Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms

Cryogenic electron tomography (cryo-ET) visualizes the 3D spatial distribution of macromolecules at nanometer resolution inside native cells. However, automated identification of macromolecules inside cellular tomograms is challenged by noise and reconstruction artifacts, as well as the presence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods Jg. 18; H. 11; S. 1386 - 1394
Hauptverfasser: Moebel, Emmanuel, Martinez-Sanchez, Antonio, Lamm, Lorenz, Righetto, Ricardo D, Wietrzynski, Wojciech, Albert, Sahradha, Larivière, Damien, Fourmentin, Eric, Pfeffer, Stefan, Ortiz, Julio, Baumeister, Wolfgang, Peng, Tingying, Engel, Benjamin D, Kervrann, Charles
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Nature Publishing Group 01.11.2021
Schlagworte:
ISSN:1548-7091, 1548-7105, 1548-7105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cryogenic electron tomography (cryo-ET) visualizes the 3D spatial distribution of macromolecules at nanometer resolution inside native cells. However, automated identification of macromolecules inside cellular tomograms is challenged by noise and reconstruction artifacts, as well as the presence of many molecular species in the crowded volumes. Here, we present DeepFinder, a computational procedure that uses artificial neural networks to simultaneously localize multiple classes of macromolecules. Once trained, the inference stage of DeepFinder is faster than template matching and performs better than other competitive deep learning methods at identifying macromolecules of various sizes in both synthetic and experimental datasets. On cellular cryo-ET data, DeepFinder localized membrane-bound and cytosolic ribosomes (roughly 3.2 MDa), ribulose 1,5-bisphosphate carboxylase-oxygenase (roughly 560 kDa soluble complex) and photosystem II (roughly 550 kDa membrane complex) with an accuracy comparable to expert-supervised ground truth annotations. DeepFinder is therefore a promising algorithm for the semiautomated analysis of a wide range of molecular targets in cellular tomograms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-021-01275-4