Clothing Design Style Recommendation Using Decision Tree Algorithm Combined with Deep Learning

Most clothing recommendation methods have problems such as high resource consumption and inconsistent subjectively labeled clothing labels. Based on this, a multilabel classification algorithm based on deep learning (DL) theory is introduced, based on which the clothing style recognition model is co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence and neuroscience Jg. 2022; S. 1 - 10
1. Verfasser: Yang, Baojuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Hindawi 10.08.2022
John Wiley & Sons, Inc
Schlagworte:
ISSN:1687-5265, 1687-5273, 1687-5273
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Most clothing recommendation methods have problems such as high resource consumption and inconsistent subjectively labeled clothing labels. Based on this, a multilabel classification algorithm based on deep learning (DL) theory is introduced, based on which the clothing style recognition model is constructed. Next, the concept of the decision tree algorithm is given, and the clothing recommendation model is built based on this algorithm. Moreover, the clothing style recognition model based on a multilabel classification algorithm and the clothing recommendation system based on a decision tree algorithm are tested by building simulation experiments and combining neural network technology. Finally, the application of the decision tree algorithm and DL theory in clothing recommendation design is studied through the literature collection method. The research focus is to realize the recognition of clothing through decision tree algorithm and DL method to achieve the intelligent recommendation of clothing style. The results show that: (1) the neural network technology in DL theory can realize efficient recognition and classification of clothing style by automatically extracting image features and combining with a multilabel classification algorithm. (2) The decision tree algorithm can make an initial recommendation according to users’ style preferences, then make implicit recommendations through user retrieval, browsing, and other operations, and make dynamic clothing style recommendations to users. (3) When the neural network based on a multilabel classification algorithm is trained, the precision, recall rate, and F1 values are 0.73, 0.43, and 0.55, respectively. (4) After using the clothing recommendation system based on the decision tree algorithm, the subjects’ average satisfaction is 86.25%, indicating that this system can give users a better clothing recommendation experience. This exploration aims to provide a crucial reference for further improving the quality of clothing recommendation services. It has important theoretical significance and practical value for the development of artificial intelligence in the field of fashion design, and is expected to provide a reference for the development of bionics.
AbstractList Most clothing recommendation methods have problems such as high resource consumption and inconsistent subjectively labeled clothing labels. Based on this, a multilabel classification algorithm based on deep learning (DL) theory is introduced, based on which the clothing style recognition model is constructed. Next, the concept of the decision tree algorithm is given, and the clothing recommendation model is built based on this algorithm. Moreover, the clothing style recognition model based on a multilabel classification algorithm and the clothing recommendation system based on a decision tree algorithm are tested by building simulation experiments and combining neural network technology. Finally, the application of the decision tree algorithm and DL theory in clothing recommendation design is studied through the literature collection method. The research focus is to realize the recognition of clothing through decision tree algorithm and DL method to achieve the intelligent recommendation of clothing style. The results show that: (1) the neural network technology in DL theory can realize efficient recognition and classification of clothing style by automatically extracting image features and combining with a multilabel classification algorithm. (2) The decision tree algorithm can make an initial recommendation according to users' style preferences, then make implicit recommendations through user retrieval, browsing, and other operations, and make dynamic clothing style recommendations to users. (3) When the neural network based on a multilabel classification algorithm is trained, the precision, recall rate, and F1 values are 0.73, 0.43, and 0.55, respectively. (4) After using the clothing recommendation system based on the decision tree algorithm, the subjects' average satisfaction is 86.25%, indicating that this system can give users a better clothing recommendation experience. This exploration aims to provide a crucial reference for further improving the quality of clothing recommendation services. It has important theoretical significance and practical value for the development of artificial intelligence in the field of fashion design, and is expected to provide a reference for the development of bionics.Most clothing recommendation methods have problems such as high resource consumption and inconsistent subjectively labeled clothing labels. Based on this, a multilabel classification algorithm based on deep learning (DL) theory is introduced, based on which the clothing style recognition model is constructed. Next, the concept of the decision tree algorithm is given, and the clothing recommendation model is built based on this algorithm. Moreover, the clothing style recognition model based on a multilabel classification algorithm and the clothing recommendation system based on a decision tree algorithm are tested by building simulation experiments and combining neural network technology. Finally, the application of the decision tree algorithm and DL theory in clothing recommendation design is studied through the literature collection method. The research focus is to realize the recognition of clothing through decision tree algorithm and DL method to achieve the intelligent recommendation of clothing style. The results show that: (1) the neural network technology in DL theory can realize efficient recognition and classification of clothing style by automatically extracting image features and combining with a multilabel classification algorithm. (2) The decision tree algorithm can make an initial recommendation according to users' style preferences, then make implicit recommendations through user retrieval, browsing, and other operations, and make dynamic clothing style recommendations to users. (3) When the neural network based on a multilabel classification algorithm is trained, the precision, recall rate, and F1 values are 0.73, 0.43, and 0.55, respectively. (4) After using the clothing recommendation system based on the decision tree algorithm, the subjects' average satisfaction is 86.25%, indicating that this system can give users a better clothing recommendation experience. This exploration aims to provide a crucial reference for further improving the quality of clothing recommendation services. It has important theoretical significance and practical value for the development of artificial intelligence in the field of fashion design, and is expected to provide a reference for the development of bionics.
Most clothing recommendation methods have problems such as high resource consumption and inconsistent subjectively labeled clothing labels. Based on this, a multilabel classification algorithm based on deep learning (DL) theory is introduced, based on which the clothing style recognition model is constructed. Next, the concept of the decision tree algorithm is given, and the clothing recommendation model is built based on this algorithm. Moreover, the clothing style recognition model based on a multilabel classification algorithm and the clothing recommendation system based on a decision tree algorithm are tested by building simulation experiments and combining neural network technology. Finally, the application of the decision tree algorithm and DL theory in clothing recommendation design is studied through the literature collection method. The research focus is to realize the recognition of clothing through decision tree algorithm and DL method to achieve the intelligent recommendation of clothing style. The results show that: (1) the neural network technology in DL theory can realize efficient recognition and classification of clothing style by automatically extracting image features and combining with a multilabel classification algorithm. (2) The decision tree algorithm can make an initial recommendation according to users’ style preferences, then make implicit recommendations through user retrieval, browsing, and other operations, and make dynamic clothing style recommendations to users. (3) When the neural network based on a multilabel classification algorithm is trained, the precision, recall rate, and F1 values are 0.73, 0.43, and 0.55, respectively. (4) After using the clothing recommendation system based on the decision tree algorithm, the subjects’ average satisfaction is 86.25%, indicating that this system can give users a better clothing recommendation experience. This exploration aims to provide a crucial reference for further improving the quality of clothing recommendation services. It has important theoretical significance and practical value for the development of artificial intelligence in the field of fashion design, and is expected to provide a reference for the development of bionics.
Audience Academic
Author Yang, Baojuan
AuthorAffiliation Fashion Design Department, Art and Design School, Changchun Humanities and Sciences College, Changchun 130117, Jilin, China
AuthorAffiliation_xml – name: Fashion Design Department, Art and Design School, Changchun Humanities and Sciences College, Changchun 130117, Jilin, China
Author_xml – sequence: 1
  givenname: Baojuan
  orcidid: 0000-0002-1825-9446
  surname: Yang
  fullname: Yang, Baojuan
  organization: Fashion Design DepartmentArt and Design SchoolChangchun Humanities and Sciences CollegeChangchun 130117JilinChina
BookMark eNp9kdFrFDEQxoO02Pb0zT9gwRfBXptNdjabF-E4qxYOBG1fDdlkbi9lNzmTPUv_e7PeabGgTzNDft83TL4zcuSDR0JelfSiLAEuGWXsEkQFFYhn5LSsGzEHJvjRn76GE3KW0h2lIICy5-SEg5S0hOaUfFv2Ydw43xXvMbnOF1_Hhx6LL2jCMKC3enTBF7dpTxiXpvEmIhaLvgvRjZuhWIahdR5tcZ_HTOG2WKGOPmtekOO17hO-PNQZuf1wdbP8NF99_ni9XKzmpgI-zi1DxpFRzdZtTTVIaxppsbQGKAotWSValFpK29ayNsw0VrOmBd5qCo1gfEbe7X23u3ZAa9CPUfdqG92g44MK2qm_X7zbqC78UJI3wHmTDd4cDGL4vsM0qsElg32vPYZdUkxQ4FIwyjP6-gl6F3bR5_MmqhIgG6gfqU73qJxfh7zXTKZqIcoKJC9zSDPC9pSJIaWIa2Xc-OvPM-16VVI1haymkNUh5Cw6fyL6fec_8Ld7PMds9b37P_0TKvS0kw
CitedBy_id crossref_primary_10_1186_s12911_023_02396_w
Cites_doi 10.3390/s20164638
10.1016/j.egyr.2022.01.239
10.1155/2022/6293908
10.1109/access.2020.3010435
10.1007/s00170-020-06157-1
10.1155/2021/5577393
10.1159/000503830
10.1109/tkde.2021.3059506
10.1109/tvt.2020.2999566
10.1155/2020/6858541
10.4236/ojbm.2021.96154
10.1109/access.2020.2972751
10.24203/ajas.v9i1.6503
10.1007/s13198-021-01122-x
10.1016/j.eswa.2021.115195
10.14414/jebav.v23i3.2386
10.1155/2021/6293539
10.4236/aasoci.2021.1112052
10.1088/1742-6596/1629/1/012067
10.4236/oalib.1108324
10.1155/2022/7049458
10.3390/rs12152449
10.1051/e3sconf/202128407019
10.1051/e3sconf/202125301075
10.1088/1757-899x/747/1/012126
10.1007/s12520-021-01411-3
10.3233/jifs-189210
10.12928/telkomnika.v19i1.18024
10.35808/ersj/1833
10.1088/1755-1315/632/5/052066
10.1016/j.micpro.2020.103757
10.1155/2022/2270005
10.1088/1757-899x/750/1/012134
10.1109/access.2020.3044446
ContentType Journal Article
Copyright Copyright © 2022 Baojuan Yang.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Baojuan Yang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Baojuan Yang. 2022
Copyright_xml – notice: Copyright © 2022 Baojuan Yang.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Baojuan Yang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Baojuan Yang. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
DOI 10.1155/2022/5745457
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: ProQuest - Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Bhardwaj, Arpit
Editor_xml – sequence: 1
  givenname: Arpit
  surname: Bhardwaj
  fullname: Bhardwaj, Arpit
EndPage 10
ExternalDocumentID PMC9385338
A714593127
10_1155_2022_5745457
GrantInformation_xml – fundername: Jilin Higher Education Society
  grantid: JGJX2021D630
– fundername: Jilin Education Office Higher Education Department
  grantid: JLJY202131613637
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
ALUQN
CITATION
H13
IHR
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c453t-d2e23e20a2fb60a59dc89de1dc50e7a9247be9a99db696c2c8da28b53ba058723
IEDL.DBID M7P
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000875172300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1687-5265
1687-5273
IngestDate Tue Nov 04 02:01:13 EST 2025
Sat Sep 27 17:52:59 EDT 2025
Sat Nov 29 14:42:03 EST 2025
Tue Nov 11 10:56:27 EST 2025
Tue Nov 18 21:02:54 EST 2025
Sat Nov 29 02:55:59 EST 2025
Sun Jun 02 18:52:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-d2e23e20a2fb60a59dc89de1dc50e7a9247be9a99db696c2c8da28b53ba058723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Arpit Bhardwaj
ORCID 0000-0002-1825-9446
OpenAccessLink https://www.proquest.com/docview/2704759856?pq-origsite=%requestingapplication%
PMID 35990158
PQID 2704759856
PQPubID 237303
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9385338
proquest_miscellaneous_2705397203
proquest_journals_2704759856
gale_infotracmisc_A714593127
crossref_citationtrail_10_1155_2022_5745457
crossref_primary_10_1155_2022_5745457
hindawi_primary_10_1155_2022_5745457
PublicationCentury 2000
PublicationDate 2022-08-10
PublicationDateYYYYMMDD 2022-08-10
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-10
  day: 10
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 22
23
24
25
26
27
28
S. S. Chen (3) 2021; 8
29
30
31
10
32
11
33
12
34
13
35
14
15
16
17
18
19
1
2
4
5
6
7
8
9
20
21
References_xml – ident: 15
  doi: 10.3390/s20164638
– ident: 29
  doi: 10.1016/j.egyr.2022.01.239
– ident: 12
  doi: 10.1155/2022/6293908
– ident: 30
  doi: 10.1109/access.2020.3010435
– ident: 5
  doi: 10.1007/s00170-020-06157-1
– ident: 7
  doi: 10.1155/2021/5577393
– ident: 25
  doi: 10.1159/000503830
– ident: 8
  doi: 10.1109/tkde.2021.3059506
– ident: 26
  doi: 10.1109/tvt.2020.2999566
– ident: 27
  doi: 10.1155/2020/6858541
– ident: 34
  doi: 10.4236/ojbm.2021.96154
– ident: 20
  doi: 10.1109/access.2020.2972751
– ident: 24
  doi: 10.24203/ajas.v9i1.6503
– volume: 8
  issue: 9
  year: 2021
  ident: 3
  article-title: Exploration on the new direction of fashion design from the perspective of youth subculture—doll clothing as example
  publication-title: Open Access Library Journal
– ident: 10
  doi: 10.1007/s13198-021-01122-x
– ident: 16
  doi: 10.1016/j.eswa.2021.115195
– ident: 35
  doi: 10.14414/jebav.v23i3.2386
– ident: 23
  doi: 10.1155/2021/6293539
– ident: 33
  doi: 10.4236/aasoci.2021.1112052
– ident: 14
  doi: 10.1088/1742-6596/1629/1/012067
– ident: 21
  doi: 10.4236/oalib.1108324
– ident: 17
  doi: 10.1155/2022/7049458
– ident: 22
  doi: 10.3390/rs12152449
– ident: 11
  doi: 10.1051/e3sconf/202128407019
– ident: 2
  doi: 10.1051/e3sconf/202125301075
– ident: 32
  doi: 10.1088/1757-899x/747/1/012126
– ident: 4
  doi: 10.1007/s12520-021-01411-3
– ident: 28
  doi: 10.3233/jifs-189210
– ident: 19
  doi: 10.12928/telkomnika.v19i1.18024
– ident: 6
  doi: 10.35808/ersj/1833
– ident: 13
  doi: 10.1088/1755-1315/632/5/052066
– ident: 1
  doi: 10.1016/j.micpro.2020.103757
– ident: 31
  doi: 10.1155/2022/2270005
– ident: 9
  doi: 10.1088/1757-899x/750/1/012134
– ident: 18
  doi: 10.1109/access.2020.3044446
SSID ssj0057502
Score 2.364442
Snippet Most clothing recommendation methods have problems such as high resource consumption and inconsistent subjectively labeled clothing labels. Based on this, a...
SourceID pubmedcentral
proquest
gale
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Artificial intelligence
Avant-garde
Bionics
Browsing
Classification
Clothing and dress
Decision making
Decision theory
Decision trees
Deep learning
Design
Entropy
Fashion models
Feature extraction
Image classification
Machine learning
Methods
Neural networks
Object recognition
Recommender systems
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_WssFeRrduLP0YGrR9GQZHsizpMfSDPowy2q7kqcaWLk0gcUrirvS_70lWwtwxtkdb55PRSbr7ScfvAA5KQjjKyCrJU9v3pNpZUuVSEkqxKTdZZdsb05vv6uJCD4fmRyRJWv55hU_ezsNzTrid9Ei1ARta-syty_PhasOlgKNNLcxpvXi291V--4tvO54n7r9vxh75Pk468WU3O_I3d3O2Be9inMgGrWHfwyusP8D2oCaMPHtiRyxkboYj8W24PZ7SeJMPYichH4NdNU9TZB5ZzmYYqyaxkBxAEm1NHXa9QGSD6d18MWnGM0b7AmFkdMwfzJIU3rNIvXr3EX6enV4fnyexbkJiMymaxHHkAnla8lGVp6U0zmrjsO-sTFGVhLhUhaY0xlW5yS232pVcV1JUZSq14uITbNbzGj8Dc5LekS1RaJeNRqhNOSJEQpos1xSa9ODbakwLG0nFfW2LaRHAhZSFt0ARLdCDw7X0fUum8Re5PW-ewq8x0mZpxttioPqZNKLPqfkgmu1fWlY2LeLCXBZcpZ7hUMu8B1_Xzb4Dn2xW4_whyEgK03gqeqA6c2Hdnyfl7rbUk3Eg5zaCAiChd_7vH3fhrX9MAsfuHmw2iwfch9f2VzNZLr6Eaf4Mtvz1ZA
  priority: 102
  providerName: Hindawi Publishing
Title Clothing Design Style Recommendation Using Decision Tree Algorithm Combined with Deep Learning
URI https://dx.doi.org/10.1155/2022/5745457
https://www.proquest.com/docview/2704759856
https://www.proquest.com/docview/2705397203
https://pubmed.ncbi.nlm.nih.gov/PMC9385338
Volume 2022
WOSCitedRecordID wos000875172300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: P5Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: M7P
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: K7-
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: M7S
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: PIMPY
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5265
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbYBhIv_BqIwqiMNHhB0VI7ju0nVMamIaCKtoEKD0SJ7a6V2rS0GWj_PXeOU9YH4IEXS4lPtqPzne9zTt8Rsl8AwpFalFEamx6SaidRmQoBKMXETCelaf6Yfv4gBwM1HOosXLitQlpl6xO9o7Zzg3fkB0zGSE2nRPp68T3CqlH4dzWU0NgiO8iSwHzqXtZ6YohEmpzDFAwJaeDbxHchEPOzAyFhcXgwXTuSgmO-NUZI_HOyEXhupk1eO4eO7_7vF9wjd0IESvvNlrlPbrjqAdntV4C-Z1f0JfU5of6yfZd8O5yCJuF0o299pgc9q6-mjiJmnc1cqMdEfdoBSDTVeuj50jnan17A3PV4RsHjAPp2luKVL0i5BQ2krhcPyafjo_PDkyhUZIhMIngdWeYYdywu2KhM40Joa5S2rmeNiJ0sAMvJ0ulCa1umOjXMKFswVQpeFrFQkvFHZLuaV-4xoVbAO9gljiubjEZO6WIEWAdGMkxB0NMhr1ql5CbQlWPVjGnuYYsQOaowDyrskBdr6UVD0_EHuT3Ub47WC6MZsCWT92UvEZr3GHTvB73_a5RWw3kw-VX-W70d8nzdjRNgGlvl5pdeRkAAyGLeIXJjM63nQ7rvzZ5qMva035pDaMXVk79P_pTcxqVGnrV3j2zXy0v3jNw0P-rJatklW3Iofau6ZOfN0SA7haf3Mup6y_HtGbSZ-Ar92buP2Rd4Oj0Z_gLUWh9T
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFH-aBggufA1EYYCRNi4oWurEsX1AqNqYNrVUSBS0EyGx3bVSm5Y2Y-o_xd_Ie05S1gNw2oFr_GTH6e992a-_B7CXYYYjtciDJDRtItWOgzwRArMUE3Id56a6Mf3Sk_2-OjvTH7fgZ_NfGCqrbGyiN9R2ZuiM_IDLkKjplEjezb8H1DWKblebFhoVLLpudYkp2_Lt6RH-vvucH78fHJ4EdVeBwMQiKgPLHY8cDzM-zJMwE9oapa1rWyNCJzPMR2TudKa1zROdGG6UzbjKRZRnoVCSiA7Q5N-IcROkV10ZNJYfI5-qxjFBxSXa-abQXgg6Y-AHQuLHIEd4xQXWjuDWiFLwy_FGoLtZpnnF7x3f-9--2H24W0fYrFOpxAPYcsVD2OkUWTmbrthr5mte_WXCDnw9nCBS0XuzI1_Jwj6Vq4ljlJNPp67uN8V8WQVKVN2I2GDhHOtMznGv5WjK0KLmGKpbRkfaKOXmrCatPX8En69lp49hu5gV7gkwK_AZaoGLlI2HQ6d0NsRcDmcyXGFQ14I3DQhSU9OxU1eQSerTMiFSgkxaQ6YF-2vpeUVD8ge5XcJTStYJZzNoK0zake1Y6KjNcXivxtm_ZmkQldYmbZn-hlMLXq2HaQEq0yvc7MLLCAxweRi1QG6Ad70e0ZlvjhTjkac11xGGjpF6-vfFX8Ltk8GHXto77XefwR167cAzFO_Cdrm4cM_hpvlRjpeLF143GXy7bmj_AjqWdHM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLamcREv3AaiY4CRNl5Q1NSJY_sBoWqlYtpUVWKgiQdCYjtrpTbt2oypf41fxzmOU9YH4GkPvNZHdpN-Phf763cI2c-gwhGK50ES6g6KasdBnnAOVYoOmYpzXd-YfjkRg4E8O1PDLfKz-S8M0iobn-gctZlpPCNvMxGiNJ3kSbvwtIhhr_9-fhFgBym8aW3aadQQObarKyjflu-OevBbHzDW_3B6-DHwHQYCHfOoCgyzLLIszFiRJ2HGldFSGdsxmodWZFCbiNyqTCmTJyrRTEuTMZnzKM9CLgWKHoD7vyWgxkQ64ZB_baIAZEE13zGBTYwS9A3pnnM8b2BtLuDFYFC8Fg59ULgzwnL8aryR9G5SNq_FwP6D__ntPST3feZNu_VWeUS2bPmY7HTLrJpNV_QNdVxYd8mwQ74dTgDBENVpzzFc6KdqNbEUa_Xp1Po-VNTRLcCi7lJETxfW0u7kHJ61Gk0peNocUnhD8agbrOycejHb8yfk84086VOyXc5K-4xQw-Ez2B02kiYuCitVVkCNBzNpJiHZa5G3DSBS7WXasVvIJHXlGucpwif18GmRg7X1vJYn-YPdHmIrRa8Fs2nwITrtik7MVdRhMLzvMfevWRp0pd7VLdPf0GqR1-thXADpe6WdXTobDokvC6MWERtAXq-HMuebI-V45OTOVQQpZSR3_774K3IXEJ2eHA2On5N7-K0DJ1y8R7arxaV9QW7rH9V4uXjptikl328a2b8AnY99lw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clothing+Design+Style+Recommendation+Using+Decision+Tree+Algorithm+Combined+with+Deep+Learning&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Yang%2C+Baojuan&rft.date=2022-08-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5265&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F5745457&rft.externalDocID=A714593127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon