High quality axion in supersymmetric models
A bstract In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to introduce symmetries only useful for addressing the axion quality problem. Rather, we rely on symmetries well motivated by oth...
Saved in:
| Published in: | The journal of high energy physics Vol. 2022; no. 12; pp. 67 - 28 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
13.12.2022
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 1029-8479, 1029-8479 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A
bstract
In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to introduce symmetries only useful for addressing the axion quality problem. Rather, we rely on symmetries well motivated by other issues in BSM: supersymmetry, U(1)
B
−
L
and the discrete R-symmetry
Z
NR
. We show that the interplay among these guarantees the high quality of the axion even for the gravitino mass and axion decay constant as large as
m
3/2
=
O
(10)TeV and
F
a
=
O
(10
15
)GeV respectively. The key point of this work relies on the observation that the MSSM contribution to the mixed anomalies
Z
NR
− [SU(2)
L
]
2
and
Z
NR
− [SU(3)
c
]
2
is not enough for gauging
Z
NR
for
N
≠ 6, which necessitates the introduction of new matter fields. We make the introduction to achieve zero mixed anomalies, which logically supports a desired large enough
N
for
Z
NR
. This mechanism effectively makes
Z
NR
equal to U(1)
R
and thus offers a logically complete solution to the axion quality problem. |
|---|---|
| AbstractList | In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to introduce symmetries only useful for addressing the axion quality problem. Rather, we rely on symmetries well motivated by other issues in BSM: supersymmetry, U(1)
B
−
L
and the discrete R-symmetry
Z
NR
. We show that the interplay among these guarantees the high quality of the axion even for the gravitino mass and axion decay constant as large as
m
3/2
=
$$ \mathcal{O} $$
O
(10)TeV and
F
a
=
$$ \mathcal{O} $$
O
(10
15
)GeV respectively. The key point of this work relies on the observation that the MSSM contribution to the mixed anomalies
Z
NR
− [SU(2)
L
]
2
and
Z
NR
− [SU(3)
c
]
2
is not enough for gauging
Z
NR
for
N
≠ 6, which necessitates the introduction of new matter fields. We make the introduction to achieve zero mixed anomalies, which logically supports a desired large enough
N
for
Z
NR
. This mechanism effectively makes
Z
NR
equal to U(1)
R
and thus offers a logically complete solution to the axion quality problem. A bstract In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to introduce symmetries only useful for addressing the axion quality problem. Rather, we rely on symmetries well motivated by other issues in BSM: supersymmetry, U(1) B − L and the discrete R-symmetry Z NR . We show that the interplay among these guarantees the high quality of the axion even for the gravitino mass and axion decay constant as large as m 3/2 = O (10)TeV and F a = O (10 15 )GeV respectively. The key point of this work relies on the observation that the MSSM contribution to the mixed anomalies Z NR − [SU(2) L ] 2 and Z NR − [SU(3) c ] 2 is not enough for gauging Z NR for N ≠ 6, which necessitates the introduction of new matter fields. We make the introduction to achieve zero mixed anomalies, which logically supports a desired large enough N for Z NR . This mechanism effectively makes Z NR equal to U(1) R and thus offers a logically complete solution to the axion quality problem. In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to introduce symmetries only useful for addressing the axion quality problem. Rather, we rely on symmetries well motivated by other issues in BSM: supersymmetry, U(1)B−L and the discrete R-symmetry ZNR. We show that the interplay among these guarantees the high quality of the axion even for the gravitino mass and axion decay constant as large as m3/2 = O(10)TeV and Fa = O(1015)GeV respectively. The key point of this work relies on the observation that the MSSM contribution to the mixed anomalies ZNR − [SU(2)L]2 and ZNR − [SU(3)c]2 is not enough for gauging ZNR for N ≠ 6, which necessitates the introduction of new matter fields. We make the introduction to achieve zero mixed anomalies, which logically supports a desired large enough N for ZNR. This mechanism effectively makes ZNR equal to U(1)R and thus offers a logically complete solution to the axion quality problem. Abstract In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to introduce symmetries only useful for addressing the axion quality problem. Rather, we rely on symmetries well motivated by other issues in BSM: supersymmetry, U(1)B−L and the discrete R-symmetry Z NR . We show that the interplay among these guarantees the high quality of the axion even for the gravitino mass and axion decay constant as large as m 3/2 = O $$ \mathcal{O} $$ (10)TeV and F a = O $$ \mathcal{O} $$ (1015)GeV respectively. The key point of this work relies on the observation that the MSSM contribution to the mixed anomalies Z NR − [SU(2) L ]2 and Z NR − [SU(3) c ]2 is not enough for gauging Z NR for N ≠ 6, which necessitates the introduction of new matter fields. We make the introduction to achieve zero mixed anomalies, which logically supports a desired large enough N for Z NR . This mechanism effectively makes Z NR equal to U(1) R and thus offers a logically complete solution to the axion quality problem. |
| ArticleNumber | 67 |
| Author | Yanagida, Tsutomu T. Choi, Gongjun |
| Author_xml | – sequence: 1 givenname: Gongjun orcidid: 0000-0001-8515-5586 surname: Choi fullname: Choi, Gongjun email: gongjun.choi@cern.ch organization: Theoretical Physics Department, CERN – sequence: 2 givenname: Tsutomu T. surname: Yanagida fullname: Yanagida, Tsutomu T. organization: Tsung-Dao Lee Institute (TDLI) & School of Physics and Astronomy, Shanghai Jiao Tong University, Kavli IPMU (WPI), The University of Tokyo |
| BookMark | eNp9kM1LAzEQxYNUsK2evS54UWRtkib7cZRSbaWgBz2HaT5qynbTJrtg_3tTV1QEvcxMwvzeG94A9WpXa4TOCb4hGOejh9n0idBLiim9wll-hPoE0zItWF72fswnaBDCGmPCSYn76HpmV6_JroXKNvsE3qyrE1snod1qH_abjW68lcnGKV2FU3RsoAr67LMP0cvd9HkySxeP9_PJ7SKVjI-bVAGRmhWEGloAicVoE3vOgZKMEqY4V5nBYApplgqX8Wk4LWGpWFFQMOMhmne6ysFabL3dgN8LB1Z8fDi_EuAbKystlC5ynkVFusQsOpSSSTKmUusykwTyqHXRaW2927U6NGLtWl_H8wXNOcs4pRzHrVG3Jb0LwWvz5UqwOKQrunTFIV0R040E_0VI20AT42s82OofDndciA71Svvve_5C3gEYQ44z |
| CitedBy_id | crossref_primary_10_1088_1572_9494_acb3b5 crossref_primary_10_1007_JHEP02_2023_201 crossref_primary_10_1088_1361_6471_ad38cf crossref_primary_10_1007_JHEP06_2023_083 crossref_primary_10_1007_JHEP08_2025_182 crossref_primary_10_1103_PhysRevD_111_015048 |
| Cites_doi | 10.1103/PhysRevLett.47.1035 10.1103/PhysRevD.104.115011 10.1016/0550-3213(93)90111-2 10.1007/978-3-540-73518-2_3 10.1103/PhysRevLett.38.1440 10.1016/0370-2693(92)91928-3 10.1016/j.physletb.2019.01.007 10.1007/BF01570798 10.1103/PhysRevD.20.2986 10.1016/0370-2693(92)90019-Z 10.1103/PhysRevD.104.055014 10.1103/PhysRevLett.75.2077 10.1016/0370-2693(86)91126-3 10.1007/JHEP05(2016)104 10.1103/PhysRevD.46.539 10.1016/0370-2693(79)91233-4 10.1016/0550-3213(95)00583-8 10.1103/PhysRevD.101.075031 10.1016/0550-3213(86)90022-2 10.1103/PhysRevD.101.095032 10.1007/JHEP11(2010)105 10.1103/PhysRevLett.40.279 10.1140/epjc/s10052-019-7046-3 10.1007/JHEP04(2022)180 10.1007/JHEP11(2020)090 10.1103/PhysRevD.102.035022 10.1016/j.physletb.2017.05.071 10.1016/0370-2693(92)90492-M 10.1103/PhysRevD.88.075022 10.1103/PhysRevD.95.043541 10.1103/PhysRevD.66.075010 10.1088/1361-6382/ab5197 10.1103/PhysRevD.62.043509 10.1016/j.physletb.2011.04.035 10.1016/0550-3213(84)90230-X 10.1016/0370-2693(84)91565-X 10.1140/epjc/s10052-018-6528-z 10.1016/0370-2693(91)91614-2 10.1088/1126-6708/2006/06/051 10.1103/PhysRevD.103.015002 10.1134/1.567390 10.1016/0550-3213(88)90446-4 10.1103/PhysRevD.93.115010 10.1016/0550-3213(86)90043-X 10.1016/0370-2693(92)90491-L 10.1016/0370-2693(85)90164-9 10.1007/JHEP11(2018)199 10.1016/j.physletb.2019.01.013 10.1103/PhysRevD.104.055013 10.1016/S0370-2693(00)00605-5 10.1103/PhysRevLett.40.223 10.1007/JHEP11(2020)074 10.1088/1126-6708/2006/05/078 10.1016/j.physletb.2020.135408 10.1016/j.physletb.2020.135976 10.1016/0370-2693(77)90435-X 10.1016/S0370-2693(00)01392-7 10.1103/PhysRevLett.61.263 10.1103/PhysRevD.67.095008 10.1103/PhysRevD.52.912 10.1103/PhysRevD.92.015021 10.1007/JHEP10(2022)025 10.1103/PhysRevD.16.1791 10.1103/PhysRevD.99.015041 10.1007/JHEP01(2021)032 10.1007/JHEP07(2020)048 10.1103/PhysRevD.31.1733 10.1016/0550-3213(95)00584-6 10.1103/PhysRevD.83.035006 10.1007/JHEP07(2018)128 10.1103/PhysRevLett.114.141801 10.1103/PhysRevD.59.072001 10.1103/PhysRevLett.119.011801 10.1140/epjc/s10052-021-09745-x 10.1103/PhysRevD.104.L101302 10.1016/j.physletb.2018.03.054 10.1103/PhysRevD.32.1828 10.1007/JHEP02(2019)136 10.1016/S0370-2693(03)00411-8 10.1007/JHEP11(2017)005 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1007/JHEP12(2022)067 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1029-8479 |
| EndPage | 28 |
| ExternalDocumentID | oai_doaj_org_article_de8756d552b0475a9c4c132cee96c1a7 10_1007_JHEP12_2022_067 |
| GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOAED ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AFFHD AMVHM CITATION PHGZM PHGZT PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c453t-da1ce4812f28a1f28fefa1f75a216214d55d6f0af8cfbd0955df529abd4882af3 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000899551700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1029-8479 |
| IngestDate | Fri Oct 03 12:40:28 EDT 2025 Sat Oct 18 22:47:06 EDT 2025 Sat Nov 29 02:13:20 EST 2025 Tue Nov 18 22:43:06 EST 2025 Fri Feb 21 02:43:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Discrete Symmetries Supersymmetry Axions and ALPs Gauge Symmetry |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c453t-da1ce4812f28a1f28fefa1f75a216214d55d6f0af8cfbd0955df529abd4882af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8515-5586 |
| OpenAccessLink | https://link.springer.com/10.1007/JHEP12(2022)067 |
| PQID | 2754652250 |
| PQPubID | 2034718 |
| PageCount | 28 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_de8756d552b0475a9c4c132cee96c1a7 proquest_journals_2754652250 crossref_primary_10_1007_JHEP12_2022_067 crossref_citationtrail_10_1007_JHEP12_2022_067 springer_journals_10_1007_JHEP12_2022_067 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-13 |
| PublicationDateYYYYMMDD | 2022-12-13 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | The journal of high energy physics |
| PublicationTitleAbbrev | J. High Energ. Phys |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
| References | IbáñezLERossGGDiscrete gauge symmetry anomaliesPhys. Lett. B19912602911991PhLB..260..291I10.1016/0370-2693(91)91614-2[INSPIRE] RediMSatoRComposite accidental axionsJHEP2016051042016JHEP...05..104R35218231390.8171710.1007/JHEP05(2016)104[arXiv:1602.05427] [INSPIRE] A.G. Dias, V. Pleitez and M.D. Tonasse, Naturally light invisible axion in models with large local discrete symmetries, Phys. Rev. D67 (2003) 095008 [hep-ph/0211107] [INSPIRE]. Z.G. Berezhiani and M.Y. Khlopov, The theory of broken gauge symmetry of families, Sov. J. Nucl. Phys.51 (1990) 739 [Yad. Fiz.51 (1990) 1157] [INSPIRE]. H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Model of visible QCD axion, Phys. Rev. D92 (2015) 015021 [arXiv:1504.06084] [INSPIRE]. DimopoulosSA solution of the strong CP problem in models with scalarsPhys. Lett. B1979844351979PhLB...84..435D10.1016/0370-2693(79)91233-4[INSPIRE] BonnefoyQDudasEPokorskiSAxions in a highly protected gauge symmetry modelEur. Phys. J. C201979312019EPJC...79...31B10.1140/epjc/s10052-018-6528-z[arXiv:1804.01112] [INSPIRE] AlonsoRUrbanoAWormholes and masses for Goldstone bosonsJHEP2019021362019JHEP...02..136A39252321411.8300810.1007/JHEP02(2019)136[arXiv:1706.07415] [INSPIRE] L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D95 (2017) 043541 [arXiv:1610.08297] [INSPIRE]. BanksTDineMFoxPJGorbatovEOn the possibility of large axion decay constantsJCAP2003060012003JCAP...06..001B1992585[hep-th/0303252] [INSPIRE] LillardBTaitTMPA high quality composite axionJHEP2018111992018JHEP...11..199L390038410.1007/JHEP11(2018)199[arXiv:1811.03089] [INSPIRE] BaerHBargerVSenguptaDGravity safe, electroweak natural axionic solution to strong CP and SUSY μ problemsPhys. Lett. B2019790582019PhLB..790...58B10.1016/j.physletb.2019.01.007[arXiv:1810.03713] [INSPIRE] LeeK-MWormholes and Goldstone bosonsPhys. Rev. Lett.1988612631988PhRvL..61..263L10.1103/PhysRevLett.61.263[INSPIRE] A.H. Chamseddine and H.K. Dreiner, Anomaly free gauged R symmetry in local supersymmetry, Nucl. Phys. B458 (1996) 65 [hep-ph/9504337] [INSPIRE]. WilczekFProblem of strong P and T invariance in the presence of instantonsPhys. Rev. Lett.1978402791978PhRvL..40..279W10.1103/PhysRevLett.40.279[INSPIRE] ConlonJPThe QCD axion and moduli stabilisationJHEP2006050782006JHEP...05..078C223147310.1088/1126-6708/2006/05/078[hep-th/0602233] [INSPIRE] A. Hook, Anomalous solutions to the strong CP problem, Phys. Rev. Lett.114 (2015) 141801 [arXiv:1411.3325] [INSPIRE]. M. Ibe, M. Yamazaki and T.T. Yanagida, Quintessence axion revisited in light of swampland conjectures, Class. Quant. Grav.36 (2019) 235020 [arXiv:1811.04664] [INSPIRE]. ChoiGSuzukiMYanagidaTTQCD axion from a spontaneously broken B − L gauge symmetryJHEP2020070482020JHEP...07..048C10.1007/JHEP07(2020)048[arXiv:2005.10415] [INSPIRE] L. Darmé and E. Nardi, Exact accidental U(1) symmetries for the axion, Phys. Rev. D104 (2021) 055013 [arXiv:2102.05055] [INSPIRE]. GreenMBSchwarzJHAnomaly cancellation in supersymmetric D = 10 gauge theory and superstring theoryPhys. Lett. B19841491171984PhLB..149..117G77108610.1016/0370-2693(84)91565-X[INSPIRE] Z. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: the Weinberg-Wilczek axion revisited, Phys. Lett. B500 (2001) 286 [hep-ph/0009290] [INSPIRE]. MinkowskiPμ → eγ at a rate of one out of 109muon decays?Phys. Lett. B1977674211977PhLB...67..421M10.1016/0370-2693(77)90435-X[INSPIRE] BerezhianiZGHorizontal symmetry and quark-lepton mass spectrum: the SU(5) × SU(3)HmodelPhys. Lett. B19851501771985PhLB..150..177B10.1016/0370-2693(85)90164-9[INSPIRE] T. Gherghetta, N. Nagata and M. Shifman, A visible QCD axion from an enlarged color group, Phys. Rev. D93 (2016) 115010 [arXiv:1604.01127] [INSPIRE]. R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B282 (1992) 132 [hep-ph/9203206] [INSPIRE]. K. Choi, String or M-theory axion as a quintessence, Phys. Rev. D62 (2000) 043509 [hep-ph/9902292] [INSPIRE]. Di LuzioLAccidental SO(10) axion from gauged flavourJHEP202011074420420410.1007/JHEP11(2020)074[arXiv:2008.09119] [INSPIRE] L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys. B398 (1993) 301 [hep-ph/9210211] [INSPIRE]. H.-S. Lee and W. Yin, Peccei-Quinn symmetry from a hidden gauge group structure, Phys. Rev. D99 (2019) 015041 [arXiv:1811.04039] [INSPIRE]. R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D16 (1977) 1791 [INSPIRE]. FukudaHIbeMSuzukiMYanagidaTTGauged Peccei-Quinn symmetry — a case of simultaneous breaking of SUSY and PQ symmetryJHEP2018071282018JHEP...07..128F10.1007/JHEP07(2018)128[arXiv:1803.00759] [INSPIRE] D.J. Castano, D.Z. Freedman and C. Manuel, Consequences of supergravity with gauged U(1)Rsymmetry, Nucl. Phys. B461 (1996) 50 [hep-ph/9507397] [INSPIRE]. LillardBTaitTMPA composite axion from a supersymmetric product groupJHEP2017110052017JHEP...11..005L37485321383.8110110.1007/JHEP11(2017)005[arXiv:1707.04261] [INSPIRE] G. Choi, M. Suzuki and T.T. Yanagida, Degenerate fermion dark matter from a broken U(1)B−Lgauge symmetry, Phys. Rev. D102 (2020) 035022 [arXiv:2004.07863] [INSPIRE]. Z.G. Berezhiani and M.Y. Khlopov, Cosmology of spontaneously broken gauge family symmetry, Z. Phys. C49 (1991) 73 [INSPIRE]. K. Choi and J.E. Kim, Dynamical axion, Phys. Rev. D32 (1985) 1828 [INSPIRE]. S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D46 (1992) 539 [INSPIRE]. N. Chen, Y. Liu and Z. Teng, Axion model with the SU(6) unification, Phys. Rev. D104 (2021) 115011 [arXiv:2106.00223] [INSPIRE]. NakayamaKTakahashiFYanagidaTTNumber-theory dark matterPhys. Lett. B20116993602011PhLB..699..360N10.1016/j.physletb.2011.04.035[arXiv:1102.4688] [INSPIRE] P. Fox, A. Pierce and S.D. Thomas, Probing a QCD string axion with precision cosmological measurements, hep-th/0409059 [INSPIRE]. DuerrMSchmidt-HobergKUnwinJProtecting the axion with local baryon numberPhys. Lett. B20187805532018PhLB..780..553D1390.8164010.1016/j.physletb.2018.03.054[arXiv:1712.01841] [INSPIRE] H.-C. Cheng and D.E. Kaplan, Axions and a gauged Peccei-Quinn symmetry, hep-ph/0103346 [INSPIRE]. GhignaSLusignoliMRoncadelliMInstability of the invisible axionPhys. Lett. B19922832781992PhLB..283..278G10.1016/0370-2693(92)90019-Z[INSPIRE] Gell-MannMRamondPSlanskyRComplex spinors and unified theoriesConf. Proc. C1979790927315[arXiv:1306.4669] [INSPIRE] M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B174 (1986) 45 [INSPIRE]. C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett.97 (2006) 131801 [hep-ex/0602020] [INSPIRE]. B. Batell, Dark discrete gauge symmetries, Phys. Rev. D83 (2011) 035006 [arXiv:1007.0045] [INSPIRE]. M. Fukugita and T. Yanagida, Model for the cosmological constant, report number YITP-K-1098 (1994) [INSPIRE]. K. Choi and H.D. Kim, Small instanton contribution to the axion potential in supersymmetric models, Phys. Rev. D59 (1999) 072001 [hep-ph/9809286] [INSPIRE]. VafaCWittenERestrictions on symmetry breaking in vector-like gauge theoriesNucl. Phys. B19842341731984NuPhB.234..173V73648010.1016/0550-3213(84)90230-X[INSPIRE] FukudaHIbeMSuzukiMYanagidaTTA “gauged” U(1) Peccei-Quinn symmetryPhys. Lett. B20177713272017PhLB..771..327F1372.8109410.1016/j.physletb.2017.05.071[arXiv:1703.01112] [INSPIRE] AcharyaBSBobkovKKumarPAn M-theory solution to the strong CP problem and constraints on the axiverseJHEP2010111052010JHEP...11..105S1294.8114810.1007/JHEP11(2010)105[arXiv:1004.5138] [INSPIRE] D.B. Costa, B.A. Dobrescu and P.J. Fox, Chiral Abelian gauge theories with few fermions, Phys. Rev. D101 (2020) 095032 [arXiv:2001.11991] [INSPIRE]. T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C7902131 (1979) 95 [INSPIRE]. L. Di Luzio, E. Nardi and L. Ubaldi, Accidental Peccei-Quinn symmetry protected to arbitrary order, Phys. Rev. Lett.119 (2017) 011801 [arXiv:1704.01122] [INSPIRE]. AlveyJEscuderoMThe axion quality problem: global symmetry breaking and wormholesJHEP2021010322021JHEP...01..032A42582721459.8300410.1007/JHEP01(2021)032[arXiv:2009.03917] [INSPIRE] L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B284 (1992) 77 [INSPIRE]. GavelaMBIbeMQuilezPYanagidaTTAutomatic Peccei-Quinn symmetryEur. Phys. J. C2019795422019EPJC...79..542G10.1140/epjc/s10052-019-7046-3[arXiv:1812.08174] [INSPIRE] ValentiAVecchiLXuL-XGrand color axionJHEP2022100252022JHEP...10..025V44938500765377810.1007/JHEP10(2022)025[arXiv:2206.04077] [INSPIRE] ContinoRPodoARevelloFChiral models of composite axions and accidental Peccei-Quinn symmetryJHEP2022041802022JHEP...04..180C44301860761170010.1007/JHEP04(2022)180[arXiv:2112.09635] [INSPIRE] KalloshRLindeADLindeDASusskindLGravity and global symmetriesPhys. Rev. D1995529121995PhRvD..52..912K134416010.1103/PhysRevD.52.912[hep-th/9502069] [INSPIRE] GiddingsSBStromingerAAxion induced topology change in quantum gravity and string theoryNucl. Phys. B19883068901988NuPhB.306..890G10.1016/0550-3213(88)90446-4[INSPIRE] Z.G. Berezhiani, A.S. Sakharov and M.Y. Khlopov, Primordial background of cosmological axions, Sov. J. Nucl. Phys.55 (1992) 1063 [Yad. Fiz.55 (1992) 1918] [INSPIRE]. C.T. Hill and A.K. Leibovich, Natural theories of ultralow mass PNGB’s: axions and quintessence, Phys. Rev. D66 (2002) 075010 [hep-ph/0205237] [INSPIRE]. VecchiLAxion quality straight from the GUTEur. Phys. J. C2021819382021EPJC...81..938V10.1140/epjc/s10052-021-09745-x[arXiv:2106.15224] [INSPIRE] R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE]. J.A. Frieman, C.T. Hill, A. Stebbins and I. Waga, Cosmology with ultralight pseudo Nambu-Goldstone bosons, Phys. Rev. Lett.75 (1995) 2077 [astro-ph/9505060] [INSPIRE]. ChoiGLinWVisinelliLYanagidaTTCosmic birefringence and electroweak axion dark energyPhys. Rev. D202 19803_CR64 19803_CR8 19803_CR63 19803_CR9 19803_CR22 H Fukuda (19803_CR34) 2018; 07 19803_CR68 19803_CR67 H Georgi (19803_CR85) 1986; 276 19803_CR6 19803_CR25 H Baer (19803_CR26) 2019; 790 19803_CR1 19803_CR2 19803_CR60 M Ardu (19803_CR39) 2020; 11 19803_CR62 MB Green (19803_CR66) 1984; 149 19803_CR61 MB Gavela (19803_CR55) 2019; 79 P Svrček (19803_CR17) 2006; 06 M Gell-Mann (19803_CR24) 1979; 790927 L Vecchi (19803_CR56) 2021; 81 K Nakayama (19803_CR72) 2011; 699 G Choi (19803_CR89) 2021; 104 T Banks (19803_CR18) 2003; 06 M Dine (19803_CR84) 1986; 273 LE Ibáñez (19803_CR69) 1991; 260 19803_CR31 19803_CR75 19803_CR30 19803_CR77 19803_CR32 19803_CR76 19803_CR35 19803_CR79 19803_CR78 SB Giddings (19803_CR13) 1988; 306 R Kallosh (19803_CR14) 1995; 52 R Alonso (19803_CR15) 2019; 02 M Duerr (19803_CR36) 2018; 780 BS Acharya (19803_CR20) 2010; 11 19803_CR71 19803_CR70 M Redi (19803_CR51) 2016; 05 19803_CR73 K Nakayama (19803_CR74) 2019; 790 JP Conlon (19803_CR19) 2006; 05 T Yanagida (19803_CR23) 1979; 20 ZG Berezhiani (19803_CR44) 1985; 150 19803_CR28 Q Bonnefoy (19803_CR37) 2019; 79 19803_CR27 R Contino (19803_CR57) 2022; 04 19803_CR29 19803_CR42 19803_CR86 K-M Lee (19803_CR12) 1988; 61 L Di Luzio (19803_CR40) 2020; 11 19803_CR41 M Kamionkowski (19803_CR7) 1992; 282 P Minkowski (19803_CR21) 1977; 67 19803_CR88 19803_CR43 19803_CR87 19803_CR46 19803_CR45 F Wilczek (19803_CR4) 1978; 40 19803_CR48 19803_CR47 19803_CR80 19803_CR82 19803_CR81 S Dimopoulos (19803_CR58) 1979; 84 19803_CR83 S Weinberg (19803_CR3) 1978; 40 B Lillard (19803_CR52) 2017; 11 A Valenti (19803_CR65) 2022; 10 19803_CR11 G Choi (19803_CR38) 2020; 07 19803_CR54 J Alvey (19803_CR16) 2021; 01 19803_CR59 B Lillard (19803_CR53) 2018; 11 19803_CR90 H Fukuda (19803_CR33) 2017; 771 19803_CR50 C Vafa (19803_CR5) 1984; 234 19803_CR49 S Ghigna (19803_CR10) 1992; 283 |
| References_xml | – reference: VecchiLAxion quality straight from the GUTEur. Phys. J. C2021819382021EPJC...81..938V10.1140/epjc/s10052-021-09745-x[arXiv:2106.15224] [INSPIRE] – reference: Z.G. Berezhiani and M.Y. Khlopov, Cosmology of spontaneously broken gauge family symmetry, Z. Phys. C49 (1991) 73 [INSPIRE]. – reference: H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Model of visible QCD axion, Phys. Rev. D92 (2015) 015021 [arXiv:1504.06084] [INSPIRE]. – reference: K. Choi and H.D. Kim, Small instanton contribution to the axion potential in supersymmetric models, Phys. Rev. D59 (1999) 072001 [hep-ph/9809286] [INSPIRE]. – reference: Di LuzioLAccidental SO(10) axion from gauged flavourJHEP202011074420420410.1007/JHEP11(2020)074[arXiv:2008.09119] [INSPIRE] – reference: ArduMDi LuzioLLandiniGStrumiaATeresiDWangJ-WAxion quality from the (anti)symmetric of SU(N)JHEP2020110902020JHEP...11..090A420418810.1007/JHEP11(2020)090[arXiv:2007.12663] [INSPIRE] – reference: BaerHBargerVSenguptaDGravity safe, electroweak natural axionic solution to strong CP and SUSY μ problemsPhys. Lett. B2019790582019PhLB..790...58B10.1016/j.physletb.2019.01.007[arXiv:1810.03713] [INSPIRE] – reference: AlonsoRUrbanoAWormholes and masses for Goldstone bosonsJHEP2019021362019JHEP...02..136A39252321411.8300810.1007/JHEP02(2019)136[arXiv:1706.07415] [INSPIRE] – reference: M. Demirtas, N. Gendler, C. Long, L. McAllister and J. Moritz, PQ axiverse, arXiv:2112.04503 [INSPIRE]. – reference: J.E. Kim, A composite invisible axion, Phys. Rev. D31 (1985) 1733 [INSPIRE]. – reference: Gell-MannMRamondPSlanskyRComplex spinors and unified theoriesConf. Proc. C1979790927315[arXiv:1306.4669] [INSPIRE] – reference: VafaCWittenERestrictions on symmetry breaking in vector-like gauge theoriesNucl. Phys. B19842341731984NuPhB.234..173V73648010.1016/0550-3213(84)90230-X[INSPIRE] – reference: L. Di Luzio, E. Nardi and L. Ubaldi, Accidental Peccei-Quinn symmetry protected to arbitrary order, Phys. Rev. Lett.119 (2017) 011801 [arXiv:1704.01122] [INSPIRE]. – reference: NakayamaKTakahashiFYanagidaTTRevisiting the number-theory dark matter scenario and the weak gravity conjecturePhys. Lett. B20197902182019PhLB..790..218N10.1016/j.physletb.2019.01.013[arXiv:1811.01755] [INSPIRE] – reference: FukudaHIbeMSuzukiMYanagidaTTA “gauged” U(1) Peccei-Quinn symmetryPhys. Lett. B20177713272017PhLB..771..327F1372.8109410.1016/j.physletb.2017.05.071[arXiv:1703.01112] [INSPIRE] – reference: M. Ibe, M. Yamazaki and T.T. Yanagida, Quintessence axion revisited in light of swampland conjectures, Class. Quant. Grav.36 (2019) 235020 [arXiv:1811.04664] [INSPIRE]. – reference: P. Fox, A. Pierce and S.D. Thomas, Probing a QCD string axion with precision cosmological measurements, hep-th/0409059 [INSPIRE]. – reference: N. Chen, Y. Liu and Z. Teng, Axion model with the SU(6) unification, Phys. Rev. D104 (2021) 115011 [arXiv:2106.00223] [INSPIRE]. – reference: J. Kawamura and S. Raby, Qualities of the axion and LSP in Pati-Salam unification withZ4R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {Z}_4^R $$\end{document}× ZNsymmetry, Phys. Rev. D103 (2021) 015002 [arXiv:2009.04582] [INSPIRE]. – reference: BanksTDineMFoxPJGorbatovEOn the possibility of large axion decay constantsJCAP2003060012003JCAP...06..001B1992585[hep-th/0303252] [INSPIRE] – reference: KalloshRLindeADLindeDASusskindLGravity and global symmetriesPhys. Rev. D1995529121995PhRvD..52..912K134416010.1103/PhysRevD.52.912[hep-th/9502069] [INSPIRE] – reference: GhignaSLusignoliMRoncadelliMInstability of the invisible axionPhys. Lett. B19922832781992PhLB..283..278G10.1016/0370-2693(92)90019-Z[INSPIRE] – reference: L. Darmé and E. Nardi, Exact accidental U(1) symmetries for the axion, Phys. Rev. D104 (2021) 055013 [arXiv:2102.05055] [INSPIRE]. – reference: WeinbergSA new light boson?Phys. Rev. Lett.1978402231978PhRvL..40..223W10.1103/PhysRevLett.40.223[INSPIRE] – reference: LillardBTaitTMPA high quality composite axionJHEP2018111992018JHEP...11..199L390038410.1007/JHEP11(2018)199[arXiv:1811.03089] [INSPIRE] – reference: GiddingsSBStromingerAAxion induced topology change in quantum gravity and string theoryNucl. Phys. B19883068901988NuPhB.306..890G10.1016/0550-3213(88)90446-4[INSPIRE] – reference: J.A. Frieman, C.T. Hill, A. Stebbins and I. Waga, Cosmology with ultralight pseudo Nambu-Goldstone bosons, Phys. Rev. Lett.75 (1995) 2077 [astro-ph/9505060] [INSPIRE]. – reference: GeorgiHRandallLFlavor conserving CP-violation in invisible axion modelsNucl. Phys. B19862762411986NuPhB.276..241G10.1016/0550-3213(86)90022-2[INSPIRE] – reference: RediMSatoRComposite accidental axionsJHEP2016051042016JHEP...05..104R35218231390.8171710.1007/JHEP05(2016)104[arXiv:1602.05427] [INSPIRE] – reference: L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D95 (2017) 043541 [arXiv:1610.08297] [INSPIRE]. – reference: S.H.H. Tye, A superstrong force with a heavy axion, Phys. Rev. Lett.47 (1981) 1035 [INSPIRE]. – reference: LillardBTaitTMPA composite axion from a supersymmetric product groupJHEP2017110052017JHEP...11..005L37485321383.8110110.1007/JHEP11(2017)005[arXiv:1707.04261] [INSPIRE] – reference: R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D16 (1977) 1791 [INSPIRE]. – reference: ConlonJPThe QCD axion and moduli stabilisationJHEP2006050782006JHEP...05..078C223147310.1088/1126-6708/2006/05/078[hep-th/0602233] [INSPIRE] – reference: K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Peccei-Quinn symmetry from a gauged discrete R symmetry, Phys. Rev. D88 (2013) 075022 [arXiv:1308.1227] [INSPIRE]. – reference: Z. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: the Weinberg-Wilczek axion revisited, Phys. Lett. B500 (2001) 286 [hep-ph/0009290] [INSPIRE]. – reference: P.N. Bhattiprolu and S.P. Martin, High-quality axions in solutions to the μ problem, Phys. Rev. D104 (2021) 055014 [arXiv:2106.14964] [INSPIRE]. – reference: BerezhianiZGHorizontal symmetry and quark-lepton mass spectrum: the SU(5) × SU(3)HmodelPhys. Lett. B19851501771985PhLB..150..177B10.1016/0370-2693(85)90164-9[INSPIRE] – reference: A. Hook, Anomalous solutions to the strong CP problem, Phys. Rev. Lett.114 (2015) 141801 [arXiv:1411.3325] [INSPIRE]. – reference: GavelaMBIbeMQuilezPYanagidaTTAutomatic Peccei-Quinn symmetryEur. Phys. J. C2019795422019EPJC...79..542G10.1140/epjc/s10052-019-7046-3[arXiv:1812.08174] [INSPIRE] – reference: S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D46 (1992) 539 [INSPIRE]. – reference: SvrčekPWittenEAxions in string theoryJHEP2006060512006JHEP...06..051S223380410.1088/1126-6708/2006/06/051[hep-th/0605206] [INSPIRE] – reference: K. Choi and J.E. Kim, Dynamical axion, Phys. Rev. D32 (1985) 1828 [INSPIRE]. – reference: B. Batell, Dark discrete gauge symmetries, Phys. Rev. D83 (2011) 035006 [arXiv:1007.0045] [INSPIRE]. – reference: K. Choi, String or M-theory axion as a quintessence, Phys. Rev. D62 (2000) 043509 [hep-ph/9902292] [INSPIRE]. – reference: T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C7902131 (1979) 95 [INSPIRE]. – reference: M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B174 (1986) 45 [INSPIRE]. – reference: ChoiGLinWVisinelliLYanagidaTTCosmic birefringence and electroweak axion dark energyPhys. Rev. D2021104L1013022021PhRvD.104j1302C10.1103/PhysRevD.104.L101302[arXiv:2106.12602] [INSPIRE] – reference: D.J. Castano, D.Z. Freedman and C. Manuel, Consequences of supergravity with gauged U(1)Rsymmetry, Nucl. Phys. B461 (1996) 50 [hep-ph/9507397] [INSPIRE]. – reference: NakayamaKTakahashiFYanagidaTTNumber-theory dark matterPhys. Lett. B20116993602011PhLB..699..360N10.1016/j.physletb.2011.04.035[arXiv:1102.4688] [INSPIRE] – reference: K.S. Babu, I. Gogoladze and K. Wang, Stabilizing the axion by discrete gauge symmetries, Phys. Lett. B560 (2003) 214 [hep-ph/0212339] [INSPIRE]. – reference: WilczekFProblem of strong P and T invariance in the presence of instantonsPhys. Rev. Lett.1978402791978PhRvL..40..279W10.1103/PhysRevLett.40.279[INSPIRE] – reference: ChoiGSuzukiMYanagidaTTQCD axion from a spontaneously broken B − L gauge symmetryJHEP2020070482020JHEP...07..048C10.1007/JHEP07(2020)048[arXiv:2005.10415] [INSPIRE] – reference: C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett.97 (2006) 131801 [hep-ex/0602020] [INSPIRE]. – reference: C.T. Hill and A.K. Leibovich, Natural theories of ultralow mass PNGB’s: axions and quintessence, Phys. Rev. D66 (2002) 075010 [hep-ph/0205237] [INSPIRE]. – reference: L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys. B398 (1993) 301 [hep-ph/9210211] [INSPIRE]. – reference: G.G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys.741 (2008) 51 [hep-ph/0611350] [INSPIRE]. – reference: Z.G. Berezhiani, A.S. Sakharov and M.Y. Khlopov, Primordial background of cosmological axions, Sov. J. Nucl. Phys.55 (1992) 1063 [Yad. Fiz.55 (1992) 1918] [INSPIRE]. – reference: T. Gherghetta, N. Nagata and M. Shifman, A visible QCD axion from an enlarged color group, Phys. Rev. D93 (2016) 115010 [arXiv:1604.01127] [INSPIRE]. – reference: D.B. Costa, B.A. Dobrescu and P.J. Fox, Chiral Abelian gauge theories with few fermions, Phys. Rev. D101 (2020) 095032 [arXiv:2001.11991] [INSPIRE]. – reference: G. Choi, M. Suzuki and T.T. Yanagida, Quintessence axion dark energy and a solution to the Hubble tension, Phys. Lett. B805 (2020) 135408 [arXiv:1910.00459] [INSPIRE]. – reference: H.-C. Cheng and D.E. Kaplan, Axions and a gauged Peccei-Quinn symmetry, hep-ph/0103346 [INSPIRE]. – reference: G. Choi, M. Suzuki and T.T. Yanagida, Degenerate sub-keV fermion dark matter from a solution to the Hubble tension, Phys. Rev. D101 (2020) 075031 [arXiv:2002.00036] [INSPIRE]. – reference: G. Choi, M. Suzuki and T.T. Yanagida, Degenerate fermion dark matter from a broken U(1)B−Lgauge symmetry, Phys. Rev. D102 (2020) 035022 [arXiv:2004.07863] [INSPIRE]. – reference: DuerrMSchmidt-HobergKUnwinJProtecting the axion with local baryon numberPhys. Lett. B20187805532018PhLB..780..553D1390.8164010.1016/j.physletb.2018.03.054[arXiv:1712.01841] [INSPIRE] – reference: MinkowskiPμ → eγ at a rate of one out of 109muon decays?Phys. Lett. B1977674211977PhLB...67..421M10.1016/0370-2693(77)90435-X[INSPIRE] – reference: KamionkowskiMMarch-RussellJPlanck scale physics and the Peccei-Quinn mechanismPhys. Lett. B19922821371992PhLB..282..137K10.1016/0370-2693(92)90492-M[hep-th/9202003] [INSPIRE] – reference: FukudaHIbeMSuzukiMYanagidaTTGauged Peccei-Quinn symmetry — a case of simultaneous breaking of SUSY and PQ symmetryJHEP2018071282018JHEP...07..128F10.1007/JHEP07(2018)128[arXiv:1803.00759] [INSPIRE] – reference: V.A. Rubakov, Grand unification and heavy axion, JETP Lett.65 (1997) 621 [hep-ph/9703409] [INSPIRE]. – reference: M. Fukugita and T. Yanagida, Model for the cosmological constant, report number YITP-K-1098 (1994) [INSPIRE]. – reference: Y. Nomura, T. Watari and T. Yanagida, Quintessence axion potential induced by electroweak instanton effects, Phys. Lett. B484 (2000) 103 [hep-ph/0004182] [INSPIRE]. – reference: BonnefoyQDudasEPokorskiSAxions in a highly protected gauge symmetry modelEur. Phys. J. C201979312019EPJC...79...31B10.1140/epjc/s10052-018-6528-z[arXiv:1804.01112] [INSPIRE] – reference: L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B284 (1992) 77 [INSPIRE]. – reference: AcharyaBSBobkovKKumarPAn M-theory solution to the strong CP problem and constraints on the axiverseJHEP2010111052010JHEP...11..105S1294.8114810.1007/JHEP11(2010)105[arXiv:1004.5138] [INSPIRE] – reference: AlveyJEscuderoMThe axion quality problem: global symmetry breaking and wormholesJHEP2021010322021JHEP...01..032A42582721459.8300410.1007/JHEP01(2021)032[arXiv:2009.03917] [INSPIRE] – reference: A.H. Chamseddine and H.K. Dreiner, Anomaly free gauged R symmetry in local supersymmetry, Nucl. Phys. B458 (1996) 65 [hep-ph/9504337] [INSPIRE]. – reference: LeeK-MWormholes and Goldstone bosonsPhys. Rev. Lett.1988612631988PhRvL..61..263L10.1103/PhysRevLett.61.263[INSPIRE] – reference: DineMSeibergNString theory and the strong CP problemNucl. Phys. B19862731091986NuPhB.273..109D10.1016/0550-3213(86)90043-X[INSPIRE] – reference: GreenMBSchwarzJHAnomaly cancellation in supersymmetric D = 10 gauge theory and superstring theoryPhys. Lett. B19841491171984PhLB..149..117G77108610.1016/0370-2693(84)91565-X[INSPIRE] – reference: YanagidaTHorizontal symmetry and mass of the top quarkPhys. Rev. D19792029861979PhRvD..20.2986Y10.1103/PhysRevD.20.2986[INSPIRE] – reference: DimopoulosSA solution of the strong CP problem in models with scalarsPhys. Lett. B1979844351979PhLB...84..435D10.1016/0370-2693(79)91233-4[INSPIRE] – reference: H.-S. Lee and W. Yin, Peccei-Quinn symmetry from a hidden gauge group structure, Phys. Rev. D99 (2019) 015041 [arXiv:1811.04039] [INSPIRE]. – reference: IbáñezLERossGGDiscrete gauge symmetry anomaliesPhys. Lett. B19912602911991PhLB..260..291I10.1016/0370-2693(91)91614-2[INSPIRE] – reference: ContinoRPodoARevelloFChiral models of composite axions and accidental Peccei-Quinn symmetryJHEP2022041802022JHEP...04..180C44301860761170010.1007/JHEP04(2022)180[arXiv:2112.09635] [INSPIRE] – reference: R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B282 (1992) 132 [hep-ph/9203206] [INSPIRE]. – reference: A.G. Dias, V. Pleitez and M.D. Tonasse, Naturally light invisible axion in models with large local discrete symmetries, Phys. Rev. D67 (2003) 095008 [hep-ph/0211107] [INSPIRE]. – reference: R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE]. – reference: Z.G. Berezhiani and M.Y. Khlopov, The theory of broken gauge symmetry of families, Sov. J. Nucl. Phys.51 (1990) 739 [Yad. Fiz.51 (1990) 1157] [INSPIRE]. – reference: ValentiAVecchiLXuL-XGrand color axionJHEP2022100252022JHEP...10..025V44938500765377810.1007/JHEP10(2022)025[arXiv:2206.04077] [INSPIRE] – reference: G. Choi, M. Suzuki and T.T. Yanagida, XENON1T anomaly and its implication for decaying warm dark matter, Phys. Lett. B811 (2020) 135976 [arXiv:2006.12348] [INSPIRE]. – ident: 19803_CR59 doi: 10.1103/PhysRevLett.47.1035 – ident: 19803_CR43 doi: 10.1103/PhysRevD.104.115011 – ident: 19803_CR70 doi: 10.1016/0550-3213(93)90111-2 – ident: 19803_CR11 doi: 10.1007/978-3-540-73518-2_3 – ident: 19803_CR1 doi: 10.1103/PhysRevLett.38.1440 – ident: 19803_CR6 – ident: 19803_CR50 doi: 10.1016/0370-2693(92)91928-3 – ident: 19803_CR83 – volume: 790 start-page: 58 year: 2019 ident: 19803_CR26 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.01.007 – ident: 19803_CR46 doi: 10.1007/BF01570798 – volume: 20 start-page: 2986 year: 1979 ident: 19803_CR23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.20.2986 – volume: 283 start-page: 278 year: 1992 ident: 19803_CR10 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(92)90019-Z – ident: 19803_CR27 doi: 10.1103/PhysRevD.104.055014 – ident: 19803_CR79 doi: 10.1103/PhysRevLett.75.2077 – ident: 19803_CR25 doi: 10.1016/0370-2693(86)91126-3 – volume: 05 start-page: 104 year: 2016 ident: 19803_CR51 publication-title: JHEP doi: 10.1007/JHEP05(2016)104 – ident: 19803_CR9 doi: 10.1103/PhysRevD.46.539 – volume: 84 start-page: 435 year: 1979 ident: 19803_CR58 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(79)91233-4 – ident: 19803_CR67 doi: 10.1016/0550-3213(95)00583-8 – ident: 19803_CR75 doi: 10.1103/PhysRevD.101.075031 – volume: 276 start-page: 241 year: 1986 ident: 19803_CR85 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90022-2 – ident: 19803_CR73 doi: 10.1103/PhysRevD.101.095032 – volume: 11 start-page: 105 year: 2010 ident: 19803_CR20 publication-title: JHEP doi: 10.1007/JHEP11(2010)105 – ident: 19803_CR28 – volume: 40 start-page: 279 year: 1978 ident: 19803_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.40.279 – volume: 79 start-page: 542 year: 2019 ident: 19803_CR55 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-019-7046-3 – volume: 04 start-page: 180 year: 2022 ident: 19803_CR57 publication-title: JHEP doi: 10.1007/JHEP04(2022)180 – volume: 11 start-page: 090 year: 2020 ident: 19803_CR39 publication-title: JHEP doi: 10.1007/JHEP11(2020)090 – ident: 19803_CR45 – ident: 19803_CR77 doi: 10.1103/PhysRevD.102.035022 – volume: 771 start-page: 327 year: 2017 ident: 19803_CR33 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.05.071 – volume: 282 start-page: 137 year: 1992 ident: 19803_CR7 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(92)90492-M – ident: 19803_CR32 doi: 10.1103/PhysRevD.88.075022 – ident: 19803_CR81 doi: 10.1103/PhysRevD.95.043541 – ident: 19803_CR29 doi: 10.1103/PhysRevD.66.075010 – ident: 19803_CR87 doi: 10.1088/1361-6382/ab5197 – ident: 19803_CR80 doi: 10.1103/PhysRevD.62.043509 – volume: 699 start-page: 360 year: 2011 ident: 19803_CR72 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2011.04.035 – volume: 234 start-page: 173 year: 1984 ident: 19803_CR5 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(84)90230-X – volume: 149 start-page: 117 year: 1984 ident: 19803_CR66 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(84)91565-X – volume: 79 start-page: 31 year: 2019 ident: 19803_CR37 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6528-z – volume: 260 start-page: 291 year: 1991 ident: 19803_CR69 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(91)91614-2 – volume: 06 start-page: 051 year: 2006 ident: 19803_CR17 publication-title: JHEP doi: 10.1088/1126-6708/2006/06/051 – ident: 19803_CR41 doi: 10.1103/PhysRevD.103.015002 – ident: 19803_CR60 doi: 10.1134/1.567390 – volume: 306 start-page: 890 year: 1988 ident: 19803_CR13 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(88)90446-4 – ident: 19803_CR64 doi: 10.1103/PhysRevD.93.115010 – volume: 273 start-page: 109 year: 1986 ident: 19803_CR84 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90043-X – ident: 19803_CR8 doi: 10.1016/0370-2693(92)90491-L – volume: 150 start-page: 177 year: 1985 ident: 19803_CR44 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(85)90164-9 – volume: 11 start-page: 199 year: 2018 ident: 19803_CR53 publication-title: JHEP doi: 10.1007/JHEP11(2018)199 – volume: 790 start-page: 218 year: 2019 ident: 19803_CR74 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.01.013 – ident: 19803_CR42 doi: 10.1103/PhysRevD.104.055013 – ident: 19803_CR86 doi: 10.1016/S0370-2693(00)00605-5 – volume: 40 start-page: 223 year: 1978 ident: 19803_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.40.223 – volume: 11 start-page: 074 year: 2020 ident: 19803_CR40 publication-title: JHEP doi: 10.1007/JHEP11(2020)074 – volume: 05 start-page: 078 year: 2006 ident: 19803_CR19 publication-title: JHEP doi: 10.1088/1126-6708/2006/05/078 – ident: 19803_CR88 doi: 10.1016/j.physletb.2020.135408 – volume: 06 start-page: 001 year: 2003 ident: 19803_CR18 publication-title: JCAP – ident: 19803_CR90 – ident: 19803_CR76 doi: 10.1016/j.physletb.2020.135976 – volume: 67 start-page: 421 year: 1977 ident: 19803_CR21 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(77)90435-X – ident: 19803_CR61 doi: 10.1016/S0370-2693(00)01392-7 – volume: 61 start-page: 263 year: 1988 ident: 19803_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.263 – ident: 19803_CR31 doi: 10.1103/PhysRevD.67.095008 – volume: 52 start-page: 912 year: 1995 ident: 19803_CR14 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.52.912 – ident: 19803_CR47 – ident: 19803_CR63 doi: 10.1103/PhysRevD.92.015021 – volume: 10 start-page: 025 year: 2022 ident: 19803_CR65 publication-title: JHEP doi: 10.1007/JHEP10(2022)025 – ident: 19803_CR2 doi: 10.1103/PhysRevD.16.1791 – ident: 19803_CR54 doi: 10.1103/PhysRevD.99.015041 – volume: 01 start-page: 032 year: 2021 ident: 19803_CR16 publication-title: JHEP doi: 10.1007/JHEP01(2021)032 – volume: 07 start-page: 048 year: 2020 ident: 19803_CR38 publication-title: JHEP doi: 10.1007/JHEP07(2020)048 – ident: 19803_CR48 doi: 10.1103/PhysRevD.31.1733 – ident: 19803_CR68 doi: 10.1016/0550-3213(95)00584-6 – ident: 19803_CR22 – ident: 19803_CR71 doi: 10.1103/PhysRevD.83.035006 – volume: 07 start-page: 128 year: 2018 ident: 19803_CR34 publication-title: JHEP doi: 10.1007/JHEP07(2018)128 – ident: 19803_CR62 doi: 10.1103/PhysRevLett.114.141801 – volume: 790927 start-page: 315 year: 1979 ident: 19803_CR24 publication-title: Conf. Proc. C – ident: 19803_CR82 doi: 10.1103/PhysRevD.59.072001 – ident: 19803_CR35 doi: 10.1103/PhysRevLett.119.011801 – volume: 81 start-page: 938 year: 2021 ident: 19803_CR56 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09745-x – volume: 104 start-page: L101302 year: 2021 ident: 19803_CR89 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.L101302 – volume: 780 start-page: 553 year: 2018 ident: 19803_CR36 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.03.054 – ident: 19803_CR49 doi: 10.1103/PhysRevD.32.1828 – volume: 02 start-page: 136 year: 2019 ident: 19803_CR15 publication-title: JHEP doi: 10.1007/JHEP02(2019)136 – ident: 19803_CR30 doi: 10.1016/S0370-2693(03)00411-8 – ident: 19803_CR78 – volume: 11 start-page: 005 year: 2017 ident: 19803_CR52 publication-title: JHEP doi: 10.1007/JHEP11(2017)005 |
| SSID | ssj0015190 |
| Score | 2.450863 |
| Snippet | A
bstract
In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality... In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We... Abstract In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality... |
| SourceID | doaj proquest crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 67 |
| SubjectTerms | Anomalies Axions and ALPs Classical and Quantum Gravitation Decay rate Discrete Symmetries Elementary Particles Gauge Symmetry High energy physics Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Standard model (particle physics) String Theory Supersymmetry Symmetry |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8iCr6Inzid0gcftoe6Jk368aiyMUTGHhT2Fq5JAwM3x7qJ---9pO2mwvDFlxbatFx_18vdkcvvCLkVmnJlKPhCoBq4jjMfQCk_ARZy1HcegqPMf44Hg2Q0SoffWn3ZmrCSHrgErqNzjKgjLQTLAh4LSBVXmEHh3J5GioLbRx7EaZ1MVesHGJcENZFPEHee-t0hZS1M9Fk7cC3lNz7IUfX_iC9_LYk6T9M7IodViOjdl6Idk518ekL2XammKk6JK83wys2QKw8-EVhvPPWK5QwjudVkYltkKc91uCnOyGuv-_LY96uWB77iIlz4GqjKOTpdwxKgeDC5wTN-N6MRoxxx0JEJwCTKZNrSx2kjWAqZRkNkYMJzsjt9n-YXxEs5BZGhY-IJ4xlGAjEHtGbMdwSFxAQNcleDIFXFB27bUrzJmsm4RE1a1CSi1iCt9QOzkgpj-9AHi-p6mOWwdhdQs7LSrPxLsw3SrHUiK8MqJItt93achFD-dq2nze0t8lz-hzxX5MC-z9ay0LBJdhfzZX5N9tTHYlzMb9z_9wXfittU priority: 102 providerName: Directory of Open Access Journals – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46Fbz4W5xO6cHDdqhr0mRtT6KyMUTGDgrDS0iTRgaum-sm7r_3JW03FObFSwttGpL3krz3ktfvQ-iaKUylxsJlDNRAVRC7QkjphoL4FPSd-MJC5j8FvV44GET9YsMtK9IqyzXRLtRqLM0eeZMEhrYbRp93O_lwDWuUOV0tKDQ20ZZBSTDUDX32ujxFAO_EK-F8vKD52G33MalDuE8aniWWX1kiC9j_w8v8dTBq7U1n_78tPUB7hafp3OVD4xBtJOkR2rEZnzI7RjbDw8n_qVw44gv04wxTJ5tPwCFcjEaGaUs6lignO0EvnfbzQ9ctmBNcSZk_c5XAMqFguzUJBYaLTjTcAyYIbhFMFWOqpT2hQ6ljZVDolGYkErGC-UyE9k9RJR2nyRlyIooFi8G-0ZDQGByKgApYFCBsYliE2quim1KKXBaw4obd4p2XgMi52LkROwexV1F9-cEkR9RYX_TeqGVZzEBh2wfj6RsvZhZXCYRcLegRiT0KPYwklRBig_GPWhILqKRWqokX8zPjKx1VUaNU9Or1mvac_13VBdo1JU2yC_ZrqDKbzpNLtC0_Z8NsemWH5jeaMulK priority: 102 providerName: ProQuest |
| Title | High quality axion in supersymmetric models |
| URI | https://link.springer.com/article/10.1007/JHEP12(2022)067 https://www.proquest.com/docview/2754652250 https://doaj.org/article/de8756d552b0475a9c4c132cee96c1a7 |
| Volume | 2022 |
| WOSCitedRecordID | wos000899551700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: ER. dateStart: 20140101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1029-8479 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Kvjit_g5-uDD9lBZ0mRtH51sTNFRRGH6UtKkkYHWsW6i_72XrJ1M2YO-pKVJSnKX5O7I3e8AzrgiTGoiXM6RDUz5iSuElG4gqMeQ36knLGT-jd_rBf1-GC0BKWNhrLd7eSVpT-oy2O26244IraGxTut4xC7DisESM4v60gQ4FBcHqJA0SgSf353mhI_F6J9TLH_chVoR09n8x-C2YKPQJ52L6QLYhqU024E169cp812wfhzONHLy0xEfyAVnkDn5ZIhq3-frq8mnJR2bDiffg4dO-_6y6xb5EVzJuDd2lSAyZSihNQ0EwUKnGp8-F5Q0KWGKc9XUDaEDqRNlsOaU5jQUicJdS4X29qGSvWXpATghI4InKMVYQFmCaoPPBG59NI44EYFuHMJ5SbhYFuDhJofFS1zCHk8pEBsKxEiBQ6jNOgynuBmLm7YMJ2bNDOC1_fA2eo6L_ROrFA2rJs6IJg2GMwwlk2hIo4gPm5II_MlJyce42IV5TH2T6h1PLBx_veTbd_WC8Rz9oe0xrJtX499CvBOojEeT9BRW5ft4kI-qsNJq96K7ql2iVWvuYxnxJ6yJrm6jxy8Wq-IW |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xKCoXaKFVtzyaA5XgEDZ27E1yQIinFtiu9gAS4mIcO66Qyu6yWQr7p_iNjJ1kV60ENw5cEimxLTvzeWYcj-cD2OCaMGWI9DlHMTAdpb6USvmxpCFDeWehdCnzW1G7HV9eJp0peKrOwtiwykonOkWte8r-I6_TyNJ2I_qC3f6db1mj7O5qRaFRwOIsGz3gki3fOTlE-f6k9Pjo_KDpl6wCvmI8HPpaEpUxtGuGxpLgxWQG7xGXlDQoYZpz3TCBNLEyqbYZ2rThNJGpRqxTaUJsdxpmGUN84fzp8KvxrgV6Q0GVPiiI6qfNow6hmxTN5FbgiOwnls8RBPzj1f63Eevs2_Hie_syn2Ch9KS9vQL6n2Eq6y7BnItoVfkyuAgWrzgzOvLkI-LPu-l6-X0fHd7R7a1lElOeIwLKv8DFm_T0K8x0e93sG3gJI5KnaL9ZTFmKDlPEJCo9XBZyImMT1GC7kppQZdp0y97xR1QJnwsxCytmgWKuwea4Qr_IGPJy0X0Lg3Exm-rbPegNfotScwid4ZKygSOiacBwhIliioQUnZukoYjERlYrWIhS_-RigokabFXAmrx-oT_fX2_qB3xsnv9qidZJ-2wF5m0tG9hDwlWYGQ7uszX4oP4Ob_LBupsWHly_NdqeAfaQSLo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BLYgLbWkRy6PkQCU4pBs7dh4HVJXHCgpa7aFIqBfj2DFCgt1lszz2r_HrGDvJrkCiNw5cEimxLTvzeWYcj-cD2OSaMGWI9DlHMTAdZ76USvmJpCFDeeehdCnzT-J2Ozk7SztT8FifhbFhlbVOdIpa95T9R96ksaXtRvQFTVOFRXT2W7_6N75lkLI7rTWdRgmR43x0j8u3YudoH2X9g9LWwd-9Q79iGPAV4-HQ15KonKGNMzSRBC8mN3iPuaQkooRpznVkAmkSZTJts7Vpw2kqM424p9KE2O40fIhZlNjZ1eH_xjsY6BkFdSqhIG7-OTzoELpF0WRuB47UfmIFHVnAMw_3xaass3WtT-_5K32GhcrD9n6XU-ILTOXdRZh1ka6q-AoussUrz5KOPPmAuPQuu15x20dHeHR9bRnGlOcIgopvcPomPV2CmW6vmy-DlzIieYZ2nSWUZehIxUyiMsTlIicyMUEDftYSFKpKp25ZPa5EnQi6FLmwIhco8gZsjSv0y0wirxfdtZAYF7MpwN2D3uBCVBpF6ByXmhGOiGYBwxGmiikSUnR60kgRiY2s1RARlV4qxAQfDdiuQTZ5_Up_Vv7f1AbMIcjEyVH7eBXmbSUb70PCNZgZDm7zdfio7oaXxeC7myEenL812J4Aa-lRjQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+quality+axion+in+supersymmetric+models&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Choi%2C+Gongjun&rft.au=Yanagida%2C+Tsutomu+T.&rft.date=2022-12-13&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2022&rft.issue=12&rft_id=info:doi/10.1007%2FJHEP12%282022%29067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP12_2022_067 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |