High quality axion in supersymmetric models

A bstract In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to introduce symmetries only useful for addressing the axion quality problem. Rather, we rely on symmetries well motivated by oth...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics Vol. 2022; no. 12; pp. 67 - 28
Main Authors: Choi, Gongjun, Yanagida, Tsutomu T.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 13.12.2022
Springer Nature B.V
SpringerOpen
Subjects:
ISSN:1029-8479, 1029-8479
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A bstract In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to introduce symmetries only useful for addressing the axion quality problem. Rather, we rely on symmetries well motivated by other issues in BSM: supersymmetry, U(1) B − L and the discrete R-symmetry Z NR . We show that the interplay among these guarantees the high quality of the axion even for the gravitino mass and axion decay constant as large as m 3/2 = O (10)TeV and F a = O (10 15 )GeV respectively. The key point of this work relies on the observation that the MSSM contribution to the mixed anomalies Z NR − [SU(2) L ] 2 and Z NR − [SU(3) c ] 2 is not enough for gauging Z NR for N ≠ 6, which necessitates the introduction of new matter fields. We make the introduction to achieve zero mixed anomalies, which logically supports a desired large enough N for Z NR . This mechanism effectively makes Z NR equal to U(1) R and thus offers a logically complete solution to the axion quality problem.
AbstractList In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to introduce symmetries only useful for addressing the axion quality problem. Rather, we rely on symmetries well motivated by other issues in BSM: supersymmetry, U(1) B − L and the discrete R-symmetry Z NR . We show that the interplay among these guarantees the high quality of the axion even for the gravitino mass and axion decay constant as large as m 3/2 = $$ \mathcal{O} $$ O (10)TeV and F a = $$ \mathcal{O} $$ O (10 15 )GeV respectively. The key point of this work relies on the observation that the MSSM contribution to the mixed anomalies Z NR − [SU(2) L ] 2 and Z NR − [SU(3) c ] 2 is not enough for gauging Z NR for N ≠ 6, which necessitates the introduction of new matter fields. We make the introduction to achieve zero mixed anomalies, which logically supports a desired large enough N for Z NR . This mechanism effectively makes Z NR equal to U(1) R and thus offers a logically complete solution to the axion quality problem.
A bstract In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to introduce symmetries only useful for addressing the axion quality problem. Rather, we rely on symmetries well motivated by other issues in BSM: supersymmetry, U(1) B − L and the discrete R-symmetry Z NR . We show that the interplay among these guarantees the high quality of the axion even for the gravitino mass and axion decay constant as large as m 3/2 = O (10)TeV and F a = O (10 15 )GeV respectively. The key point of this work relies on the observation that the MSSM contribution to the mixed anomalies Z NR − [SU(2) L ] 2 and Z NR − [SU(3) c ] 2 is not enough for gauging Z NR for N ≠ 6, which necessitates the introduction of new matter fields. We make the introduction to achieve zero mixed anomalies, which logically supports a desired large enough N for Z NR . This mechanism effectively makes Z NR equal to U(1) R and thus offers a logically complete solution to the axion quality problem.
In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to introduce symmetries only useful for addressing the axion quality problem. Rather, we rely on symmetries well motivated by other issues in BSM: supersymmetry, U(1)B−L and the discrete R-symmetry ZNR. We show that the interplay among these guarantees the high quality of the axion even for the gravitino mass and axion decay constant as large as m3/2 = O(10)TeV and Fa = O(1015)GeV respectively. The key point of this work relies on the observation that the MSSM contribution to the mixed anomalies ZNR − [SU(2)L]2 and ZNR − [SU(3)c]2 is not enough for gauging ZNR for N ≠ 6, which necessitates the introduction of new matter fields. We make the introduction to achieve zero mixed anomalies, which logically supports a desired large enough N for ZNR. This mechanism effectively makes ZNR equal to U(1)R and thus offers a logically complete solution to the axion quality problem.
Abstract In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to introduce symmetries only useful for addressing the axion quality problem. Rather, we rely on symmetries well motivated by other issues in BSM: supersymmetry, U(1)B−L and the discrete R-symmetry Z NR . We show that the interplay among these guarantees the high quality of the axion even for the gravitino mass and axion decay constant as large as m 3/2 = O $$ \mathcal{O} $$ (10)TeV and F a = O $$ \mathcal{O} $$ (1015)GeV respectively. The key point of this work relies on the observation that the MSSM contribution to the mixed anomalies Z NR − [SU(2) L ]2 and Z NR − [SU(3) c ]2 is not enough for gauging Z NR for N ≠ 6, which necessitates the introduction of new matter fields. We make the introduction to achieve zero mixed anomalies, which logically supports a desired large enough N for Z NR . This mechanism effectively makes Z NR equal to U(1) R and thus offers a logically complete solution to the axion quality problem.
ArticleNumber 67
Author Yanagida, Tsutomu T.
Choi, Gongjun
Author_xml – sequence: 1
  givenname: Gongjun
  orcidid: 0000-0001-8515-5586
  surname: Choi
  fullname: Choi, Gongjun
  email: gongjun.choi@cern.ch
  organization: Theoretical Physics Department, CERN
– sequence: 2
  givenname: Tsutomu T.
  surname: Yanagida
  fullname: Yanagida, Tsutomu T.
  organization: Tsung-Dao Lee Institute (TDLI) & School of Physics and Astronomy, Shanghai Jiao Tong University, Kavli IPMU (WPI), The University of Tokyo
BookMark eNp9kM1LAzEQxYNUsK2evS54UWRtkib7cZRSbaWgBz2HaT5qynbTJrtg_3tTV1QEvcxMwvzeG94A9WpXa4TOCb4hGOejh9n0idBLiim9wll-hPoE0zItWF72fswnaBDCGmPCSYn76HpmV6_JroXKNvsE3qyrE1snod1qH_abjW68lcnGKV2FU3RsoAr67LMP0cvd9HkySxeP9_PJ7SKVjI-bVAGRmhWEGloAicVoE3vOgZKMEqY4V5nBYApplgqX8Wk4LWGpWFFQMOMhmne6ysFabL3dgN8LB1Z8fDi_EuAbKystlC5ynkVFusQsOpSSSTKmUusykwTyqHXRaW2927U6NGLtWl_H8wXNOcs4pRzHrVG3Jb0LwWvz5UqwOKQrunTFIV0R040E_0VI20AT42s82OofDndciA71Svvve_5C3gEYQ44z
CitedBy_id crossref_primary_10_1088_1572_9494_acb3b5
crossref_primary_10_1007_JHEP02_2023_201
crossref_primary_10_1088_1361_6471_ad38cf
crossref_primary_10_1007_JHEP06_2023_083
crossref_primary_10_1007_JHEP08_2025_182
crossref_primary_10_1103_PhysRevD_111_015048
Cites_doi 10.1103/PhysRevLett.47.1035
10.1103/PhysRevD.104.115011
10.1016/0550-3213(93)90111-2
10.1007/978-3-540-73518-2_3
10.1103/PhysRevLett.38.1440
10.1016/0370-2693(92)91928-3
10.1016/j.physletb.2019.01.007
10.1007/BF01570798
10.1103/PhysRevD.20.2986
10.1016/0370-2693(92)90019-Z
10.1103/PhysRevD.104.055014
10.1103/PhysRevLett.75.2077
10.1016/0370-2693(86)91126-3
10.1007/JHEP05(2016)104
10.1103/PhysRevD.46.539
10.1016/0370-2693(79)91233-4
10.1016/0550-3213(95)00583-8
10.1103/PhysRevD.101.075031
10.1016/0550-3213(86)90022-2
10.1103/PhysRevD.101.095032
10.1007/JHEP11(2010)105
10.1103/PhysRevLett.40.279
10.1140/epjc/s10052-019-7046-3
10.1007/JHEP04(2022)180
10.1007/JHEP11(2020)090
10.1103/PhysRevD.102.035022
10.1016/j.physletb.2017.05.071
10.1016/0370-2693(92)90492-M
10.1103/PhysRevD.88.075022
10.1103/PhysRevD.95.043541
10.1103/PhysRevD.66.075010
10.1088/1361-6382/ab5197
10.1103/PhysRevD.62.043509
10.1016/j.physletb.2011.04.035
10.1016/0550-3213(84)90230-X
10.1016/0370-2693(84)91565-X
10.1140/epjc/s10052-018-6528-z
10.1016/0370-2693(91)91614-2
10.1088/1126-6708/2006/06/051
10.1103/PhysRevD.103.015002
10.1134/1.567390
10.1016/0550-3213(88)90446-4
10.1103/PhysRevD.93.115010
10.1016/0550-3213(86)90043-X
10.1016/0370-2693(92)90491-L
10.1016/0370-2693(85)90164-9
10.1007/JHEP11(2018)199
10.1016/j.physletb.2019.01.013
10.1103/PhysRevD.104.055013
10.1016/S0370-2693(00)00605-5
10.1103/PhysRevLett.40.223
10.1007/JHEP11(2020)074
10.1088/1126-6708/2006/05/078
10.1016/j.physletb.2020.135408
10.1016/j.physletb.2020.135976
10.1016/0370-2693(77)90435-X
10.1016/S0370-2693(00)01392-7
10.1103/PhysRevLett.61.263
10.1103/PhysRevD.67.095008
10.1103/PhysRevD.52.912
10.1103/PhysRevD.92.015021
10.1007/JHEP10(2022)025
10.1103/PhysRevD.16.1791
10.1103/PhysRevD.99.015041
10.1007/JHEP01(2021)032
10.1007/JHEP07(2020)048
10.1103/PhysRevD.31.1733
10.1016/0550-3213(95)00584-6
10.1103/PhysRevD.83.035006
10.1007/JHEP07(2018)128
10.1103/PhysRevLett.114.141801
10.1103/PhysRevD.59.072001
10.1103/PhysRevLett.119.011801
10.1140/epjc/s10052-021-09745-x
10.1103/PhysRevD.104.L101302
10.1016/j.physletb.2018.03.054
10.1103/PhysRevD.32.1828
10.1007/JHEP02(2019)136
10.1016/S0370-2693(03)00411-8
10.1007/JHEP11(2017)005
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1007/JHEP12(2022)067
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 28
ExternalDocumentID oai_doaj_org_article_de8756d552b0475a9c4c132cee96c1a7
10_1007_JHEP12_2022_067
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOAED
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AFFHD
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c453t-da1ce4812f28a1f28fefa1f75a216214d55d6f0af8cfbd0955df529abd4882af3
IEDL.DBID C24
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000899551700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1029-8479
IngestDate Fri Oct 03 12:40:28 EDT 2025
Sat Oct 18 22:47:06 EDT 2025
Sat Nov 29 02:13:20 EST 2025
Tue Nov 18 22:43:06 EST 2025
Fri Feb 21 02:43:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Discrete Symmetries
Supersymmetry
Axions and ALPs
Gauge Symmetry
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-da1ce4812f28a1f28fefa1f75a216214d55d6f0af8cfbd0955df529abd4882af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8515-5586
OpenAccessLink https://link.springer.com/10.1007/JHEP12(2022)067
PQID 2754652250
PQPubID 2034718
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_de8756d552b0475a9c4c132cee96c1a7
proquest_journals_2754652250
crossref_primary_10_1007_JHEP12_2022_067
crossref_citationtrail_10_1007_JHEP12_2022_067
springer_journals_10_1007_JHEP12_2022_067
PublicationCentury 2000
PublicationDate 2022-12-13
PublicationDateYYYYMMDD 2022-12-13
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-13
  day: 13
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References IbáñezLERossGGDiscrete gauge symmetry anomaliesPhys. Lett. B19912602911991PhLB..260..291I10.1016/0370-2693(91)91614-2[INSPIRE]
RediMSatoRComposite accidental axionsJHEP2016051042016JHEP...05..104R35218231390.8171710.1007/JHEP05(2016)104[arXiv:1602.05427] [INSPIRE]
A.G. Dias, V. Pleitez and M.D. Tonasse, Naturally light invisible axion in models with large local discrete symmetries, Phys. Rev. D67 (2003) 095008 [hep-ph/0211107] [INSPIRE].
Z.G. Berezhiani and M.Y. Khlopov, The theory of broken gauge symmetry of families, Sov. J. Nucl. Phys.51 (1990) 739 [Yad. Fiz.51 (1990) 1157] [INSPIRE].
H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Model of visible QCD axion, Phys. Rev. D92 (2015) 015021 [arXiv:1504.06084] [INSPIRE].
DimopoulosSA solution of the strong CP problem in models with scalarsPhys. Lett. B1979844351979PhLB...84..435D10.1016/0370-2693(79)91233-4[INSPIRE]
BonnefoyQDudasEPokorskiSAxions in a highly protected gauge symmetry modelEur. Phys. J. C201979312019EPJC...79...31B10.1140/epjc/s10052-018-6528-z[arXiv:1804.01112] [INSPIRE]
AlonsoRUrbanoAWormholes and masses for Goldstone bosonsJHEP2019021362019JHEP...02..136A39252321411.8300810.1007/JHEP02(2019)136[arXiv:1706.07415] [INSPIRE]
L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D95 (2017) 043541 [arXiv:1610.08297] [INSPIRE].
BanksTDineMFoxPJGorbatovEOn the possibility of large axion decay constantsJCAP2003060012003JCAP...06..001B1992585[hep-th/0303252] [INSPIRE]
LillardBTaitTMPA high quality composite axionJHEP2018111992018JHEP...11..199L390038410.1007/JHEP11(2018)199[arXiv:1811.03089] [INSPIRE]
BaerHBargerVSenguptaDGravity safe, electroweak natural axionic solution to strong CP and SUSY μ problemsPhys. Lett. B2019790582019PhLB..790...58B10.1016/j.physletb.2019.01.007[arXiv:1810.03713] [INSPIRE]
LeeK-MWormholes and Goldstone bosonsPhys. Rev. Lett.1988612631988PhRvL..61..263L10.1103/PhysRevLett.61.263[INSPIRE]
A.H. Chamseddine and H.K. Dreiner, Anomaly free gauged R symmetry in local supersymmetry, Nucl. Phys. B458 (1996) 65 [hep-ph/9504337] [INSPIRE].
WilczekFProblem of strong P and T invariance in the presence of instantonsPhys. Rev. Lett.1978402791978PhRvL..40..279W10.1103/PhysRevLett.40.279[INSPIRE]
ConlonJPThe QCD axion and moduli stabilisationJHEP2006050782006JHEP...05..078C223147310.1088/1126-6708/2006/05/078[hep-th/0602233] [INSPIRE]
A. Hook, Anomalous solutions to the strong CP problem, Phys. Rev. Lett.114 (2015) 141801 [arXiv:1411.3325] [INSPIRE].
M. Ibe, M. Yamazaki and T.T. Yanagida, Quintessence axion revisited in light of swampland conjectures, Class. Quant. Grav.36 (2019) 235020 [arXiv:1811.04664] [INSPIRE].
ChoiGSuzukiMYanagidaTTQCD axion from a spontaneously broken B − L gauge symmetryJHEP2020070482020JHEP...07..048C10.1007/JHEP07(2020)048[arXiv:2005.10415] [INSPIRE]
L. Darmé and E. Nardi, Exact accidental U(1) symmetries for the axion, Phys. Rev. D104 (2021) 055013 [arXiv:2102.05055] [INSPIRE].
GreenMBSchwarzJHAnomaly cancellation in supersymmetric D = 10 gauge theory and superstring theoryPhys. Lett. B19841491171984PhLB..149..117G77108610.1016/0370-2693(84)91565-X[INSPIRE]
Z. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: the Weinberg-Wilczek axion revisited, Phys. Lett. B500 (2001) 286 [hep-ph/0009290] [INSPIRE].
MinkowskiPμ → eγ at a rate of one out of 109muon decays?Phys. Lett. B1977674211977PhLB...67..421M10.1016/0370-2693(77)90435-X[INSPIRE]
BerezhianiZGHorizontal symmetry and quark-lepton mass spectrum: the SU(5) × SU(3)HmodelPhys. Lett. B19851501771985PhLB..150..177B10.1016/0370-2693(85)90164-9[INSPIRE]
T. Gherghetta, N. Nagata and M. Shifman, A visible QCD axion from an enlarged color group, Phys. Rev. D93 (2016) 115010 [arXiv:1604.01127] [INSPIRE].
R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B282 (1992) 132 [hep-ph/9203206] [INSPIRE].
K. Choi, String or M-theory axion as a quintessence, Phys. Rev. D62 (2000) 043509 [hep-ph/9902292] [INSPIRE].
Di LuzioLAccidental SO(10) axion from gauged flavourJHEP202011074420420410.1007/JHEP11(2020)074[arXiv:2008.09119] [INSPIRE]
L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys. B398 (1993) 301 [hep-ph/9210211] [INSPIRE].
H.-S. Lee and W. Yin, Peccei-Quinn symmetry from a hidden gauge group structure, Phys. Rev. D99 (2019) 015041 [arXiv:1811.04039] [INSPIRE].
R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D16 (1977) 1791 [INSPIRE].
FukudaHIbeMSuzukiMYanagidaTTGauged Peccei-Quinn symmetry — a case of simultaneous breaking of SUSY and PQ symmetryJHEP2018071282018JHEP...07..128F10.1007/JHEP07(2018)128[arXiv:1803.00759] [INSPIRE]
D.J. Castano, D.Z. Freedman and C. Manuel, Consequences of supergravity with gauged U(1)Rsymmetry, Nucl. Phys. B461 (1996) 50 [hep-ph/9507397] [INSPIRE].
LillardBTaitTMPA composite axion from a supersymmetric product groupJHEP2017110052017JHEP...11..005L37485321383.8110110.1007/JHEP11(2017)005[arXiv:1707.04261] [INSPIRE]
G. Choi, M. Suzuki and T.T. Yanagida, Degenerate fermion dark matter from a broken U(1)B−Lgauge symmetry, Phys. Rev. D102 (2020) 035022 [arXiv:2004.07863] [INSPIRE].
Z.G. Berezhiani and M.Y. Khlopov, Cosmology of spontaneously broken gauge family symmetry, Z. Phys. C49 (1991) 73 [INSPIRE].
K. Choi and J.E. Kim, Dynamical axion, Phys. Rev. D32 (1985) 1828 [INSPIRE].
S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D46 (1992) 539 [INSPIRE].
N. Chen, Y. Liu and Z. Teng, Axion model with the SU(6) unification, Phys. Rev. D104 (2021) 115011 [arXiv:2106.00223] [INSPIRE].
NakayamaKTakahashiFYanagidaTTNumber-theory dark matterPhys. Lett. B20116993602011PhLB..699..360N10.1016/j.physletb.2011.04.035[arXiv:1102.4688] [INSPIRE]
P. Fox, A. Pierce and S.D. Thomas, Probing a QCD string axion with precision cosmological measurements, hep-th/0409059 [INSPIRE].
DuerrMSchmidt-HobergKUnwinJProtecting the axion with local baryon numberPhys. Lett. B20187805532018PhLB..780..553D1390.8164010.1016/j.physletb.2018.03.054[arXiv:1712.01841] [INSPIRE]
H.-C. Cheng and D.E. Kaplan, Axions and a gauged Peccei-Quinn symmetry, hep-ph/0103346 [INSPIRE].
GhignaSLusignoliMRoncadelliMInstability of the invisible axionPhys. Lett. B19922832781992PhLB..283..278G10.1016/0370-2693(92)90019-Z[INSPIRE]
Gell-MannMRamondPSlanskyRComplex spinors and unified theoriesConf. Proc. C1979790927315[arXiv:1306.4669] [INSPIRE]
M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B174 (1986) 45 [INSPIRE].
C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett.97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
B. Batell, Dark discrete gauge symmetries, Phys. Rev. D83 (2011) 035006 [arXiv:1007.0045] [INSPIRE].
M. Fukugita and T. Yanagida, Model for the cosmological constant, report number YITP-K-1098 (1994) [INSPIRE].
K. Choi and H.D. Kim, Small instanton contribution to the axion potential in supersymmetric models, Phys. Rev. D59 (1999) 072001 [hep-ph/9809286] [INSPIRE].
VafaCWittenERestrictions on symmetry breaking in vector-like gauge theoriesNucl. Phys. B19842341731984NuPhB.234..173V73648010.1016/0550-3213(84)90230-X[INSPIRE]
FukudaHIbeMSuzukiMYanagidaTTA “gauged” U(1) Peccei-Quinn symmetryPhys. Lett. B20177713272017PhLB..771..327F1372.8109410.1016/j.physletb.2017.05.071[arXiv:1703.01112] [INSPIRE]
AcharyaBSBobkovKKumarPAn M-theory solution to the strong CP problem and constraints on the axiverseJHEP2010111052010JHEP...11..105S1294.8114810.1007/JHEP11(2010)105[arXiv:1004.5138] [INSPIRE]
D.B. Costa, B.A. Dobrescu and P.J. Fox, Chiral Abelian gauge theories with few fermions, Phys. Rev. D101 (2020) 095032 [arXiv:2001.11991] [INSPIRE].
T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C7902131 (1979) 95 [INSPIRE].
L. Di Luzio, E. Nardi and L. Ubaldi, Accidental Peccei-Quinn symmetry protected to arbitrary order, Phys. Rev. Lett.119 (2017) 011801 [arXiv:1704.01122] [INSPIRE].
AlveyJEscuderoMThe axion quality problem: global symmetry breaking and wormholesJHEP2021010322021JHEP...01..032A42582721459.8300410.1007/JHEP01(2021)032[arXiv:2009.03917] [INSPIRE]
L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B284 (1992) 77 [INSPIRE].
GavelaMBIbeMQuilezPYanagidaTTAutomatic Peccei-Quinn symmetryEur. Phys. J. C2019795422019EPJC...79..542G10.1140/epjc/s10052-019-7046-3[arXiv:1812.08174] [INSPIRE]
ValentiAVecchiLXuL-XGrand color axionJHEP2022100252022JHEP...10..025V44938500765377810.1007/JHEP10(2022)025[arXiv:2206.04077] [INSPIRE]
ContinoRPodoARevelloFChiral models of composite axions and accidental Peccei-Quinn symmetryJHEP2022041802022JHEP...04..180C44301860761170010.1007/JHEP04(2022)180[arXiv:2112.09635] [INSPIRE]
KalloshRLindeADLindeDASusskindLGravity and global symmetriesPhys. Rev. D1995529121995PhRvD..52..912K134416010.1103/PhysRevD.52.912[hep-th/9502069] [INSPIRE]
GiddingsSBStromingerAAxion induced topology change in quantum gravity and string theoryNucl. Phys. B19883068901988NuPhB.306..890G10.1016/0550-3213(88)90446-4[INSPIRE]
Z.G. Berezhiani, A.S. Sakharov and M.Y. Khlopov, Primordial background of cosmological axions, Sov. J. Nucl. Phys.55 (1992) 1063 [Yad. Fiz.55 (1992) 1918] [INSPIRE].
C.T. Hill and A.K. Leibovich, Natural theories of ultralow mass PNGB’s: axions and quintessence, Phys. Rev. D66 (2002) 075010 [hep-ph/0205237] [INSPIRE].
VecchiLAxion quality straight from the GUTEur. Phys. J. C2021819382021EPJC...81..938V10.1140/epjc/s10052-021-09745-x[arXiv:2106.15224] [INSPIRE]
R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].
J.A. Frieman, C.T. Hill, A. Stebbins and I. Waga, Cosmology with ultralight pseudo Nambu-Goldstone bosons, Phys. Rev. Lett.75 (1995) 2077 [astro-ph/9505060] [INSPIRE].
ChoiGLinWVisinelliLYanagidaTTCosmic birefringence and electroweak axion dark energyPhys. Rev. D202
19803_CR64
19803_CR8
19803_CR63
19803_CR9
19803_CR22
H Fukuda (19803_CR34) 2018; 07
19803_CR68
19803_CR67
H Georgi (19803_CR85) 1986; 276
19803_CR6
19803_CR25
H Baer (19803_CR26) 2019; 790
19803_CR1
19803_CR2
19803_CR60
M Ardu (19803_CR39) 2020; 11
19803_CR62
MB Green (19803_CR66) 1984; 149
19803_CR61
MB Gavela (19803_CR55) 2019; 79
P Svrček (19803_CR17) 2006; 06
M Gell-Mann (19803_CR24) 1979; 790927
L Vecchi (19803_CR56) 2021; 81
K Nakayama (19803_CR72) 2011; 699
G Choi (19803_CR89) 2021; 104
T Banks (19803_CR18) 2003; 06
M Dine (19803_CR84) 1986; 273
LE Ibáñez (19803_CR69) 1991; 260
19803_CR31
19803_CR75
19803_CR30
19803_CR77
19803_CR32
19803_CR76
19803_CR35
19803_CR79
19803_CR78
SB Giddings (19803_CR13) 1988; 306
R Kallosh (19803_CR14) 1995; 52
R Alonso (19803_CR15) 2019; 02
M Duerr (19803_CR36) 2018; 780
BS Acharya (19803_CR20) 2010; 11
19803_CR71
19803_CR70
M Redi (19803_CR51) 2016; 05
19803_CR73
K Nakayama (19803_CR74) 2019; 790
JP Conlon (19803_CR19) 2006; 05
T Yanagida (19803_CR23) 1979; 20
ZG Berezhiani (19803_CR44) 1985; 150
19803_CR28
Q Bonnefoy (19803_CR37) 2019; 79
19803_CR27
R Contino (19803_CR57) 2022; 04
19803_CR29
19803_CR42
19803_CR86
K-M Lee (19803_CR12) 1988; 61
L Di Luzio (19803_CR40) 2020; 11
19803_CR41
M Kamionkowski (19803_CR7) 1992; 282
P Minkowski (19803_CR21) 1977; 67
19803_CR88
19803_CR43
19803_CR87
19803_CR46
19803_CR45
F Wilczek (19803_CR4) 1978; 40
19803_CR48
19803_CR47
19803_CR80
19803_CR82
19803_CR81
S Dimopoulos (19803_CR58) 1979; 84
19803_CR83
S Weinberg (19803_CR3) 1978; 40
B Lillard (19803_CR52) 2017; 11
A Valenti (19803_CR65) 2022; 10
19803_CR11
G Choi (19803_CR38) 2020; 07
19803_CR54
J Alvey (19803_CR16) 2021; 01
19803_CR59
B Lillard (19803_CR53) 2018; 11
19803_CR90
H Fukuda (19803_CR33) 2017; 771
19803_CR50
C Vafa (19803_CR5) 1984; 234
19803_CR49
S Ghigna (19803_CR10) 1992; 283
References_xml – reference: VecchiLAxion quality straight from the GUTEur. Phys. J. C2021819382021EPJC...81..938V10.1140/epjc/s10052-021-09745-x[arXiv:2106.15224] [INSPIRE]
– reference: Z.G. Berezhiani and M.Y. Khlopov, Cosmology of spontaneously broken gauge family symmetry, Z. Phys. C49 (1991) 73 [INSPIRE].
– reference: H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Model of visible QCD axion, Phys. Rev. D92 (2015) 015021 [arXiv:1504.06084] [INSPIRE].
– reference: K. Choi and H.D. Kim, Small instanton contribution to the axion potential in supersymmetric models, Phys. Rev. D59 (1999) 072001 [hep-ph/9809286] [INSPIRE].
– reference: Di LuzioLAccidental SO(10) axion from gauged flavourJHEP202011074420420410.1007/JHEP11(2020)074[arXiv:2008.09119] [INSPIRE]
– reference: ArduMDi LuzioLLandiniGStrumiaATeresiDWangJ-WAxion quality from the (anti)symmetric of SU(N)JHEP2020110902020JHEP...11..090A420418810.1007/JHEP11(2020)090[arXiv:2007.12663] [INSPIRE]
– reference: BaerHBargerVSenguptaDGravity safe, electroweak natural axionic solution to strong CP and SUSY μ problemsPhys. Lett. B2019790582019PhLB..790...58B10.1016/j.physletb.2019.01.007[arXiv:1810.03713] [INSPIRE]
– reference: AlonsoRUrbanoAWormholes and masses for Goldstone bosonsJHEP2019021362019JHEP...02..136A39252321411.8300810.1007/JHEP02(2019)136[arXiv:1706.07415] [INSPIRE]
– reference: M. Demirtas, N. Gendler, C. Long, L. McAllister and J. Moritz, PQ axiverse, arXiv:2112.04503 [INSPIRE].
– reference: J.E. Kim, A composite invisible axion, Phys. Rev. D31 (1985) 1733 [INSPIRE].
– reference: Gell-MannMRamondPSlanskyRComplex spinors and unified theoriesConf. Proc. C1979790927315[arXiv:1306.4669] [INSPIRE]
– reference: VafaCWittenERestrictions on symmetry breaking in vector-like gauge theoriesNucl. Phys. B19842341731984NuPhB.234..173V73648010.1016/0550-3213(84)90230-X[INSPIRE]
– reference: L. Di Luzio, E. Nardi and L. Ubaldi, Accidental Peccei-Quinn symmetry protected to arbitrary order, Phys. Rev. Lett.119 (2017) 011801 [arXiv:1704.01122] [INSPIRE].
– reference: NakayamaKTakahashiFYanagidaTTRevisiting the number-theory dark matter scenario and the weak gravity conjecturePhys. Lett. B20197902182019PhLB..790..218N10.1016/j.physletb.2019.01.013[arXiv:1811.01755] [INSPIRE]
– reference: FukudaHIbeMSuzukiMYanagidaTTA “gauged” U(1) Peccei-Quinn symmetryPhys. Lett. B20177713272017PhLB..771..327F1372.8109410.1016/j.physletb.2017.05.071[arXiv:1703.01112] [INSPIRE]
– reference: M. Ibe, M. Yamazaki and T.T. Yanagida, Quintessence axion revisited in light of swampland conjectures, Class. Quant. Grav.36 (2019) 235020 [arXiv:1811.04664] [INSPIRE].
– reference: P. Fox, A. Pierce and S.D. Thomas, Probing a QCD string axion with precision cosmological measurements, hep-th/0409059 [INSPIRE].
– reference: N. Chen, Y. Liu and Z. Teng, Axion model with the SU(6) unification, Phys. Rev. D104 (2021) 115011 [arXiv:2106.00223] [INSPIRE].
– reference: J. Kawamura and S. Raby, Qualities of the axion and LSP in Pati-Salam unification withZ4R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {Z}_4^R $$\end{document}× ZNsymmetry, Phys. Rev. D103 (2021) 015002 [arXiv:2009.04582] [INSPIRE].
– reference: BanksTDineMFoxPJGorbatovEOn the possibility of large axion decay constantsJCAP2003060012003JCAP...06..001B1992585[hep-th/0303252] [INSPIRE]
– reference: KalloshRLindeADLindeDASusskindLGravity and global symmetriesPhys. Rev. D1995529121995PhRvD..52..912K134416010.1103/PhysRevD.52.912[hep-th/9502069] [INSPIRE]
– reference: GhignaSLusignoliMRoncadelliMInstability of the invisible axionPhys. Lett. B19922832781992PhLB..283..278G10.1016/0370-2693(92)90019-Z[INSPIRE]
– reference: L. Darmé and E. Nardi, Exact accidental U(1) symmetries for the axion, Phys. Rev. D104 (2021) 055013 [arXiv:2102.05055] [INSPIRE].
– reference: WeinbergSA new light boson?Phys. Rev. Lett.1978402231978PhRvL..40..223W10.1103/PhysRevLett.40.223[INSPIRE]
– reference: LillardBTaitTMPA high quality composite axionJHEP2018111992018JHEP...11..199L390038410.1007/JHEP11(2018)199[arXiv:1811.03089] [INSPIRE]
– reference: GiddingsSBStromingerAAxion induced topology change in quantum gravity and string theoryNucl. Phys. B19883068901988NuPhB.306..890G10.1016/0550-3213(88)90446-4[INSPIRE]
– reference: J.A. Frieman, C.T. Hill, A. Stebbins and I. Waga, Cosmology with ultralight pseudo Nambu-Goldstone bosons, Phys. Rev. Lett.75 (1995) 2077 [astro-ph/9505060] [INSPIRE].
– reference: GeorgiHRandallLFlavor conserving CP-violation in invisible axion modelsNucl. Phys. B19862762411986NuPhB.276..241G10.1016/0550-3213(86)90022-2[INSPIRE]
– reference: RediMSatoRComposite accidental axionsJHEP2016051042016JHEP...05..104R35218231390.8171710.1007/JHEP05(2016)104[arXiv:1602.05427] [INSPIRE]
– reference: L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D95 (2017) 043541 [arXiv:1610.08297] [INSPIRE].
– reference: S.H.H. Tye, A superstrong force with a heavy axion, Phys. Rev. Lett.47 (1981) 1035 [INSPIRE].
– reference: LillardBTaitTMPA composite axion from a supersymmetric product groupJHEP2017110052017JHEP...11..005L37485321383.8110110.1007/JHEP11(2017)005[arXiv:1707.04261] [INSPIRE]
– reference: R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D16 (1977) 1791 [INSPIRE].
– reference: ConlonJPThe QCD axion and moduli stabilisationJHEP2006050782006JHEP...05..078C223147310.1088/1126-6708/2006/05/078[hep-th/0602233] [INSPIRE]
– reference: K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Peccei-Quinn symmetry from a gauged discrete R symmetry, Phys. Rev. D88 (2013) 075022 [arXiv:1308.1227] [INSPIRE].
– reference: Z. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: the Weinberg-Wilczek axion revisited, Phys. Lett. B500 (2001) 286 [hep-ph/0009290] [INSPIRE].
– reference: P.N. Bhattiprolu and S.P. Martin, High-quality axions in solutions to the μ problem, Phys. Rev. D104 (2021) 055014 [arXiv:2106.14964] [INSPIRE].
– reference: BerezhianiZGHorizontal symmetry and quark-lepton mass spectrum: the SU(5) × SU(3)HmodelPhys. Lett. B19851501771985PhLB..150..177B10.1016/0370-2693(85)90164-9[INSPIRE]
– reference: A. Hook, Anomalous solutions to the strong CP problem, Phys. Rev. Lett.114 (2015) 141801 [arXiv:1411.3325] [INSPIRE].
– reference: GavelaMBIbeMQuilezPYanagidaTTAutomatic Peccei-Quinn symmetryEur. Phys. J. C2019795422019EPJC...79..542G10.1140/epjc/s10052-019-7046-3[arXiv:1812.08174] [INSPIRE]
– reference: S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D46 (1992) 539 [INSPIRE].
– reference: SvrčekPWittenEAxions in string theoryJHEP2006060512006JHEP...06..051S223380410.1088/1126-6708/2006/06/051[hep-th/0605206] [INSPIRE]
– reference: K. Choi and J.E. Kim, Dynamical axion, Phys. Rev. D32 (1985) 1828 [INSPIRE].
– reference: B. Batell, Dark discrete gauge symmetries, Phys. Rev. D83 (2011) 035006 [arXiv:1007.0045] [INSPIRE].
– reference: K. Choi, String or M-theory axion as a quintessence, Phys. Rev. D62 (2000) 043509 [hep-ph/9902292] [INSPIRE].
– reference: T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C7902131 (1979) 95 [INSPIRE].
– reference: M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B174 (1986) 45 [INSPIRE].
– reference: ChoiGLinWVisinelliLYanagidaTTCosmic birefringence and electroweak axion dark energyPhys. Rev. D2021104L1013022021PhRvD.104j1302C10.1103/PhysRevD.104.L101302[arXiv:2106.12602] [INSPIRE]
– reference: D.J. Castano, D.Z. Freedman and C. Manuel, Consequences of supergravity with gauged U(1)Rsymmetry, Nucl. Phys. B461 (1996) 50 [hep-ph/9507397] [INSPIRE].
– reference: NakayamaKTakahashiFYanagidaTTNumber-theory dark matterPhys. Lett. B20116993602011PhLB..699..360N10.1016/j.physletb.2011.04.035[arXiv:1102.4688] [INSPIRE]
– reference: K.S. Babu, I. Gogoladze and K. Wang, Stabilizing the axion by discrete gauge symmetries, Phys. Lett. B560 (2003) 214 [hep-ph/0212339] [INSPIRE].
– reference: WilczekFProblem of strong P and T invariance in the presence of instantonsPhys. Rev. Lett.1978402791978PhRvL..40..279W10.1103/PhysRevLett.40.279[INSPIRE]
– reference: ChoiGSuzukiMYanagidaTTQCD axion from a spontaneously broken B − L gauge symmetryJHEP2020070482020JHEP...07..048C10.1007/JHEP07(2020)048[arXiv:2005.10415] [INSPIRE]
– reference: C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett.97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
– reference: C.T. Hill and A.K. Leibovich, Natural theories of ultralow mass PNGB’s: axions and quintessence, Phys. Rev. D66 (2002) 075010 [hep-ph/0205237] [INSPIRE].
– reference: L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys. B398 (1993) 301 [hep-ph/9210211] [INSPIRE].
– reference: G.G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys.741 (2008) 51 [hep-ph/0611350] [INSPIRE].
– reference: Z.G. Berezhiani, A.S. Sakharov and M.Y. Khlopov, Primordial background of cosmological axions, Sov. J. Nucl. Phys.55 (1992) 1063 [Yad. Fiz.55 (1992) 1918] [INSPIRE].
– reference: T. Gherghetta, N. Nagata and M. Shifman, A visible QCD axion from an enlarged color group, Phys. Rev. D93 (2016) 115010 [arXiv:1604.01127] [INSPIRE].
– reference: D.B. Costa, B.A. Dobrescu and P.J. Fox, Chiral Abelian gauge theories with few fermions, Phys. Rev. D101 (2020) 095032 [arXiv:2001.11991] [INSPIRE].
– reference: G. Choi, M. Suzuki and T.T. Yanagida, Quintessence axion dark energy and a solution to the Hubble tension, Phys. Lett. B805 (2020) 135408 [arXiv:1910.00459] [INSPIRE].
– reference: H.-C. Cheng and D.E. Kaplan, Axions and a gauged Peccei-Quinn symmetry, hep-ph/0103346 [INSPIRE].
– reference: G. Choi, M. Suzuki and T.T. Yanagida, Degenerate sub-keV fermion dark matter from a solution to the Hubble tension, Phys. Rev. D101 (2020) 075031 [arXiv:2002.00036] [INSPIRE].
– reference: G. Choi, M. Suzuki and T.T. Yanagida, Degenerate fermion dark matter from a broken U(1)B−Lgauge symmetry, Phys. Rev. D102 (2020) 035022 [arXiv:2004.07863] [INSPIRE].
– reference: DuerrMSchmidt-HobergKUnwinJProtecting the axion with local baryon numberPhys. Lett. B20187805532018PhLB..780..553D1390.8164010.1016/j.physletb.2018.03.054[arXiv:1712.01841] [INSPIRE]
– reference: MinkowskiPμ → eγ at a rate of one out of 109muon decays?Phys. Lett. B1977674211977PhLB...67..421M10.1016/0370-2693(77)90435-X[INSPIRE]
– reference: KamionkowskiMMarch-RussellJPlanck scale physics and the Peccei-Quinn mechanismPhys. Lett. B19922821371992PhLB..282..137K10.1016/0370-2693(92)90492-M[hep-th/9202003] [INSPIRE]
– reference: FukudaHIbeMSuzukiMYanagidaTTGauged Peccei-Quinn symmetry — a case of simultaneous breaking of SUSY and PQ symmetryJHEP2018071282018JHEP...07..128F10.1007/JHEP07(2018)128[arXiv:1803.00759] [INSPIRE]
– reference: V.A. Rubakov, Grand unification and heavy axion, JETP Lett.65 (1997) 621 [hep-ph/9703409] [INSPIRE].
– reference: M. Fukugita and T. Yanagida, Model for the cosmological constant, report number YITP-K-1098 (1994) [INSPIRE].
– reference: Y. Nomura, T. Watari and T. Yanagida, Quintessence axion potential induced by electroweak instanton effects, Phys. Lett. B484 (2000) 103 [hep-ph/0004182] [INSPIRE].
– reference: BonnefoyQDudasEPokorskiSAxions in a highly protected gauge symmetry modelEur. Phys. J. C201979312019EPJC...79...31B10.1140/epjc/s10052-018-6528-z[arXiv:1804.01112] [INSPIRE]
– reference: L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B284 (1992) 77 [INSPIRE].
– reference: AcharyaBSBobkovKKumarPAn M-theory solution to the strong CP problem and constraints on the axiverseJHEP2010111052010JHEP...11..105S1294.8114810.1007/JHEP11(2010)105[arXiv:1004.5138] [INSPIRE]
– reference: AlveyJEscuderoMThe axion quality problem: global symmetry breaking and wormholesJHEP2021010322021JHEP...01..032A42582721459.8300410.1007/JHEP01(2021)032[arXiv:2009.03917] [INSPIRE]
– reference: A.H. Chamseddine and H.K. Dreiner, Anomaly free gauged R symmetry in local supersymmetry, Nucl. Phys. B458 (1996) 65 [hep-ph/9504337] [INSPIRE].
– reference: LeeK-MWormholes and Goldstone bosonsPhys. Rev. Lett.1988612631988PhRvL..61..263L10.1103/PhysRevLett.61.263[INSPIRE]
– reference: DineMSeibergNString theory and the strong CP problemNucl. Phys. B19862731091986NuPhB.273..109D10.1016/0550-3213(86)90043-X[INSPIRE]
– reference: GreenMBSchwarzJHAnomaly cancellation in supersymmetric D = 10 gauge theory and superstring theoryPhys. Lett. B19841491171984PhLB..149..117G77108610.1016/0370-2693(84)91565-X[INSPIRE]
– reference: YanagidaTHorizontal symmetry and mass of the top quarkPhys. Rev. D19792029861979PhRvD..20.2986Y10.1103/PhysRevD.20.2986[INSPIRE]
– reference: DimopoulosSA solution of the strong CP problem in models with scalarsPhys. Lett. B1979844351979PhLB...84..435D10.1016/0370-2693(79)91233-4[INSPIRE]
– reference: H.-S. Lee and W. Yin, Peccei-Quinn symmetry from a hidden gauge group structure, Phys. Rev. D99 (2019) 015041 [arXiv:1811.04039] [INSPIRE].
– reference: IbáñezLERossGGDiscrete gauge symmetry anomaliesPhys. Lett. B19912602911991PhLB..260..291I10.1016/0370-2693(91)91614-2[INSPIRE]
– reference: ContinoRPodoARevelloFChiral models of composite axions and accidental Peccei-Quinn symmetryJHEP2022041802022JHEP...04..180C44301860761170010.1007/JHEP04(2022)180[arXiv:2112.09635] [INSPIRE]
– reference: R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B282 (1992) 132 [hep-ph/9203206] [INSPIRE].
– reference: A.G. Dias, V. Pleitez and M.D. Tonasse, Naturally light invisible axion in models with large local discrete symmetries, Phys. Rev. D67 (2003) 095008 [hep-ph/0211107] [INSPIRE].
– reference: R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].
– reference: Z.G. Berezhiani and M.Y. Khlopov, The theory of broken gauge symmetry of families, Sov. J. Nucl. Phys.51 (1990) 739 [Yad. Fiz.51 (1990) 1157] [INSPIRE].
– reference: ValentiAVecchiLXuL-XGrand color axionJHEP2022100252022JHEP...10..025V44938500765377810.1007/JHEP10(2022)025[arXiv:2206.04077] [INSPIRE]
– reference: G. Choi, M. Suzuki and T.T. Yanagida, XENON1T anomaly and its implication for decaying warm dark matter, Phys. Lett. B811 (2020) 135976 [arXiv:2006.12348] [INSPIRE].
– ident: 19803_CR59
  doi: 10.1103/PhysRevLett.47.1035
– ident: 19803_CR43
  doi: 10.1103/PhysRevD.104.115011
– ident: 19803_CR70
  doi: 10.1016/0550-3213(93)90111-2
– ident: 19803_CR11
  doi: 10.1007/978-3-540-73518-2_3
– ident: 19803_CR1
  doi: 10.1103/PhysRevLett.38.1440
– ident: 19803_CR6
– ident: 19803_CR50
  doi: 10.1016/0370-2693(92)91928-3
– ident: 19803_CR83
– volume: 790
  start-page: 58
  year: 2019
  ident: 19803_CR26
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.01.007
– ident: 19803_CR46
  doi: 10.1007/BF01570798
– volume: 20
  start-page: 2986
  year: 1979
  ident: 19803_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.20.2986
– volume: 283
  start-page: 278
  year: 1992
  ident: 19803_CR10
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(92)90019-Z
– ident: 19803_CR27
  doi: 10.1103/PhysRevD.104.055014
– ident: 19803_CR79
  doi: 10.1103/PhysRevLett.75.2077
– ident: 19803_CR25
  doi: 10.1016/0370-2693(86)91126-3
– volume: 05
  start-page: 104
  year: 2016
  ident: 19803_CR51
  publication-title: JHEP
  doi: 10.1007/JHEP05(2016)104
– ident: 19803_CR9
  doi: 10.1103/PhysRevD.46.539
– volume: 84
  start-page: 435
  year: 1979
  ident: 19803_CR58
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(79)91233-4
– ident: 19803_CR67
  doi: 10.1016/0550-3213(95)00583-8
– ident: 19803_CR75
  doi: 10.1103/PhysRevD.101.075031
– volume: 276
  start-page: 241
  year: 1986
  ident: 19803_CR85
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(86)90022-2
– ident: 19803_CR73
  doi: 10.1103/PhysRevD.101.095032
– volume: 11
  start-page: 105
  year: 2010
  ident: 19803_CR20
  publication-title: JHEP
  doi: 10.1007/JHEP11(2010)105
– ident: 19803_CR28
– volume: 40
  start-page: 279
  year: 1978
  ident: 19803_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.40.279
– volume: 79
  start-page: 542
  year: 2019
  ident: 19803_CR55
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-019-7046-3
– volume: 04
  start-page: 180
  year: 2022
  ident: 19803_CR57
  publication-title: JHEP
  doi: 10.1007/JHEP04(2022)180
– volume: 11
  start-page: 090
  year: 2020
  ident: 19803_CR39
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)090
– ident: 19803_CR45
– ident: 19803_CR77
  doi: 10.1103/PhysRevD.102.035022
– volume: 771
  start-page: 327
  year: 2017
  ident: 19803_CR33
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.05.071
– volume: 282
  start-page: 137
  year: 1992
  ident: 19803_CR7
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(92)90492-M
– ident: 19803_CR32
  doi: 10.1103/PhysRevD.88.075022
– ident: 19803_CR81
  doi: 10.1103/PhysRevD.95.043541
– ident: 19803_CR29
  doi: 10.1103/PhysRevD.66.075010
– ident: 19803_CR87
  doi: 10.1088/1361-6382/ab5197
– ident: 19803_CR80
  doi: 10.1103/PhysRevD.62.043509
– volume: 699
  start-page: 360
  year: 2011
  ident: 19803_CR72
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2011.04.035
– volume: 234
  start-page: 173
  year: 1984
  ident: 19803_CR5
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(84)90230-X
– volume: 149
  start-page: 117
  year: 1984
  ident: 19803_CR66
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(84)91565-X
– volume: 79
  start-page: 31
  year: 2019
  ident: 19803_CR37
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6528-z
– volume: 260
  start-page: 291
  year: 1991
  ident: 19803_CR69
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(91)91614-2
– volume: 06
  start-page: 051
  year: 2006
  ident: 19803_CR17
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/06/051
– ident: 19803_CR41
  doi: 10.1103/PhysRevD.103.015002
– ident: 19803_CR60
  doi: 10.1134/1.567390
– volume: 306
  start-page: 890
  year: 1988
  ident: 19803_CR13
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(88)90446-4
– ident: 19803_CR64
  doi: 10.1103/PhysRevD.93.115010
– volume: 273
  start-page: 109
  year: 1986
  ident: 19803_CR84
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(86)90043-X
– ident: 19803_CR8
  doi: 10.1016/0370-2693(92)90491-L
– volume: 150
  start-page: 177
  year: 1985
  ident: 19803_CR44
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(85)90164-9
– volume: 11
  start-page: 199
  year: 2018
  ident: 19803_CR53
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)199
– volume: 790
  start-page: 218
  year: 2019
  ident: 19803_CR74
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.01.013
– ident: 19803_CR42
  doi: 10.1103/PhysRevD.104.055013
– ident: 19803_CR86
  doi: 10.1016/S0370-2693(00)00605-5
– volume: 40
  start-page: 223
  year: 1978
  ident: 19803_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.40.223
– volume: 11
  start-page: 074
  year: 2020
  ident: 19803_CR40
  publication-title: JHEP
  doi: 10.1007/JHEP11(2020)074
– volume: 05
  start-page: 078
  year: 2006
  ident: 19803_CR19
  publication-title: JHEP
  doi: 10.1088/1126-6708/2006/05/078
– ident: 19803_CR88
  doi: 10.1016/j.physletb.2020.135408
– volume: 06
  start-page: 001
  year: 2003
  ident: 19803_CR18
  publication-title: JCAP
– ident: 19803_CR90
– ident: 19803_CR76
  doi: 10.1016/j.physletb.2020.135976
– volume: 67
  start-page: 421
  year: 1977
  ident: 19803_CR21
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(77)90435-X
– ident: 19803_CR61
  doi: 10.1016/S0370-2693(00)01392-7
– volume: 61
  start-page: 263
  year: 1988
  ident: 19803_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.263
– ident: 19803_CR31
  doi: 10.1103/PhysRevD.67.095008
– volume: 52
  start-page: 912
  year: 1995
  ident: 19803_CR14
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.52.912
– ident: 19803_CR47
– ident: 19803_CR63
  doi: 10.1103/PhysRevD.92.015021
– volume: 10
  start-page: 025
  year: 2022
  ident: 19803_CR65
  publication-title: JHEP
  doi: 10.1007/JHEP10(2022)025
– ident: 19803_CR2
  doi: 10.1103/PhysRevD.16.1791
– ident: 19803_CR54
  doi: 10.1103/PhysRevD.99.015041
– volume: 01
  start-page: 032
  year: 2021
  ident: 19803_CR16
  publication-title: JHEP
  doi: 10.1007/JHEP01(2021)032
– volume: 07
  start-page: 048
  year: 2020
  ident: 19803_CR38
  publication-title: JHEP
  doi: 10.1007/JHEP07(2020)048
– ident: 19803_CR48
  doi: 10.1103/PhysRevD.31.1733
– ident: 19803_CR68
  doi: 10.1016/0550-3213(95)00584-6
– ident: 19803_CR22
– ident: 19803_CR71
  doi: 10.1103/PhysRevD.83.035006
– volume: 07
  start-page: 128
  year: 2018
  ident: 19803_CR34
  publication-title: JHEP
  doi: 10.1007/JHEP07(2018)128
– ident: 19803_CR62
  doi: 10.1103/PhysRevLett.114.141801
– volume: 790927
  start-page: 315
  year: 1979
  ident: 19803_CR24
  publication-title: Conf. Proc. C
– ident: 19803_CR82
  doi: 10.1103/PhysRevD.59.072001
– ident: 19803_CR35
  doi: 10.1103/PhysRevLett.119.011801
– volume: 81
  start-page: 938
  year: 2021
  ident: 19803_CR56
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09745-x
– volume: 104
  start-page: L101302
  year: 2021
  ident: 19803_CR89
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.L101302
– volume: 780
  start-page: 553
  year: 2018
  ident: 19803_CR36
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.03.054
– ident: 19803_CR49
  doi: 10.1103/PhysRevD.32.1828
– volume: 02
  start-page: 136
  year: 2019
  ident: 19803_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)136
– ident: 19803_CR30
  doi: 10.1016/S0370-2693(03)00411-8
– ident: 19803_CR78
– volume: 11
  start-page: 005
  year: 2017
  ident: 19803_CR52
  publication-title: JHEP
  doi: 10.1007/JHEP11(2017)005
SSID ssj0015190
Score 2.450863
Snippet A bstract In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality...
In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality axions. We...
Abstract In this work, we discuss how the use of the symmetries well motivated in physics beyond the Standard model (BSM) can guarantee the high quality...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 67
SubjectTerms Anomalies
Axions and ALPs
Classical and Quantum Gravitation
Decay rate
Discrete Symmetries
Elementary Particles
Gauge Symmetry
High energy physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Standard model (particle physics)
String Theory
Supersymmetry
Symmetry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8iCr6Inzid0gcftoe6Jk368aiyMUTGHhT2Fq5JAwM3x7qJ---9pO2mwvDFlxbatFx_18vdkcvvCLkVmnJlKPhCoBq4jjMfQCk_ARZy1HcegqPMf44Hg2Q0SoffWn3ZmrCSHrgErqNzjKgjLQTLAh4LSBVXmEHh3J5GioLbRx7EaZ1MVesHGJcENZFPEHee-t0hZS1M9Fk7cC3lNz7IUfX_iC9_LYk6T9M7IodViOjdl6Idk518ekL2XammKk6JK83wys2QKw8-EVhvPPWK5QwjudVkYltkKc91uCnOyGuv-_LY96uWB77iIlz4GqjKOTpdwxKgeDC5wTN-N6MRoxxx0JEJwCTKZNrSx2kjWAqZRkNkYMJzsjt9n-YXxEs5BZGhY-IJ4xlGAjEHtGbMdwSFxAQNcleDIFXFB27bUrzJmsm4RE1a1CSi1iCt9QOzkgpj-9AHi-p6mOWwdhdQs7LSrPxLsw3SrHUiK8MqJItt93achFD-dq2nze0t8lz-hzxX5MC-z9ay0LBJdhfzZX5N9tTHYlzMb9z_9wXfittU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA46Fbz4W5xO6cHDdqhr0mRtT6KyMUTGDgrDS0iTRgaum-sm7r_3JW03FObFSwttGpL3krz3ktfvQ-iaKUylxsJlDNRAVRC7QkjphoL4FPSd-MJC5j8FvV44GET9YsMtK9IqyzXRLtRqLM0eeZMEhrYbRp93O_lwDWuUOV0tKDQ20ZZBSTDUDX32ujxFAO_EK-F8vKD52G33MalDuE8aniWWX1kiC9j_w8v8dTBq7U1n_78tPUB7hafp3OVD4xBtJOkR2rEZnzI7RjbDw8n_qVw44gv04wxTJ5tPwCFcjEaGaUs6lignO0EvnfbzQ9ctmBNcSZk_c5XAMqFguzUJBYaLTjTcAyYIbhFMFWOqpT2hQ6ljZVDolGYkErGC-UyE9k9RJR2nyRlyIooFi8G-0ZDQGByKgApYFCBsYliE2quim1KKXBaw4obd4p2XgMi52LkROwexV1F9-cEkR9RYX_TeqGVZzEBh2wfj6RsvZhZXCYRcLegRiT0KPYwklRBig_GPWhILqKRWqokX8zPjKx1VUaNU9Or1mvac_13VBdo1JU2yC_ZrqDKbzpNLtC0_Z8NsemWH5jeaMulK
  priority: 102
  providerName: ProQuest
Title High quality axion in supersymmetric models
URI https://link.springer.com/article/10.1007/JHEP12(2022)067
https://www.proquest.com/docview/2754652250
https://doaj.org/article/de8756d552b0475a9c4c132cee96c1a7
Volume 2022
WOSCitedRecordID wos000899551700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1029-8479
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Kvjit_g5-uDD9lBZ0mRtH51sTNFRRGH6UtKkkYHWsW6i_72XrJ1M2YO-pKVJSnKX5O7I3e8AzrgiTGoiXM6RDUz5iSuElG4gqMeQ36knLGT-jd_rBf1-GC0BKWNhrLd7eSVpT-oy2O26244IraGxTut4xC7DisESM4v60gQ4FBcHqJA0SgSf353mhI_F6J9TLH_chVoR09n8x-C2YKPQJ52L6QLYhqU024E169cp812wfhzONHLy0xEfyAVnkDn5ZIhq3-frq8mnJR2bDiffg4dO-_6y6xb5EVzJuDd2lSAyZSihNQ0EwUKnGp8-F5Q0KWGKc9XUDaEDqRNlsOaU5jQUicJdS4X29qGSvWXpATghI4InKMVYQFmCaoPPBG59NI44EYFuHMJ5SbhYFuDhJofFS1zCHk8pEBsKxEiBQ6jNOgynuBmLm7YMJ2bNDOC1_fA2eo6L_ROrFA2rJs6IJg2GMwwlk2hIo4gPm5II_MlJyce42IV5TH2T6h1PLBx_veTbd_WC8Rz9oe0xrJtX499CvBOojEeT9BRW5ft4kI-qsNJq96K7ql2iVWvuYxnxJ6yJrm6jxy8Wq-IW
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xKCoXaKFVtzyaA5XgEDZ27E1yQIinFtiu9gAS4mIcO66Qyu6yWQr7p_iNjJ1kV60ENw5cEimxLTvzeWYcj-cD2OCaMGWI9DlHMTAdpb6USvmxpCFDeWehdCnzW1G7HV9eJp0peKrOwtiwykonOkWte8r-I6_TyNJ2I_qC3f6db1mj7O5qRaFRwOIsGz3gki3fOTlE-f6k9Pjo_KDpl6wCvmI8HPpaEpUxtGuGxpLgxWQG7xGXlDQoYZpz3TCBNLEyqbYZ2rThNJGpRqxTaUJsdxpmGUN84fzp8KvxrgV6Q0GVPiiI6qfNow6hmxTN5FbgiOwnls8RBPzj1f63Eevs2_Hie_syn2Ch9KS9vQL6n2Eq6y7BnItoVfkyuAgWrzgzOvLkI-LPu-l6-X0fHd7R7a1lElOeIwLKv8DFm_T0K8x0e93sG3gJI5KnaL9ZTFmKDlPEJCo9XBZyImMT1GC7kppQZdp0y97xR1QJnwsxCytmgWKuwea4Qr_IGPJy0X0Lg3Exm-rbPegNfotScwid4ZKygSOiacBwhIliioQUnZukoYjERlYrWIhS_-RigokabFXAmrx-oT_fX2_qB3xsnv9qidZJ-2wF5m0tG9hDwlWYGQ7uszX4oP4Ob_LBupsWHly_NdqeAfaQSLo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BLYgLbWkRy6PkQCU4pBs7dh4HVJXHCgpa7aFIqBfj2DFCgt1lszz2r_HrGDvJrkCiNw5cEimxLTvzeWYcj-cD2OSaMGWI9DlHMTAdZ76USvmJpCFDeeehdCnzT-J2Ozk7SztT8FifhbFhlbVOdIpa95T9R96ksaXtRvQFTVOFRXT2W7_6N75lkLI7rTWdRgmR43x0j8u3YudoH2X9g9LWwd-9Q79iGPAV4-HQ15KonKGNMzSRBC8mN3iPuaQkooRpznVkAmkSZTJts7Vpw2kqM424p9KE2O40fIhZlNjZ1eH_xjsY6BkFdSqhIG7-OTzoELpF0WRuB47UfmIFHVnAMw_3xaass3WtT-_5K32GhcrD9n6XU-ILTOXdRZh1ka6q-AoussUrz5KOPPmAuPQuu15x20dHeHR9bRnGlOcIgopvcPomPV2CmW6vmy-DlzIieYZ2nSWUZehIxUyiMsTlIicyMUEDftYSFKpKp25ZPa5EnQi6FLmwIhco8gZsjSv0y0wirxfdtZAYF7MpwN2D3uBCVBpF6ByXmhGOiGYBwxGmiikSUnR60kgRiY2s1RARlV4qxAQfDdiuQTZ5_Up_Vv7f1AbMIcjEyVH7eBXmbSUb70PCNZgZDm7zdfio7oaXxeC7myEenL812J4Aa-lRjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+quality+axion+in+supersymmetric+models&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Choi%2C+Gongjun&rft.au=Yanagida%2C+Tsutomu+T.&rft.date=2022-12-13&rft.issn=1029-8479&rft.eissn=1029-8479&rft.volume=2022&rft.issue=12&rft_id=info:doi/10.1007%2FJHEP12%282022%29067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_JHEP12_2022_067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon