Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms

Cryogenic electron tomography (cryo-ET) visualizes the 3D spatial distribution of macromolecules at nanometer resolution inside native cells. However, automated identification of macromolecules inside cellular tomograms is challenged by noise and reconstruction artifacts, as well as the presence of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nature methods Ročník 18; číslo 11; s. 1386 - 1394
Hlavní autori: Moebel, Emmanuel, Martinez-Sanchez, Antonio, Lamm, Lorenz, Righetto, Ricardo D, Wietrzynski, Wojciech, Albert, Sahradha, Larivière, Damien, Fourmentin, Eric, Pfeffer, Stefan, Ortiz, Julio, Baumeister, Wolfgang, Peng, Tingying, Engel, Benjamin D, Kervrann, Charles
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Nature Publishing Group 01.11.2021
Predmet:
ISSN:1548-7091, 1548-7105, 1548-7105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Cryogenic electron tomography (cryo-ET) visualizes the 3D spatial distribution of macromolecules at nanometer resolution inside native cells. However, automated identification of macromolecules inside cellular tomograms is challenged by noise and reconstruction artifacts, as well as the presence of many molecular species in the crowded volumes. Here, we present DeepFinder, a computational procedure that uses artificial neural networks to simultaneously localize multiple classes of macromolecules. Once trained, the inference stage of DeepFinder is faster than template matching and performs better than other competitive deep learning methods at identifying macromolecules of various sizes in both synthetic and experimental datasets. On cellular cryo-ET data, DeepFinder localized membrane-bound and cytosolic ribosomes (roughly 3.2 MDa), ribulose 1,5-bisphosphate carboxylase-oxygenase (roughly 560 kDa soluble complex) and photosystem II (roughly 550 kDa membrane complex) with an accuracy comparable to expert-supervised ground truth annotations. DeepFinder is therefore a promising algorithm for the semiautomated analysis of a wide range of molecular targets in cellular tomograms.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-021-01275-4