0192-8651, 1096-987X, 1096-987X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+, Zn2+, and Hg2+. Our results point out that this reaction corresponds to a two‐stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc. Intramolecular proton transfer (PT) process on thymine nucleobase between N3 and O2 atoms is explored in presence of hexacoordinated divalent metals cations Mg2+, Zn2+, and Hg2+. This PT proceeds as a two stages process. The first step involves the PT from one of the aqua ligands toward O2. The second stage is connected with the N3‐proton ion. In the presence of the hexaaqua‐cations, the activation barrier is at most 8 kcal/mol.
AbstractList This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+, Zn2+, and Hg2+. Our results point out that this reaction corresponds to a two‐stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc. Intramolecular proton transfer (PT) process on thymine nucleobase between N3 and O2 atoms is explored in presence of hexacoordinated divalent metals cations Mg2+, Zn2+, and Hg2+. This PT proceeds as a two stages process. The first step involves the PT from one of the aqua ligands toward O2. The second stage is connected with the N3‐proton ion. In the presence of the hexaaqua‐cations, the activation barrier is at most 8 kcal/mol.
This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+ , Zn2+ , and Hg2+ . Our results point out that this reaction corresponds to a two-stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to abstract the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc.This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+ , Zn2+ , and Hg2+ . Our results point out that this reaction corresponds to a two-stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to abstract the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc.
This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg 2+ , Zn 2+ , and Hg 2+ . Our results point out that this reaction corresponds to a two‐stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to abstract the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc.
This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg , Zn , and Hg . Our results point out that this reaction corresponds to a two-stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to abstract the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc.
This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted by hexacoordinated divalent metals cations, namely Mg2+, Zn2+, and Hg2+. Our results point out that this reaction corresponds to a two-stage process. The first involves the PT from one of the aqua ligands toward O2. The implications of this stage are the formation of a hydroxo anion bound to the metal center and a positively charged thymine. To proceed to the second stage, a structural change is needed to allow the negatively charged hydroxo ligand to abstract the N3 proton, which represents the final product of the PT reaction. In the presence of the selected hexaaqua cations, the activation barrier is at most 8 kcal/mol. © 2017 Wiley Periodicals, Inc.
Author Michalak, Artur
Murray, Jane S
Miranda, Sebastian
Gutiérrez‐Oliva, Soledad
Šebesta, Filip
Burda, Jaroslav V
Toro‐Labbé, Alejandro
Brela, Mateusz Z
Diaz, Silvia
Author_xml – sequence: 1
  givenname: Filip
  surname: Šebesta
  fullname: Šebesta, Filip
  organization: Charles University, Ke Karlovu 3
– sequence: 2
  givenname: Mateusz Z
  surname: Brela
  fullname: Brela, Mateusz Z
  organization: Faculty of Chemistry, Jagiellonian University, R. Ingardena 3
– sequence: 3
  givenname: Silvia
  surname: Diaz
  fullname: Diaz, Silvia
  organization: Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Casilla 306, Correo 22
– sequence: 4
  givenname: Sebastian
  surname: Miranda
  fullname: Miranda, Sebastian
  organization: Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Casilla 306, Correo 22
– sequence: 5
  givenname: Jane S
  surname: Murray
  fullname: Murray, Jane S
  organization: University of New Orleans
– sequence: 6
  givenname: Soledad
  surname: Gutiérrez‐Oliva
  fullname: Gutiérrez‐Oliva, Soledad
  organization: Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Casilla 306, Correo 22
– sequence: 7
  givenname: Alejandro
  surname: Toro‐Labbé
  fullname: Toro‐Labbé, Alejandro
  organization: Laboratorio de Química Teórica Computacional (QTC), Facultad de Química, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Casilla 306, Correo 22
– sequence: 8
  givenname: Artur
  orcidid: 0000-0003-1408-5474
  surname: Michalak
  fullname: Michalak, Artur
  organization: Faculty of Chemistry, Jagiellonian University, R. Ingardena 3
– sequence: 9
  givenname: Jaroslav V
  orcidid: 0000-0001-9909-8797
  surname: Burda
  fullname: Burda, Jaroslav V
  email: burda@karlov.mff.cuni.cz
  organization: Charles University, Ke Karlovu 3
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28925001$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9q3DAQxkVJaDbbHvoCRdBLe3AiybLW6q0s_RdCQyGF3owsjVkttpxKMsUv0Bdon7BP0tndJIdAAwIxo998M_rmlByFMQAhLzg744yJ8621Z0Jqzp-QBWdaFbpefT8iC8a1KGpV8RNymtKWMVZWSj4lJ6LWomKML8jv6w1QH7p-gmCBjh3NmBggm55ak_0YEjXB0cHbOG5mF_c5imfHRTB2H-dotmDzGOc7iS8l_fvrD70SGM2DD0Bv4pgPaEgdxLf062RCngbsZjcmeIstU57c_Iwcd6ZP8Pz2XpJvH95frz8Vl1cfP6_fXRZWVpIXljtTg9DGMVU6W4q2K7UzjJvd90TVKumUag2TrS3xSa6U5q1pZW27GjCzJK8PujjZjwlSbgafLPS9CTBOqeFaskrXAm1bklcP0O04xYDTIVXJVa1XXCH18paa2gFccxP9YOLc3NmNwJsDgGamFKG7RzhrdqtscJXNfpXInj9grc9799FB3z9W8dP3MP9furlYrw8V_wBl_rEa
CitedBy_id crossref_primary_10_1002_jcc_27361
crossref_primary_10_1007_s00894_017_3564_9
crossref_primary_10_1002_jcc_26194
crossref_primary_10_3390_molecules26082248
crossref_primary_10_1007_s00894_024_06239_x
Cites_doi 10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L
10.1007/BF02293129
10.1021/jp3045077
10.1007/s00894-011-1023-6
10.1021/ja00319a008
10.1038/nchem.512
10.1007/s00894-012-1475-3
10.1007/s007750050376
10.1007/s00894-006-0149-4
10.1002/jcc.1056
10.1021/jp805225e
10.1021/ic50197a006
10.1016/j.jinorgbio.2007.04.005
10.1021/ja0212157
10.1007/BFb0029833
10.1021/jp065951z
10.1021/ja056354d
10.1021/jp952941h
10.1093/nar/gkt1344
10.1063/1.1676210
10.1002/chem.201300460
10.1021/ct800503d
10.1021/ja00310a009
10.1007/BF01114537
10.1021/ja065552h
10.1007/BF02401406
10.1016/0021-9991(92)90277-6
10.1021/ar950140r
10.1093/nar/gks208
10.1021/ct050164b
10.1002/(SICI)1097-461X(1997)61:3<589::AID-QUA28>3.0.CO;2-2
10.1016/0301-0104(81)85090-2
10.1021/jp960690m
10.1021/jp963753
10.1063/1.1777216
10.1016/j.jinorgbio.2011.07.005
10.1002/qua.560100211
10.1063/1.436185
10.1063/1.472460
10.1039/9781849732512
10.1007/s00894-014-2351-0
10.1039/b803510p
10.1021/jp001974g
10.1021/cr990029p
10.1093/oso/9780198551683.001.0001
10.1021/jp075460u
10.1002/(SICI)1096-987X(19960115)17:1<87::AID-JCC8>3.0.CO;2-X
10.1063/1.434668
10.1021/ic50196a034
10.1021/jp984187g
10.1039/cs9932200255
10.1016/0301-0104(73)80059-X
10.1063/1.466847
10.1021/jp980769m
10.1039/C4CS00055B
10.1039/c2cc36169h
10.1002/9780470125830.ch1
10.1021/jp970963t
10.1002/jcc.24856
10.1021/ja00474a005
10.1039/C0CP01534B
10.1021/jp062776d
10.1002/chem.201001171
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
JQ2
7X8
DOI 10.1002/jcc.24911
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 2692
ExternalDocumentID 28925001
10_1002_jcc_24911
JCC24911
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Grant Agency of Charles University
  funderid: 1145016
– fundername: Grant Agency of Czech Republic
  funderid: 16‐06240S
GroupedDBID -
.3N
.GA
05W
0R
10A
1L6
1OB
1OC
1ZS
33P
3N
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAONW
AAZKR
ABCUV
ABHUG
ABPTK
ABPVW
ABWRO
ACAHQ
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
ADZMN
AEIMD
AENEX
AEUQT
AFBPY
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GA
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HZ
IA
IPNFZ
IX1
J0M
JPC
KM
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4A
P4D
PQEST
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIG
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WT
WYISQ
X
XG1
XHC
XPP
XV2
ZZTAW
~IA
~WT
---
-~X
0R~
36B
6P2
AAHQN
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAYXX
ABCQN
ABIJN
ABJNI
ABLJU
ACCZN
ACGFO
ACXBN
ADKYN
ADMLS
AEFGJ
AEGXH
AEIGN
AEUYR
AEYWJ
AFFPM
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
ALVPJ
CITATION
HGLYW
HZ~
O8X
OIG
WXSBR
YQT
~KM
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
NPM
JQ2
7X8
ID FETCH-LOGICAL-c4541-c1da8e29ad063dc32bf39da01a289225b64d66ba04bc3f3947691bab48cf8e3f3
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413666600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0192-8651
1096-987X
IngestDate Sun Nov 09 10:52:54 EST 2025
Fri Jul 25 19:13:07 EDT 2025
Wed Feb 19 02:34:09 EST 2025
Sat Nov 29 03:23:37 EST 2025
Tue Nov 18 22:19:47 EST 2025
Fri Apr 02 05:00:50 EDT 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords reaction coordinate
proton transfer
DFT
chemical potential
thymine
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4541-c1da8e29ad063dc32bf39da01a289225b64d66ba04bc3f3947691bab48cf8e3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1408-5474
0000-0001-9909-8797
OpenAccessLink https://ruj.uj.edu.pl/xmlui/handle/item/49047
PMID 28925001
PQID 1954789716
PQPubID 48816
PageCount 13
ParticipantIDs proquest_miscellaneous_1940598200
proquest_journals_1954789716
pubmed_primary_28925001
crossref_primary_10_1002_jcc_24911
crossref_citationtrail_10_1002_jcc_24911
wiley_primary_10_1002_jcc_24911_JCC24911
ProviderPackageCode 10A
A03
ADOZA
BFHJK
BROTX
AMBMR
DCZOG
~IA
ACFBH
ACAHQ
LEEKS
AFGKR
50Y
50Z
AEUQT
XG1
AAEVG
MRSTM
.3N
MEWTI
1ZS
H.T
Q11
LP7
H.X
LP6
51W
51X
ACXME
WBKPD
QB0
AJXKR
ADMGS
UB1
AEIMD
GNP
ATUGU
WOHZO
G-S
O66
AZBYB
52M
3WU
52N
52O
52P
ADEOM
LATKE
ZZTAW
52S
930
BAFTC
52T
MK4
QRW
SUPJJ
52U
HHY
52W
DRSTM
1L6
52X
HHZ
AFPWT
4ZD
ALAGY
DR1
DR2
G.N
ACPOU
AFZJQ
ADAWD
702
7PT
66C
NNB
ADIZJ
.GA
AAONW
LYRES
GODZA
HBH
LUTES
ALUQN
AAZKR
MSFUL
LC2
AIURR
LC3
ABWRO
AZVAB
RWI
RWK
ABHUG
KQQ
RX1
ACXQS
BMXJE
R.K
WIB
WQJ
MXFUL
P2W
W8V
W99
WYISQ
P2X
WIH
WIK
JPC
BY8
MSSTM
DPXWK
1OB
AUFTA
1OC
3SF
F01
F00
NF~
BRXPI
WRC
AFVGU
F04
ADZMN
8UM
ABCUV
N05
N04
ADDAD
WJL
BNHUX
~WT
8-0
8-1
P4A
8-3
AGJLS
8-4
8-5
P4D
IX1
BHBCM
BMNLL
LITHE
J0M
MXSTM
DRFUL
33P
Q.N
05W
XV2
AAESR
WBFHL
LOXES
MRFUL
D-F
D-E
PublicationCentury 2000
PublicationDate December 5, 2017
PublicationDateYYYYMMDD 2017-12-05
PublicationDate_xml – month: 12
  year: 2017
  text: December 5, 2017
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 101
2004; 121
2010; 16
1993; 22
2008; 37
1996; 100
2011; 13
1977; 67
2011; 17
1992; 99
2014; 20
1996; 105
2013; 19
1971; 55
1994; 100
1996; 29
1990
2001
2017; 38
1997; 101
1987
1978; 100
1983
1978; 68
2008; 112
2010; 2
2003; 125
2006; 128
1989
1979; 18
2007; 129
1990; 77
1997; 61
1996; 17
2012
2011
1984; 106
2009
2006; 110
1995
1999; 4
1999; 20
1999; 103
1985; 107
1977; 46
2001; 22
1995; 6
2007; 13
2014; 43
2014; 42
2011; 105
1976; 10
2000; 104
2007; 111
2005; 6
2009; 5
2012; 48
2003; 103
2012; 116
1998; 102
1973; 2
2012; 40
1981; 55
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
Frisch M. J. (e_1_2_7_48_1) 2009
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
Šebesta F. (e_1_2_7_14_1)
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
Megger D. A. (e_1_2_7_3_1) 2012
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Fonseca C. G. (e_1_2_7_61_1) 1995
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
Bader R. F. W. (e_1_2_7_25_1) 1990
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
Saenger W. (e_1_2_7_52_1) 1983
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
Parr R. G. (e_1_2_7_30_1) 1989
References_xml – year: 2011
– year: 2009
– volume: 104
  start-page: 10923
  year: 2000
  publication-title: J. Phys. Chem. A
– publication-title: J. Comput. Chem.
– volume: 110
  start-page: 21010
  year: 2006
  publication-title: J. Phys. Chem. B
– volume: 20
  start-page: 2351
  year: 2014
  publication-title: J. Mol. Model.
– volume: 46
  start-page: 1
  year: 1977
  publication-title: Theor. Chim. Acta
– year: 2001
– volume: 105
  start-page: 1398
  year: 2011
  publication-title: J. Inorg. Biochem.
– year: 1989
– volume: 19
  start-page: 2689
  year: 2013
  publication-title: J. Mol. Model.
– volume: 128
  start-page: 2172
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 102
  start-page: 5951
  year: 1998
  publication-title: J. Phys. Chem. A
– volume: 105
  start-page: 6505
  year: 1996
  publication-title: J. Chem. Phys.
– volume: 42
  start-page: 4094
  year: 2014
  publication-title: Nucleic Acid Res.
– volume: 67
  start-page: 4880
  year: 1977
  publication-title: J. Chem. Phys.
– volume: 17
  start-page: 87
  year: 1996
  publication-title: J. Comput. Chem.
– year: 1990
– volume: 5
  start-page: 962
  year: 2009
  publication-title: J. Chem. Theor. Comput.
– volume: 29
  start-page: 298
  year: 1996
  publication-title: Acc. Chem. Res.
– volume: 100
  start-page: 7535
  year: 1994
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 537
  year: 1999
  publication-title: J. Biol. Inorg. Chem.
– volume: 2
  start-page: 41
  year: 1973
  publication-title: Chem. Phys.
– volume: 100
  start-page: 14492
  year: 1996
  publication-title: J. Phys. Chem.
– volume: 101
  start-page: 6299
  year: 1997
  publication-title: J. Phys. Chem. A
– volume: 48
  start-page: 11844
  year: 2012
  publication-title: Chem. Commun.
– volume: 18
  start-page: 1558
  year: 1979
  publication-title: Inorg. Chem.
– volume: 100
  start-page: 7250
  year: 1996
  publication-title: J. Phys. Chem.
– volume: 103
  start-page: 1793
  year: 2003
  publication-title: Chem. Rev.
– volume: 38
  start-page: 2076
  year: 2017
  publication-title: J. Comput. Chem.
– volume: 100
  start-page: 1666
  year: 1978
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 1755
  year: 1979
  publication-title: Inorg. Chem.
– volume: 22
  start-page: 255
  year: 1993
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 1133
  year: 2005
  publication-title: J. Chem. Theory Comput.
– volume: 13
  start-page: 347
  year: 2007
  publication-title: J. Mol. Model.
– volume: 17
  start-page: 2337
  year: 2011
  publication-title: J. Mol. Model.
– volume: 68
  start-page: 3801
  year: 1978
  publication-title: J. Chem. Phys.
– volume: 16
  start-page: 13218
  year: 2010
  publication-title: Chem. Eur. J.
– volume: 2
  start-page: 229
  year: 2010
  publication-title: Nat. Chem.
– year: 1983
– volume: 22
  start-page: 931
  year: 2001
  publication-title: J. Comput. Chem.
– volume: 101
  start-page: 9670
  year: 1997
  publication-title: J. Phys. Chem. B
– volume: 103
  start-page: 4398
  year: 1999
  publication-title: J. Phys. Chem. A
– volume: 112
  start-page: 11801
  year: 2008
  publication-title: J. Phys. Chem. A
– volume: 20
  start-page: 114
  year: 1999
  publication-title: J. Comput. Chem.
– start-page: 305
  year: 1995
– volume: 55
  start-page: 117
  year: 1981
  publication-title: Chem. Phys.
– volume: 13
  start-page: 100
  year: 2011
  publication-title: Phys. Chem. Chem. Phys.
– volume: 111
  start-page: 5921
  year: 2007
  publication-title: J. Phys. Chem. A
– year: 1987
– volume: 107
  start-page: 6801
  year: 1985
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 1933
  year: 2008
  publication-title: J. Phys. Chem. A
– volume: 6
  start-page: 343
  year: 1995
  publication-title: Struct. Chem.
– volume: 99
  start-page: 84
  year: 1992
  publication-title: J. Comput. Phys.
– volume: 121
  start-page: 4570
  year: 2004
  publication-title: J. Chem. Phys.
– year: 2012
– volume: 106
  start-page: 1945
  year: 1984
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 4953
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 77
  start-page: 123
  year: 1990
  publication-title: Theor. Chim. Acta
– volume: 19
  start-page: 9884
  year: 2013
  publication-title: Chem. Eur. J.
– volume: 116
  start-page: 8313
  year: 2012
  publication-title: J. Phys. Chem. A
– volume: 10
  start-page: 325
  year: 1976
  publication-title: Int. J. Quantum Chem.
– volume: 101
  start-page: 1090
  year: 2007
  publication-title: J. Inorg. Biochem.
– start-page: 1
  year: 1995
  end-page: 72
– volume: 55
  start-page: 1236
  year: 1971
  publication-title: J. Chem. Phys.
– volume: 129
  start-page: 244
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 40
  start-page: 5766
  year: 2012
  publication-title: Nucleic Acids Res.
– volume: 37
  start-page: 4965
  year: 2008
  publication-title: Dalton Trans.
– volume: 61
  start-page: 589
  year: 1997
  publication-title: Int. J. Quantum Chem.
– volume: 125
  start-page: 5025
  year: 2003
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_37_1
  doi: 10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L
– ident: e_1_2_7_18_1
  doi: 10.1007/BF02293129
– ident: e_1_2_7_10_1
  doi: 10.1021/jp3045077
– ident: e_1_2_7_51_1
– ident: e_1_2_7_47_1
  doi: 10.1007/s00894-011-1023-6
– ident: e_1_2_7_70_1
  doi: 10.1021/ja00319a008
– ident: e_1_2_7_6_1
  doi: 10.1038/nchem.512
– ident: e_1_2_7_72_1
  doi: 10.1007/s00894-012-1475-3
– ident: e_1_2_7_5_1
  doi: 10.1007/s007750050376
– ident: e_1_2_7_44_1
  doi: 10.1007/s00894-006-0149-4
– ident: e_1_2_7_58_1
  doi: 10.1002/jcc.1056
– ident: e_1_2_7_32_1
  doi: 10.1021/jp805225e
– ident: e_1_2_7_40_1
  doi: 10.1021/ic50197a006
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jinorgbio.2007.04.005
– ident: e_1_2_7_65_1
  doi: 10.1021/ja0212157
– ident: e_1_2_7_27_1
  doi: 10.1007/BFb0029833
– ident: e_1_2_7_31_1
  doi: 10.1021/jp065951z
– ident: e_1_2_7_22_1
  doi: 10.1021/ja056354d
– ident: e_1_2_7_15_1
  doi: 10.1021/jp952941h
– ident: e_1_2_7_11_1
  doi: 10.1093/nar/gkt1344
– ident: e_1_2_7_33_1
  doi: 10.1063/1.1676210
– ident: e_1_2_7_13_1
  doi: 10.1002/chem.201300460
– ident: e_1_2_7_46_1
  doi: 10.1021/ct800503d
– ident: e_1_2_7_28_1
  doi: 10.1021/ja00310a009
– ident: e_1_2_7_50_1
  doi: 10.1007/BF01114537
– ident: e_1_2_7_8_1
  doi: 10.1021/ja065552h
– ident: e_1_2_7_39_1
  doi: 10.1007/BF02401406
– ident: e_1_2_7_54_1
– ident: e_1_2_7_60_1
  doi: 10.1016/0021-9991(92)90277-6
– ident: e_1_2_7_63_1
  doi: 10.1021/ar950140r
– start-page: 305
  volume-title: Methods and Techniques in Computational Chemistry, METECC‐95
  year: 1995
  ident: e_1_2_7_61_1
– ident: e_1_2_7_9_1
  doi: 10.1093/nar/gks208
– ident: e_1_2_7_69_1
  doi: 10.1021/ct050164b
– ident: e_1_2_7_56_1
  doi: 10.1002/(SICI)1097-461X(1997)61:3<589::AID-QUA28>3.0.CO;2-2
– ident: e_1_2_7_71_1
  doi: 10.1016/0301-0104(81)85090-2
– volume-title: D. J. Fox
  year: 2009
  ident: e_1_2_7_48_1
– ident: e_1_2_7_66_1
  doi: 10.1021/jp960690m
– ident: e_1_2_7_16_1
  doi: 10.1021/jp963753
– ident: e_1_2_7_55_1
  doi: 10.1063/1.1777216
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jinorgbio.2011.07.005
– ident: e_1_2_7_34_1
  doi: 10.1002/qua.560100211
– ident: e_1_2_7_29_1
  doi: 10.1063/1.436185
– ident: e_1_2_7_57_1
  doi: 10.1063/1.472460
– ident: e_1_2_7_2_1
  doi: 10.1039/9781849732512
– ident: e_1_2_7_42_1
  doi: 10.1007/s00894-014-2351-0
– ident: e_1_2_7_19_1
  doi: 10.1039/b803510p
– ident: e_1_2_7_64_1
  doi: 10.1021/jp001974g
– ident: e_1_2_7_26_1
  doi: 10.1021/cr990029p
– volume-title: Atoms in Molecules: A Quantum Theory
  year: 1990
  ident: e_1_2_7_25_1
  doi: 10.1093/oso/9780198551683.001.0001
– ident: e_1_2_7_45_1
  doi: 10.1021/jp075460u
– ident: e_1_2_7_62_1
  doi: 10.1002/(SICI)1096-987X(19960115)17:1<87::AID-JCC8>3.0.CO;2-X
– ident: e_1_2_7_36_1
  doi: 10.1063/1.434668
– ident: e_1_2_7_41_1
  doi: 10.1021/ic50196a034
– ident: e_1_2_7_24_1
  doi: 10.1021/jp984187g
– ident: e_1_2_7_14_1
  publication-title: J. Comput. Chem.
– ident: e_1_2_7_1_1
  doi: 10.1039/cs9932200255
– ident: e_1_2_7_59_1
  doi: 10.1016/0301-0104(73)80059-X
– ident: e_1_2_7_49_1
  doi: 10.1063/1.466847
– ident: e_1_2_7_17_1
  doi: 10.1021/jp980769m
– ident: e_1_2_7_38_1
  doi: 10.1039/C4CS00055B
– ident: e_1_2_7_7_1
  doi: 10.1039/c2cc36169h
– ident: e_1_2_7_68_1
  doi: 10.1002/9780470125830.ch1
– ident: e_1_2_7_53_1
– ident: e_1_2_7_67_1
  doi: 10.1021/jp970963t
– ident: e_1_2_7_43_1
  doi: 10.1002/jcc.24856
– volume-title: Principles of Nucleic Acid Structure
  year: 1983
  ident: e_1_2_7_52_1
– ident: e_1_2_7_35_1
  doi: 10.1021/ja00474a005
– volume-title: Nucleic Acids with Purine‐ and Pyrimidine‐Derived Nucleosides
  year: 2012
  ident: e_1_2_7_3_1
– ident: e_1_2_7_20_1
  doi: 10.1039/C0CP01534B
– ident: e_1_2_7_23_1
  doi: 10.1021/jp062776d
– ident: e_1_2_7_12_1
  doi: 10.1002/chem.201001171
– volume-title: Density Functional Theory of Atoms and Molecules
  year: 1989
  ident: e_1_2_7_30_1
SSID ssj0003564
Score 2.267758
Snippet This study involves the intramolecular proton transfer (PT) process on a thymine nucleobase between N3 and O2 atoms. We explore a mechanism for the PT assisted...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2680
SubjectTerms Cations
chemical potential
Computational chemistry
DFT
Ions
Ligands
Mercury (metal)
Molecular chemistry
Nuclei
proton transfer
Protons
Quantum mechanics
reaction coordinate
Thymine
Title The influence of the metal cations and microhydration on the reaction trajectory of the N3 ↔ O2 thymine proton transfer: Quantum mechanical study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.24911
https://www.ncbi.nlm.nih.gov/pubmed/28925001
https://www.proquest.com/docview/1954789716
https://www.proquest.com/docview/1940598200
Volume 38
WOSCitedRecordID wos000413666600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB6VLRK8QDm7vWQQD7wEcthZp29o6QohtByi0r5FPkUrNlvtgbR_gD9Af2F_SWecQ62gElKlPCTxJHYyY_sbH98AvBJZ7GzsVVRwLiKeWR5pic6K8qh-lxfeCxWCTQzGYzmZFF-uhPqq-SG6ATeqGaG9pgqu9KKZ10_fnhrzBj0H2tW7maLV8h5svv82Ov7UNcOZqLmjEMJEMhdJSyt09eHrndFfCPM6YA09zujhLcq6BQ8amMne1XbxCDZc9RjuDdvobk_gD9oHO2kjlLCZZ4gE2dQhFmfNKB5TlWVTWrD3Y21rQ2F4kBwizbAfgi3n6jSM-6_bV4wzdvH7nH1O8Wo9xZIzooKoRREiu_kh-7pCda6mmBttOyYrYYHl9ikcj46-Dz9ETYCGyHDBk8gkVkmXFsoi0LEmS7XPCqviRKEbhw2FzrnNc61irk2GSXyQF4lWmkvjpcM7z6BXzSq3DQxV6NET44n0tDWWo9djpEmNjbUXmEUfXreaKk3DXk5BNH6WNe9yWuJfLsNf7sPLTvSspuz4l9Beq-6yqbWLktjvBpJItfrwoktGxdAkiqrcbEUyCHELxE1xH57XZtLlQl8tsN_HwgZruDn78uNwGE52_l90F-6nhCloLY3Yg95yvnL7cNf8Wp4s5gdwZzCRB00luAQXGgoT
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+the+metal+cations+and+microhydration+on+the+reaction+trajectory+of+the+N3+%E2%86%94+O2+thymine+proton+transfer%3A+Quantum+mechanical+study&rft.jtitle=Journal+of+computational+chemistry&rft.au=%C5%A0ebesta%2C+Filip&rft.au=Brela%2C+Mateusz+Z.&rft.au=Diaz%2C+Silvia&rft.au=Miranda%2C+Sebastian&rft.date=2017-12-05&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=38&rft.issue=31&rft.spage=2680&rft.epage=2692&rft_id=info:doi/10.1002%2Fjcc.24911&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcc_24911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon