ATR prohibits replication catastrophe by preventing global exhaustion of RPA

ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cell Ročník 155; číslo 5; s. 1088
Hlavní autoři: Toledo, Luis Ignacio, Altmeyer, Matthias, Rask, Maj-Britt, Lukas, Claudia, Larsen, Dorthe Helena, Povlsen, Lou Klitgaard, Bekker-Jensen, Simon, Mailand, Niels, Bartek, Jiri, Lukas, Jiri
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 21.11.2013
Témata:
ISSN:1097-4172, 1097-4172
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors.
AbstractList ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors.ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors.
ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are mechanistically coupled. Although initially stable, stalled forks in ATR-deficient cells undergo nucleus-wide breakage after unscheduled origin firing generates an excess of single-stranded DNA that exhausts the nuclear pool of RPA. Partial reduction of RPA accelerated fork breakage, and forced elevation of RPA was sufficient to delay such "replication catastrophe" even in the absence of ATR activity. Conversely, unscheduled origin firing induced breakage of stalled forks even in cells with active ATR. Thus, ATR-mediated suppression of dormant origins shields active forks against irreversible breakage via preventing exhaustion of nuclear RPA. This study elucidates how replicating genomes avoid destabilizing DNA damage. Because cancer cells commonly feature intrinsically high replication stress, this study also provides a molecular rationale for their hypersensitivity to ATR inhibitors.
Author Rask, Maj-Britt
Povlsen, Lou Klitgaard
Mailand, Niels
Lukas, Jiri
Lukas, Claudia
Bartek, Jiri
Toledo, Luis Ignacio
Larsen, Dorthe Helena
Altmeyer, Matthias
Bekker-Jensen, Simon
Author_xml – sequence: 1
  givenname: Luis Ignacio
  surname: Toledo
  fullname: Toledo, Luis Ignacio
  organization: Chromosome Stability and Dynamics Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
– sequence: 2
  givenname: Matthias
  surname: Altmeyer
  fullname: Altmeyer, Matthias
– sequence: 3
  givenname: Maj-Britt
  surname: Rask
  fullname: Rask, Maj-Britt
– sequence: 4
  givenname: Claudia
  surname: Lukas
  fullname: Lukas, Claudia
– sequence: 5
  givenname: Dorthe Helena
  surname: Larsen
  fullname: Larsen, Dorthe Helena
– sequence: 6
  givenname: Lou Klitgaard
  surname: Povlsen
  fullname: Povlsen, Lou Klitgaard
– sequence: 7
  givenname: Simon
  surname: Bekker-Jensen
  fullname: Bekker-Jensen, Simon
– sequence: 8
  givenname: Niels
  surname: Mailand
  fullname: Mailand, Niels
– sequence: 9
  givenname: Jiri
  surname: Bartek
  fullname: Bartek, Jiri
– sequence: 10
  givenname: Jiri
  surname: Lukas
  fullname: Lukas, Jiri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24267891$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLw0AcxBep2Id-AQ-yRy-J-8o-jqX4goJS6jlskn-aLWk2ZhOx396oFTzNMPwYhpmjSeMbQOiakpgSKu_2cQ51HTNC-RjERPAzNKPEqEhQxSb__BTNQ9gTQnSSJBdoygSTShs6Q-vldoPbzlcuc33AHbS1y23vfINHsaHvfFsBzo4jBB_Q9K7Z4V3tM1tj-KzsEH5YX-LN6_ISnZe2DnB10gV6e7jfrp6i9cvj82q5jnKR8D7KC5EbAZoXjACjBQXDDJRGmzLhhaaCJVYapSQZXUaBa6ZUpiUBJZmGgi3Q7W_vOPx9gNCnBxe-v7AN-CGkVEiqpRFcjujNCR2yAxRp27mD7Y7p3wPsC-7aX4A
CitedBy_id crossref_primary_10_3390_genes5010147
crossref_primary_10_1038_s41467_023_40779_9
crossref_primary_10_1158_0008_5472_CAN_16_3389
crossref_primary_10_1158_1541_7786_MCR_18_0860
crossref_primary_10_1186_s13578_021_00616_2
crossref_primary_10_1038_s41416_020_1016_2
crossref_primary_10_1002_2211_5463_12632
crossref_primary_10_1038_s41467_022_33887_5
crossref_primary_10_1038_s41467_024_52862_w
crossref_primary_10_15252_embj_2019101801
crossref_primary_10_1016_j_molcel_2021_09_005
crossref_primary_10_1016_j_molcel_2018_11_036
crossref_primary_10_1038_s41586_020_2769_8
crossref_primary_10_1038_s41586_018_0261_5
crossref_primary_10_1093_nar_gkt1412
crossref_primary_10_3390_biomedicines12040762
crossref_primary_10_3390_ijms23031116
crossref_primary_10_1016_j_mrfmmm_2020_111725
crossref_primary_10_1158_2159_8290_CD_17_1461
crossref_primary_10_1080_15384101_2017_1383578
crossref_primary_10_1182_blood_2021014103
crossref_primary_10_1093_nar_gkab628
crossref_primary_10_1074_jbc_M115_685883
crossref_primary_10_15252_embj_2018101379
crossref_primary_10_1172_JCI96769
crossref_primary_10_1038_s41594_024_01417_0
crossref_primary_10_1016_j_semcdb_2014_04_035
crossref_primary_10_1038_s41467_024_45946_0
crossref_primary_10_1007_s00412_016_0573_x
crossref_primary_10_1002_cncr_32004
crossref_primary_10_3390_cancers13133346
crossref_primary_10_1016_j_bpc_2016_11_005
crossref_primary_10_1016_j_molcel_2020_08_018
crossref_primary_10_3389_fonc_2023_1210487
crossref_primary_10_1038_s41556_023_01280_z
crossref_primary_10_1126_sciadv_aay4697
crossref_primary_10_26508_lsa_202101023
crossref_primary_10_1111_cas_15477
crossref_primary_10_1016_j_neo_2024_101038
crossref_primary_10_1016_j_celrep_2024_115114
crossref_primary_10_1371_journal_pgen_1005517
crossref_primary_10_1016_j_canlet_2016_09_024
crossref_primary_10_1242_jcs_169730
crossref_primary_10_1158_1078_0432_CCR_16_1782
crossref_primary_10_1126_science_aao3172
crossref_primary_10_3390_cancers11091320
crossref_primary_10_1038_s41586_020_2842_3
crossref_primary_10_3390_cells9071657
crossref_primary_10_1093_g3journal_jkac116
crossref_primary_10_1007_s00018_019_03208_z
crossref_primary_10_1007_s12268_018_0918_5
crossref_primary_10_1371_journal_pbio_3001543
crossref_primary_10_1016_j_tibs_2019_03_011
crossref_primary_10_1073_pnas_2020185118
crossref_primary_10_1016_j_molcel_2019_05_015
crossref_primary_10_1007_s00294_018_0873_1
crossref_primary_10_1073_pnas_2413732122
crossref_primary_10_26508_lsa_201900547
crossref_primary_10_1038_s42003_024_05855_w
crossref_primary_10_1007_s00294_019_00945_3
crossref_primary_10_1038_ncomms14432
crossref_primary_10_1038_s41467_017_00221_3
crossref_primary_10_1016_j_semcancer_2021_04_012
crossref_primary_10_1002_bies_201400161
crossref_primary_10_1038_ncb3367
crossref_primary_10_1038_s41598_022_08850_5
crossref_primary_10_1016_j_coi_2018_09_017
crossref_primary_10_1016_j_freeradbiomed_2025_06_008
crossref_primary_10_1016_j_jmb_2014_08_022
crossref_primary_10_1038_s41419_020_03231_0
crossref_primary_10_1038_s41467_025_58183_w
crossref_primary_10_1002_1878_0261_12882
crossref_primary_10_1073_pnas_2106393118
crossref_primary_10_1016_j_molcel_2021_01_004
crossref_primary_10_1016_j_semcancer_2016_01_001
crossref_primary_10_1158_1078_0432_CCR_22_2587
crossref_primary_10_1038_s41388_020_1191_x
crossref_primary_10_1038_s44319_024_00085_x
crossref_primary_10_1093_nar_gkad839
crossref_primary_10_1038_nprot_2015_066
crossref_primary_10_1242_jcs_261844
crossref_primary_10_1016_j_semcdb_2018_04_005
crossref_primary_10_1002_ijc_32966
crossref_primary_10_1016_j_cancergen_2025_09_002
crossref_primary_10_1016_j_molcel_2018_02_024
crossref_primary_10_1016_j_molcel_2018_02_023
crossref_primary_10_1093_nar_gkae811
crossref_primary_10_1038_cr_2015_115
crossref_primary_10_1038_s41467_022_30215_9
crossref_primary_10_1158_1541_7786_MCR_18_0551
crossref_primary_10_3390_biom5031912
crossref_primary_10_1016_j_eururo_2020_10_029
crossref_primary_10_1002_bies_202200061
crossref_primary_10_1093_nar_gkab551
crossref_primary_10_1007_s00018_019_03206_1
crossref_primary_10_1016_j_molcel_2017_09_018
crossref_primary_10_1093_neuonc_noz159
crossref_primary_10_1016_j_dnarep_2021_103163
crossref_primary_10_1002_pmic_201500172
crossref_primary_10_3389_fimmu_2022_765284
crossref_primary_10_1038_s44318_024_00066_9
crossref_primary_10_1158_0008_5472_CAN_18_1877
crossref_primary_10_3389_fmolb_2021_712971
crossref_primary_10_1038_s41418_023_01196_z
crossref_primary_10_1016_j_devcel_2021_01_011
crossref_primary_10_1016_j_cub_2015_09_026
crossref_primary_10_1074_jbc_C116_747758
crossref_primary_10_1186_s13073_021_00981_0
crossref_primary_10_15252_embr_201948920
crossref_primary_10_1016_j_jbc_2021_101301
crossref_primary_10_1186_s13058_022_01586_0
crossref_primary_10_1042_BST20190363
crossref_primary_10_15252_embj_2018101284
crossref_primary_10_1093_nar_gkad940
crossref_primary_10_1016_j_exphem_2022_03_008
crossref_primary_10_3389_fcell_2021_702584
crossref_primary_10_3389_fonc_2022_826655
crossref_primary_10_1016_j_canlet_2022_215804
crossref_primary_10_1038_s41467_021_23806_5
crossref_primary_10_1038_s41586_019_1659_4
crossref_primary_10_1182_blood_2015_05_644872
crossref_primary_10_1016_j_dnarep_2015_04_026
crossref_primary_10_1016_j_tibs_2020_05_003
crossref_primary_10_1074_jbc_M116_772475
crossref_primary_10_1016_j_dnarep_2023_103611
crossref_primary_10_1038_s41467_025_59804_0
crossref_primary_10_1371_journal_pbio_3002552
crossref_primary_10_1016_j_molcel_2023_06_025
crossref_primary_10_1016_j_freeradbiomed_2016_11_039
crossref_primary_10_1038_srep19567
crossref_primary_10_3389_fonc_2022_838637
crossref_primary_10_1093_nar_gkac741
crossref_primary_10_1158_2159_8290_CD_16_0612
crossref_primary_10_15252_embj_201796631
crossref_primary_10_1016_j_dnarep_2018_09_010
crossref_primary_10_3390_genes13050803
crossref_primary_10_34133_research_0862
crossref_primary_10_1158_0008_5472_CAN_20_2860
crossref_primary_10_1038_s41591_023_02399_0
crossref_primary_10_1038_s41388_019_0814_6
crossref_primary_10_1016_j_molonc_2014_09_012
crossref_primary_10_1111_cas_15845
crossref_primary_10_1074_jbc_M115_644005
crossref_primary_10_1126_sciadv_adu0437
crossref_primary_10_3390_ijms18061233
crossref_primary_10_1038_s41467_020_17324_z
crossref_primary_10_1083_jcb_201506071
crossref_primary_10_1080_15384101_2016_1184512
crossref_primary_10_1126_science_aap9346
crossref_primary_10_15252_embj_2021108813
crossref_primary_10_3390_cancers12102809
crossref_primary_10_1038_ncomms13398
crossref_primary_10_1016_j_mrfmmm_2023_111834
crossref_primary_10_1016_j_lfs_2023_122131
crossref_primary_10_1016_j_dnarep_2014_03_012
crossref_primary_10_1038_s41467_017_00634_0
crossref_primary_10_1002_bies_201400107
crossref_primary_10_3390_ijms19082376
crossref_primary_10_3390_ijms241612978
crossref_primary_10_15252_embj_201591293
crossref_primary_10_1016_j_molcel_2017_06_023
crossref_primary_10_1073_pnas_1917196117
crossref_primary_10_1007_s00280_019_03950_y
crossref_primary_10_1101_gad_334516_119
crossref_primary_10_1038_s41467_023_38417_5
crossref_primary_10_1016_j_dnarep_2022_103418
crossref_primary_10_1016_j_molcel_2015_06_026
crossref_primary_10_1038_s41598_021_92631_z
crossref_primary_10_3390_genes11060642
crossref_primary_10_1007_s00204_018_2202_3
crossref_primary_10_1016_j_radonc_2017_09_043
crossref_primary_10_1038_s41586_018_0534_z
crossref_primary_10_1002_1878_0261_13819
crossref_primary_10_3390_genes8030092
crossref_primary_10_1016_j_cub_2014_04_012
crossref_primary_10_1016_j_jtho_2019_01_028
crossref_primary_10_1016_j_molcel_2022_05_004
crossref_primary_10_3390_genes12040552
crossref_primary_10_1371_journal_ppat_1008403
crossref_primary_10_3390_ijms231911331
crossref_primary_10_15252_embj_2020106336
crossref_primary_10_1038_s41388_019_1079_9
crossref_primary_10_1038_s41467_023_38711_2
crossref_primary_10_1073_pnas_1904024116
crossref_primary_10_1038_s41467_024_55637_5
crossref_primary_10_1101_gad_352311_124
crossref_primary_10_1158_0008_5472_CAN_17_3932
crossref_primary_10_3390_cancers13184681
crossref_primary_10_1016_j_ebiom_2017_09_016
crossref_primary_10_3390_genes8020049
crossref_primary_10_1083_jcb_201902085
crossref_primary_10_3390_ijms21249431
crossref_primary_10_1002_path_4828
crossref_primary_10_1016_j_molcel_2023_07_026
crossref_primary_10_1146_annurev_genet_120116_024745
crossref_primary_10_3390_cancers11091289
crossref_primary_10_1080_15384101_2017_1288322
crossref_primary_10_1038_s41586_024_07112_w
crossref_primary_10_1016_j_isci_2021_102313
crossref_primary_10_1038_s41467_025_60160_2
crossref_primary_10_3389_fcell_2021_714868
crossref_primary_10_1016_j_molcel_2018_01_012
crossref_primary_10_1038_cr_2014_147
crossref_primary_10_1038_s41467_023_36149_0
crossref_primary_10_1098_rsob_190156
crossref_primary_10_1038_s41598_017_09716_x
crossref_primary_10_3389_fgene_2015_00070
crossref_primary_10_3390_biom10030463
crossref_primary_10_1038_s41467_019_12064_1
crossref_primary_10_1080_15384101_2014_997517
crossref_primary_10_1073_pnas_2019183118
crossref_primary_10_3390_diagnostics10020121
crossref_primary_10_1016_j_molcel_2016_05_007
crossref_primary_10_1093_nar_gkac1121
crossref_primary_10_1158_0008_5472_CAN_18_3631
crossref_primary_10_15252_embr_202357677
crossref_primary_10_1016_j_dnarep_2021_103209
crossref_primary_10_1016_j_cell_2018_03_050
crossref_primary_10_1016_j_aquaculture_2024_741146
crossref_primary_10_26508_lsa_202201560
crossref_primary_10_1158_1078_0432_CCR_19_0448
crossref_primary_10_1016_j_semcancer_2018_08_003
crossref_primary_10_1038_ncb3415
crossref_primary_10_1038_s41556_020_0494_z
crossref_primary_10_1038_s41467_021_25827_6
crossref_primary_10_3389_fcimb_2021_802613
crossref_primary_10_1073_pnas_2017497118
crossref_primary_10_1146_annurev_genet_120213_092228
crossref_primary_10_3389_fcell_2020_00416
crossref_primary_10_3390_cells12141904
crossref_primary_10_1038_s41388_020_1220_9
crossref_primary_10_1038_s41594_023_00932_w
crossref_primary_10_1016_j_tranon_2018_06_008
crossref_primary_10_1038_s41467_019_10180_6
crossref_primary_10_1038_s41467_023_37341_y
crossref_primary_10_1038_s41388_021_02080_1
crossref_primary_10_1016_j_bbagrm_2014_04_008
crossref_primary_10_3390_cancers14235722
crossref_primary_10_1371_journal_pone_0091222
crossref_primary_10_1038_ncb3422
crossref_primary_10_1038_s41467_024_52189_6
crossref_primary_10_1093_nar_gkad659
crossref_primary_10_1093_nar_gku505
crossref_primary_10_1093_nar_gkv957
crossref_primary_10_1038_ncomms9088
crossref_primary_10_1038_s41467_025_60077_w
crossref_primary_10_1002_hem3_70016
crossref_primary_10_1093_nar_gkv835
crossref_primary_10_3390_cells9071747
crossref_primary_10_1038_s41467_023_39332_5
crossref_primary_10_12677_WJCR_2022_122006
crossref_primary_10_1016_j_crmeth_2023_100501
crossref_primary_10_1038_s41588_023_01458_z
crossref_primary_10_1016_j_molcel_2021_04_006
crossref_primary_10_1016_j_molcel_2022_12_004
crossref_primary_10_1074_jbc_RA118_005231
crossref_primary_10_1093_nar_gkae1159
crossref_primary_10_1146_annurev_genet_121415_121658
crossref_primary_10_1158_0008_5472_CAN_17_2802
crossref_primary_10_1007_s10585_024_10265_7
crossref_primary_10_1038_s41467_024_46358_w
crossref_primary_10_3390_ijms18071339
crossref_primary_10_1016_j_cell_2014_05_046
crossref_primary_10_1038_ncb3436
crossref_primary_10_1038_s41586_022_04638_9
crossref_primary_10_1016_j_celrep_2023_113412
crossref_primary_10_1038_s41388_020_1265_9
crossref_primary_10_15252_embr_202357585
crossref_primary_10_1016_j_molcel_2018_09_014
crossref_primary_10_1093_nar_gkw1125
crossref_primary_10_1016_j_devcel_2016_11_017
crossref_primary_10_1093_nar_gkac214
crossref_primary_10_3390_genes8020074
crossref_primary_10_1111_febs_12867
crossref_primary_10_1186_s13048_023_01094_5
crossref_primary_10_3390_biology11111652
crossref_primary_10_3390_genes8010037
crossref_primary_10_1016_j_neo_2018_08_001
crossref_primary_10_1016_j_cell_2016_09_054
crossref_primary_10_1073_pnas_1720355115
crossref_primary_10_3389_fonc_2022_828684
crossref_primary_10_1016_j_lfs_2023_122085
crossref_primary_10_1093_nar_gkab134
crossref_primary_10_1073_pnas_2013921117
crossref_primary_10_1016_j_jbc_2023_104900
crossref_primary_10_1038_s41598_018_21110_9
crossref_primary_10_1038_s41586_021_03526_y
crossref_primary_10_1172_JCI165448
crossref_primary_10_1186_s12964_024_01513_0
crossref_primary_10_1093_nar_gky1242
crossref_primary_10_1016_j_cub_2014_03_060
crossref_primary_10_1093_nar_gkz1167
crossref_primary_10_7554_eLife_57894
crossref_primary_10_1016_j_cell_2013_10_049
crossref_primary_10_1080_15384101_2019_1593649
crossref_primary_10_1016_j_dnarep_2025_103887
crossref_primary_10_15252_embr_202050662
crossref_primary_10_1073_pnas_1400683111
crossref_primary_10_1177_1758835918786658
crossref_primary_10_1016_j_molcel_2019_08_023
crossref_primary_10_1093_carcin_bgaa021
crossref_primary_10_3390_ijms21051588
crossref_primary_10_1242_jcs_161596
crossref_primary_10_1093_nar_gkaf544
crossref_primary_10_1093_nar_gkad363
crossref_primary_10_3390_genes9120603
crossref_primary_10_1038_s41594_023_00998_6
crossref_primary_10_1038_s41467_025_63002_3
crossref_primary_10_1016_j_isci_2025_112567
crossref_primary_10_1093_nar_gkad369
crossref_primary_10_1016_j_dnarep_2017_03_006
crossref_primary_10_1038_s41467_024_48286_1
crossref_primary_10_1038_s41598_021_00435_y
crossref_primary_10_1038_s41420_024_02083_3
crossref_primary_10_3389_fcell_2020_602956
crossref_primary_10_1016_j_bbamcr_2023_119484
crossref_primary_10_1158_1078_0432_CCR_17_2701
crossref_primary_10_1083_jcb_201809012
crossref_primary_10_1093_g3journal_jkae196
crossref_primary_10_1038_s41388_022_02291_0
crossref_primary_10_1016_j_molcel_2020_04_031
crossref_primary_10_1146_annurev_pathol_012414_040424
crossref_primary_10_1111_febs_13898
crossref_primary_10_1038_s41467_021_26049_6
crossref_primary_10_1038_s41467_024_46760_4
crossref_primary_10_1016_j_pt_2017_08_002
crossref_primary_10_1038_s44319_025_00514_5
crossref_primary_10_1038_s41388_017_0121_z
crossref_primary_10_1172_JCI189511
crossref_primary_10_1016_j_molcel_2022_07_011
crossref_primary_10_1080_15384101_2016_1148841
crossref_primary_10_1080_10409238_2018_1488803
crossref_primary_10_1038_s41467_022_32861_5
crossref_primary_10_1093_nar_gkae546
crossref_primary_10_1016_j_celrep_2025_116090
crossref_primary_10_1016_j_dnarep_2025_103865
crossref_primary_10_1038_s41467_021_27057_2
crossref_primary_10_15252_embr_201744877
crossref_primary_10_1038_s41467_018_08048_2
crossref_primary_10_1016_j_canlet_2025_218009
crossref_primary_10_1016_j_molonc_2014_11_001
crossref_primary_10_1038_nsmb_3163
crossref_primary_10_1038_s41598_018_32323_3
crossref_primary_10_1016_j_molcel_2021_06_011
crossref_primary_10_1016_j_tcb_2023_03_015
crossref_primary_10_1007_s00299_024_03187_x
crossref_primary_10_1038_s41598_017_08257_7
crossref_primary_10_3390_genes9120622
crossref_primary_10_1016_j_molcel_2015_10_040
crossref_primary_10_1007_s10147_017_1145_7
crossref_primary_10_3390_molecules22030356
crossref_primary_10_1016_j_xpro_2025_103662
crossref_primary_10_1038_s41556_019_0293_6
crossref_primary_10_1371_journal_ppat_1013142
crossref_primary_10_1158_1078_0432_CCR_22_0875
crossref_primary_10_2217_fon_15_292
crossref_primary_10_3390_ijms21249715
crossref_primary_10_1101_gad_348858_121
crossref_primary_10_1038_onc_2015_135
crossref_primary_10_1093_nar_gkv880
crossref_primary_10_1038_s41375_019_0618_2
crossref_primary_10_1158_2159_8290_CD_23_0641
crossref_primary_10_1158_1535_7163_MCT_23_0402
crossref_primary_10_1016_j_devcel_2022_06_003
crossref_primary_10_1093_nar_gkab176
crossref_primary_10_1038_nrm_2017_67
crossref_primary_10_1186_s13046_022_02334_0
crossref_primary_10_1016_j_molcel_2016_10_032
crossref_primary_10_1016_j_ebiom_2015_12_012
crossref_primary_10_1002_jcp_25792
crossref_primary_10_1038_jid_2015_255
crossref_primary_10_1016_j_cell_2021_10_025
crossref_primary_10_1016_j_molcel_2023_01_003
crossref_primary_10_1038_cddis_2016_121
crossref_primary_10_1016_j_ccell_2019_05_001
crossref_primary_10_1093_nar_gkv573
crossref_primary_10_1038_nature13993
crossref_primary_10_1016_j_molcel_2018_07_011
crossref_primary_10_1016_j_molcel_2017_05_001
crossref_primary_10_1038_nrc3916
crossref_primary_10_1038_nrg_2017_46
crossref_primary_10_1093_nar_gkz1139
crossref_primary_10_1016_j_molcel_2015_07_029
crossref_primary_10_1038_s41467_018_05031_9
crossref_primary_10_1038_s41467_022_33027_z
crossref_primary_10_1038_s41598_022_09308_4
crossref_primary_10_1111_febs_13574
crossref_primary_10_1158_0008_5472_CAN_14_3347
crossref_primary_10_1093_nar_gkad291
crossref_primary_10_3390_cells10102520
crossref_primary_10_1038_s41419_023_06042_1
crossref_primary_10_1038_srep43517
crossref_primary_10_1074_jbc_RA120_013780
crossref_primary_10_1093_nar_gkw791
crossref_primary_10_1038_s41568_018_0034_3
crossref_primary_10_1091_mbc_E15_05_0318
crossref_primary_10_4161_15384101_2014_964100
crossref_primary_10_3390_ijms18061138
crossref_primary_10_3390_cancers13123056
crossref_primary_10_3390_cells13171462
crossref_primary_10_1084_jem_20241432
crossref_primary_10_1146_annurev_genet_080320_031523
crossref_primary_10_1128_MCB_00090_21
crossref_primary_10_1097_CCO_0000000000000867
crossref_primary_10_3390_genes10040252
crossref_primary_10_3390_genes6020267
crossref_primary_10_1016_j_molcel_2020_12_034
crossref_primary_10_1038_s41467_019_11760_2
crossref_primary_10_15252_embr_202153639
crossref_primary_10_1073_pnas_2015654118
crossref_primary_10_1158_1541_7786_MCR_19_1051
crossref_primary_10_3390_genes7080051
crossref_primary_10_1038_s41467_023_39579_y
crossref_primary_10_1042_BCJ20230284
crossref_primary_10_1128_JVI_01012_17
crossref_primary_10_1016_j_molcel_2025_04_006
crossref_primary_10_1016_j_mrfmmm_2020_111694
crossref_primary_10_1016_j_molcel_2015_07_030
crossref_primary_10_1038_ncomms11752
crossref_primary_10_1158_1078_0432_CCR_20_3358
crossref_primary_10_1007_s00018_017_2474_4
crossref_primary_10_1016_j_molcel_2022_08_007
crossref_primary_10_1016_j_molcel_2022_08_006
crossref_primary_10_1093_nar_gky1233
crossref_primary_10_3390_cells14100748
crossref_primary_10_4049_jimmunol_1801618
crossref_primary_10_1016_j_molcel_2016_03_006
crossref_primary_10_1038_s41467_017_02245_1
crossref_primary_10_1158_1078_0432_CCR_16_2273
crossref_primary_10_1093_abbs_gmw044
crossref_primary_10_1101_gad_290957_116
crossref_primary_10_1007_s00412_023_00807_5
crossref_primary_10_1093_abbs_gmw043
crossref_primary_10_1016_j_molcel_2015_06_007
crossref_primary_10_1080_10409238_2020_1813070
crossref_primary_10_1016_j_molcel_2017_05_015
crossref_primary_10_1038_s41467_018_03096_0
crossref_primary_10_1093_nar_gkaf573
crossref_primary_10_26508_lsa_202302111
crossref_primary_10_1038_ng_3790
crossref_primary_10_1016_j_ccell_2025_04_014
crossref_primary_10_1073_pnas_2206824119
crossref_primary_10_1016_j_devcel_2024_05_010
crossref_primary_10_1016_j_isci_2024_110373
crossref_primary_10_1038_s43018_022_00331_y
crossref_primary_10_1016_j_jdermsci_2022_01_009
crossref_primary_10_1093_nar_gky525
crossref_primary_10_1007_s10637_015_0310_y
crossref_primary_10_1016_j_ctrv_2018_09_003
crossref_primary_10_3390_ijms150712007
crossref_primary_10_1016_j_molcel_2017_11_035
crossref_primary_10_1182_bloodadvances_2017015214
crossref_primary_10_1016_j_ceb_2015_09_002
crossref_primary_10_3390_ijms242115907
crossref_primary_10_1080_13543784_2020_1783238
crossref_primary_10_1038_s41467_024_45139_9
crossref_primary_10_3390_ani15101419
crossref_primary_10_1038_s41594_023_01045_0
crossref_primary_10_1074_jbc_M116_765883
crossref_primary_10_1080_10985549_2023_2259739
crossref_primary_10_1016_j_dnarep_2016_11_002
crossref_primary_10_3390_genes10030232
crossref_primary_10_3390_genes11090990
crossref_primary_10_3390_biom5032123
crossref_primary_10_1371_journal_pone_0215696
crossref_primary_10_1038_s41598_024_81914_w
crossref_primary_10_1016_j_jmb_2019_03_011
crossref_primary_10_1038_s41418_019_0403_9
crossref_primary_10_1016_j_dnarep_2019_102654
crossref_primary_10_1371_journal_pgen_1007541
crossref_primary_10_1016_j_mrfmmm_2014_08_004
crossref_primary_10_1016_j_molcel_2014_12_001
crossref_primary_10_1038_s41420_025_02383_2
crossref_primary_10_1016_j_dnarep_2019_102655
crossref_primary_10_1038_s41598_019_44771_6
crossref_primary_10_1016_j_yexcr_2018_08_025
crossref_primary_10_1158_0008_5472_CAN_14_2571
crossref_primary_10_1093_nar_gkaf278
crossref_primary_10_1016_j_celrep_2024_114214
crossref_primary_10_1038_onc_2014_276
crossref_primary_10_1002_em_22176
crossref_primary_10_1038_s41467_019_11095_y
crossref_primary_10_3390_cancers13143464
crossref_primary_10_1016_j_molcel_2018_04_022
crossref_primary_10_1016_j_biopha_2024_117076
crossref_primary_10_1134_S0026893316030080
crossref_primary_10_3390_ijms241310488
crossref_primary_10_1016_j_molcel_2018_12_021
crossref_primary_10_1016_j_cell_2025_01_005
crossref_primary_10_3390_genes12071096
crossref_primary_10_1016_j_cels_2019_11_001
crossref_primary_10_1038_s41420_025_02306_1
crossref_primary_10_1038_s41467_024_46547_7
crossref_primary_10_1093_nar_gkw442
crossref_primary_10_1111_febs_16875
crossref_primary_10_1038_s41594_022_00871_y
crossref_primary_10_3389_fonc_2018_00245
crossref_primary_10_1038_s43018_021_00225_5
crossref_primary_10_1007_s42764_022_00085_y
crossref_primary_10_1038_srep30819
crossref_primary_10_1080_15384101_2017_1387696
crossref_primary_10_18632_oncotarget_12673
crossref_primary_10_1002_advs_202100753
crossref_primary_10_1128_MCB_01276_14
crossref_primary_10_1158_0008_5472_CAN_18_0618
crossref_primary_10_1016_j_mrgentox_2021_503422
crossref_primary_10_1073_pnas_2315242121
crossref_primary_10_1083_jcb_202009147
crossref_primary_10_1371_journal_pone_0213130
crossref_primary_10_3390_cancers13040795
crossref_primary_10_1158_2159_8290_CD_19_0789
crossref_primary_10_1038_s41523_021_00353_2
crossref_primary_10_1038_s41594_018_0075_z
crossref_primary_10_3390_biomedicines10112775
crossref_primary_10_1002_hep_30529
crossref_primary_10_1016_j_pharmthera_2020_107518
crossref_primary_10_1016_j_jab_2017_10_008
crossref_primary_10_1016_S1875_5364_24_60694_1
crossref_primary_10_1158_0008_5472_CAN_18_2807
crossref_primary_10_1016_j_isci_2025_112757
crossref_primary_10_1091_mbc_E16_01_0025
crossref_primary_10_15252_embj_2021110145
crossref_primary_10_3390_ijms26020667
crossref_primary_10_1038_s41586_025_08815_4
crossref_primary_10_1158_0008_5472_CAN_22_3646
crossref_primary_10_3390_biology11060827
crossref_primary_10_1016_j_yexcr_2016_03_003
crossref_primary_10_1038_nature25507
crossref_primary_10_1016_j_yexcr_2014_09_030
crossref_primary_10_1016_j_cellsig_2022_110310
crossref_primary_10_1242_jcs_263749
crossref_primary_10_1016_j_ecoenv_2024_116032
crossref_primary_10_1200_EDBK_238473
crossref_primary_10_1016_j_molcel_2021_08_009
crossref_primary_10_1002_1878_0261_12497
crossref_primary_10_1172_JCI122622
crossref_primary_10_1002_cac2_12636
crossref_primary_10_1016_j_dnarep_2025_103831
crossref_primary_10_1016_j_yexcr_2014_09_019
crossref_primary_10_1038_s41594_020_0407_7
crossref_primary_10_1038_nrd4553
crossref_primary_10_1038_ncomms13887
crossref_primary_10_1016_j_dnarep_2025_103841
crossref_primary_10_1016_j_molcel_2025_06_002
crossref_primary_10_1038_s41418_020_00733_4
crossref_primary_10_1101_gad_348517_121
crossref_primary_10_1016_j_molcel_2025_06_001
crossref_primary_10_1073_pnas_2419712122
crossref_primary_10_1186_s13059_022_02638_6
crossref_primary_10_1073_pnas_2009899117
crossref_primary_10_1016_j_molcel_2015_09_011
crossref_primary_10_1016_j_cell_2018_07_011
crossref_primary_10_1016_j_chembiol_2019_12_005
crossref_primary_10_1101_gr_224527_117
crossref_primary_10_1126_sciadv_adr3673
crossref_primary_10_3389_fonc_2021_683688
crossref_primary_10_1186_1471_2105_15_308
crossref_primary_10_1136_gutjnl_2016_312623
crossref_primary_10_1038_ncomms6496
crossref_primary_10_1093_nar_gkz518
crossref_primary_10_1038_s41594_020_0418_4
crossref_primary_10_1080_15384101_2016_1152424
crossref_primary_10_1016_j_dnarep_2025_103824
crossref_primary_10_1101_gad_349431_122
crossref_primary_10_1111_febs_14377
crossref_primary_10_1002_ijc_35164
crossref_primary_10_1093_nar_gkw121
crossref_primary_10_1126_science_adl4606
crossref_primary_10_1016_j_cels_2018_05_011
crossref_primary_10_1073_pnas_2109334118
crossref_primary_10_15252_embj_2018101443
crossref_primary_10_1016_j_celrep_2024_114464
crossref_primary_10_1016_j_molcel_2020_07_010
crossref_primary_10_3389_fimmu_2024_1414376
crossref_primary_10_1158_0008_5472_CAN_20_0057
crossref_primary_10_1016_j_tcb_2019_06_005
crossref_primary_10_3390_molecules27113567
crossref_primary_10_1101_gad_297663_117
crossref_primary_10_1016_j_neo_2024_101092
crossref_primary_10_1371_journal_ppat_1011203
crossref_primary_10_1016_j_yexcr_2014_08_010
crossref_primary_10_15252_embj_201899154
crossref_primary_10_1038_nsmb_3251
crossref_primary_10_1093_nar_gkw132
crossref_primary_10_1158_0008_5472_CAN_24_1404
crossref_primary_10_1016_j_cell_2018_08_065
crossref_primary_10_1038_s41571_024_00863_5
crossref_primary_10_15252_embj_2019103838
crossref_primary_10_1002_1878_0261_13433
crossref_primary_10_1016_j_ccell_2019_02_004
crossref_primary_10_1038_s41598_024_70589_y
crossref_primary_10_1111_php_12641
crossref_primary_10_7554_eLife_30523
ContentType Journal Article
Copyright Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2013 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cell.2013.10.043
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
ExternalDocumentID 24267891
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6J9
7-5
85S
AAEDT
AAEDW
AAFWJ
AAHBH
AAIKJ
AAKRW
AAKUH
AALRI
AAMRU
AAQFI
AAVLU
AAXUO
AAYJJ
AAYWO
ABCQX
ABDGV
ABJNI
ABMAC
ABOCM
ACGFO
ACGFS
ACNCT
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
ADXHL
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FIRID
HH5
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NPM
O-L
O9-
OK1
P2P
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
WH7
YYQ
YZZ
ZCA
7X8
ID FETCH-LOGICAL-c453t-cd4c94e83d20e21d1e929ef989f53d81425a697760425b1e38277b860e7628ed2
IEDL.DBID 7X8
ISICitedReferencesCount 693
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000327500600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4172
IngestDate Thu Oct 02 07:00:28 EDT 2025
Mon Jul 21 06:03:59 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-cd4c94e83d20e21d1e929ef989f53d81425a697760425b1e38277b860e7628ed2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S0092867413013615/pdf
PMID 24267891
PQID 1461869436
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1461869436
pubmed_primary_24267891
PublicationCentury 2000
PublicationDate 2013-11-21
PublicationDateYYYYMMDD 2013-11-21
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2013
References Cell. 2014 Jan 16;156(1-2):374
24267882 - Cell. 2013 Nov 21;155(5):979-80
References_xml – reference: 24267882 - Cell. 2013 Nov 21;155(5):979-80
– reference: - Cell. 2014 Jan 16;156(1-2):374
SSID ssj0008555
Score 2.6230059
Snippet ATR, activated by replication stress, protects replication forks locally and suppresses origin firing globally. Here, we show that these functions of ATR are...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1088
SubjectTerms Ataxia Telangiectasia Mutated Proteins - metabolism
Cell Line, Tumor
Chromatin - chemistry
Chromatin - metabolism
DNA Damage - drug effects
DNA Replication
Genomic Instability
Humans
Neoplasms - drug therapy
Protein Kinase Inhibitors - pharmacology
Protein Kinase Inhibitors - therapeutic use
Replication Origin
Replication Protein A - metabolism
Title ATR prohibits replication catastrophe by preventing global exhaustion of RPA
URI https://www.ncbi.nlm.nih.gov/pubmed/24267891
https://www.proquest.com/docview/1461869436
Volume 155
WOSCitedRecordID wos000327500600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAgsTC-1FeMhKrIY4dx55QhagYSlVVReoW1bFNuySlCYj-e3xJChMSEkumSxRd7s6Xe3wfQjeRiV1gmCBMM0M455roNNBEBSmfxCoQzlXo-r2435fjsRo0BbeiGatcxcQqUJs8hRr5HfBPS6E4E_fzNwKsUdBdbSg01lGL-VQGrDoe_6CFy6hiPYUmK-H-pG6WZur5LiiMw2gXu4XpLtja-S3FrI6a7u5_X3IP7TRJJu7UVrGP1mx2gLZq2snlIep1RkPsnzyd6VlZ4IX97mFjqOYU5QLABrBeeqEa4Cl7xTVyCLafU0AKAtnc4eGgc4Reuo-jhyfSsCqQlEesJKnhqeJWMhMGNqSGWp8hWaekchEzknonngifFQpwZ00tk2EcaykC6-OmtCY8RhtZntlThEOlI6uY0C7g3NJA2wn1ssrEMnX-P6qNrldqSrzVgsYnmc3fi-RHUW10Uus6mdfwGgkkDbFU9OwPd5-jbfiEsBwY0gvUct5n7SXaTD_KWbG4qszBX_uD5y8I6L6a
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ATR+prohibits+replication+catastrophe+by+preventing+global+exhaustion+of+RPA&rft.jtitle=Cell&rft.au=Toledo%2C+Luis+Ignacio&rft.au=Altmeyer%2C+Matthias&rft.au=Rask%2C+Maj-Britt&rft.au=Lukas%2C+Claudia&rft.date=2013-11-21&rft.eissn=1097-4172&rft.volume=155&rft.issue=5&rft.spage=1088&rft_id=info:doi/10.1016%2Fj.cell.2013.10.043&rft_id=info%3Apmid%2F24267891&rft_id=info%3Apmid%2F24267891&rft.externalDocID=24267891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4172&client=summon