Optimality conditions and duality in nonsmooth multiobjective optimization problems

Exploiting some tools of modern variational analysis involving the approximate extremal principle, the fuzzy sum rule for the Fréchet subdifferential, the sum rule for the limiting subdifferential and the scalarization formulae of the coderivatives, we establish necessary conditions for (weakly) eff...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annals of operations research Ročník 217; číslo 1; s. 117 - 136
Hlavní autori: Chuong, Thai Doan, Kim, Do Sang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.06.2014
Springer
Springer Nature B.V
Predmet:
ISSN:0254-5330, 1572-9338
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Exploiting some tools of modern variational analysis involving the approximate extremal principle, the fuzzy sum rule for the Fréchet subdifferential, the sum rule for the limiting subdifferential and the scalarization formulae of the coderivatives, we establish necessary conditions for (weakly) efficient solutions of a multiobjective optimization problem with inequality and equality constraints. Sufficient conditions for (weakly) efficient solutions of an aforesaid problem are also provided by means of employing L -(strictly) invex-infine functions defined in terms of the limiting subdifferential. In addition, we introduce types of Wolfe and Mond–Weir dual problems and investigate weak/strong duality relations.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:0254-5330
1572-9338
DOI:10.1007/s10479-014-1552-3