Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes

We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physical review letters Ročník 120; číslo 9; s. 093901
Hlavní autoři: Qi, Bingkun, Zhang, Lingxuan, Ge, Li
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Physical Society 02.03.2018
Témata:
ISSN:0031-9007, 1079-7114, 1079-7114
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.
AbstractList We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.
We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.
ArticleNumber 093901
Author Ge, Li
Zhang, Lingxuan
Qi, Bingkun
Author_xml – sequence: 1
  givenname: Bingkun
  surname: Qi
  fullname: Qi, Bingkun
– sequence: 2
  givenname: Lingxuan
  surname: Zhang
  fullname: Zhang, Lingxuan
– sequence: 3
  givenname: Li
  surname: Ge
  fullname: Ge, Li
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29547321$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rVTEQhoNU7G31L5SAGzfnOpOcT3AjtR_iVYutGzchJ2fSppyT1CS30H9v5LYg3QjDzOZ5Z4b3PWB7Pnhi7AhhjQjy_cXNQ_pB9xvKeY0C1jDIAfAFWyF0Q9Uh1ntsBSCxGgC6fXaQ0i0AoGj7V2xfDE3dSYEr9uUTWTKZX2adKfGTheK189fcxrBwzb8FX51TXFx22vPTWedR-4kHyy9uQg7eGf6LYuBfw0TpNXtp9ZzozeM8ZD9PT66Oz6vN97PPxx83lakbmStjkIZaDmaatAajTUu97RFJi74pfZzE2PTUWllK1rYla7vWCiEJRgmtPGTvdnvvYvi9pZTV4pKhedaewjYpAVgPTdO0WNC3z9DbsI2-fKcEYi_7TnZ1oY4eqe240KTuolt0fFBPNhXgww4wMaQUySrjimEu-By1mxWC-puK-icVVVJRu1SKvH0mf7rwH-Ef1PyT9g
CitedBy_id crossref_primary_10_1103_PhysRevLett_129_243901
crossref_primary_10_1016_j_physrep_2024_01_006
crossref_primary_10_1088_1367_2630_ab4d09
crossref_primary_10_1007_s11467_024_1412_9
crossref_primary_10_1088_2040_8986_ac2e15
crossref_primary_10_1364_PRJ_413873
crossref_primary_10_1088_1751_8121_ab5b27
crossref_primary_10_1515_nanoph_2024_0135
crossref_primary_10_1002_apxr_202300066
crossref_primary_10_1209_0295_5075_125_10006
crossref_primary_10_1088_1367_2630_ade7a8
crossref_primary_10_1080_23746149_2018_1473052
crossref_primary_10_1103_PhysRevResearch_6_L022006
crossref_primary_10_1002_lpor_202000041
crossref_primary_10_1063_5_0069633
crossref_primary_10_1088_2515_7639_ab4092
crossref_primary_10_1109_JSTQE_2020_3010586
crossref_primary_10_1103_PhysRevB_103_014111
crossref_primary_10_1103_PhysRevResearch_5_013003
crossref_primary_10_1140_epjd_e2020_10021_0
crossref_primary_10_1002_lpor_202000204
crossref_primary_10_1016_j_physleta_2023_128893
crossref_primary_10_1103_PhysRevB_103_195142
crossref_primary_10_1088_0256_307X_41_2_027201
crossref_primary_10_1103_PhysRevApplied_15_014009
crossref_primary_10_1103_slwj_33nx
crossref_primary_10_1007_s12200_019_0949_7
crossref_primary_10_1007_s11082_020_02480_9
crossref_primary_10_1103_PhysRevResearch_5_023044
crossref_primary_10_1364_PRJ_6_000A10
crossref_primary_10_1088_1402_4896_ac7a6c
crossref_primary_10_1038_s42005_025_01989_3
crossref_primary_10_1063_5_0174456
crossref_primary_10_1364_PRJ_478167
crossref_primary_10_1103_PhysRevB_111_085120
crossref_primary_10_1002_adom_201900694
crossref_primary_10_1038_s41598_020_58018_2
crossref_primary_10_1103_PhysRevX_9_041015
crossref_primary_10_1103_PhysRevResearch_2_033127
crossref_primary_10_1103_PhysRevResearch_2_033149
crossref_primary_10_1016_j_physleta_2023_129113
crossref_primary_10_1103_PhysRevLett_131_223801
crossref_primary_10_1103_PhysRevResearch_2_032057
crossref_primary_10_1063_1_5043279
crossref_primary_10_1088_1361_648X_ab9fd4
crossref_primary_10_1103_PhysRevB_107_104106
crossref_primary_10_1016_j_ijmecsci_2022_107352
crossref_primary_10_1364_PRJ_440050
Cites_doi 10.1103/PhysRevLett.80.5243
10.1103/PhysRevX.3.041030
10.1103/PhysRevX.4.031011
10.1063/1.532860
10.1038/nphoton.2012.302
10.1103/PhysRevLett.112.116402
10.1103/PhysRevLett.101.080402
10.1364/OL.32.002632
10.1038/nphys1420
10.1038/nphys1612
10.1126/science.1258479
10.1103/PhysRevB.96.064305
10.1209/0295-5075/105/30001
10.1126/science.aaf8533
10.1103/PhysRev.118.1190
10.1103/PhysRevA.92.063813
10.1103/PhysRevLett.89.270401
10.1103/PhysRevLett.113.236403
10.1103/PhysRevLett.106.236804
10.1103/RevModPhys.87.1037
10.1038/nmat3495
10.1103/PhysRevB.82.104209
10.1364/OL.40.005806
10.1038/npjqi.2015.1
10.1103/PhysRevA.96.011802
10.1103/PhysRevLett.84.143
10.1103/PhysRevA.82.031801
10.1103/PhysRevLett.106.093902
10.1103/PhysRevA.82.041402
10.1103/PhysRevLett.100.030402
10.1038/nphys2927
10.1103/PhysRevLett.114.245504
10.1103/PhysRevLett.106.213901
10.1038/nature11298
10.1103/PhysRevA.85.023802
10.1038/srep24889
10.1103/PhysRevA.87.023614
10.1002/ange.19971091705
10.1103/PhysRevLett.108.024101
10.1103/PhysRevLett.106.236802
10.1364/OL.38.004880
10.1103/PhysRevB.88.224203
10.1103/PhysRevA.89.062102
10.1103/PhysRevLett.103.093902
10.1126/science.1258480
10.1038/nphoton.2014.133
10.1103/PhysRevLett.100.103904
10.1103/PhysRevLett.114.245503
10.1103/PhysRevA.96.023820
10.1103/PhysRevA.92.052103
10.1088/0034-4885/75/7/076501
10.1103/PhysRevLett.116.066402
10.1103/PhysRevLett.102.220402
10.1038/nphys1515
10.1103/PhysRevA.95.023812
10.1002/andp.201600182
10.1038/nphoton.2016.216
10.1002/(SICI)1521-3757(19980302)110:5<664::AID-ANGE664>3.0.CO;2-8
10.1103/PhysRevLett.78.1932
10.1016/S0022-4596(03)00239-1
10.1103/PhysRevLett.115.143601
10.1103/PhysRevA.92.062135
10.1038/srep17022
10.1103/PhysRevLett.115.200402
10.1103/PhysRevB.86.241112
ContentType Journal Article
Copyright Copyright American Physical Society Mar 2, 2018
Copyright_xml – notice: Copyright American Physical Society Mar 2, 2018
DBID AAYXX
CITATION
NPM
7U5
8FD
H8D
L7M
7X8
DOI 10.1103/PhysRevLett.120.093901
DatabaseName CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 29547321
10_1103_PhysRevLett_120_093901
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
UCJ
VQA
7U5
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c453t-cc1e9439cddaa0cac6e8f811ea2851eabd2b58e6f36f334f6eff76f223e0b3063
IEDL.DBID 3MX
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426173800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Thu Jul 10 23:39:03 EDT 2025
Sun Jun 29 15:26:44 EDT 2025
Thu Jan 02 23:09:19 EST 2025
Tue Nov 18 22:11:11 EST 2025
Sat Nov 29 01:46:47 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-cc1e9439cddaa0cac6e8f811ea2851eabd2b58e6f36f334f6eff76f223e0b3063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://ir.opt.ac.cn/handle/181661/30753
PMID 29547321
PQID 2118387374
PQPubID 2048222
ParticipantIDs proquest_miscellaneous_2014955561
proquest_journals_2118387374
pubmed_primary_29547321
crossref_citationtrail_10_1103_PhysRevLett_120_093901
crossref_primary_10_1103_PhysRevLett_120_093901
PublicationCentury 2000
PublicationDate 2018-Mar-02
PublicationDateYYYYMMDD 2018-03-02
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-Mar-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: College Park
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2018
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevLett.120.093901Cc41R1
PhysRevLett.120.093901Cc62R1
PhysRevLett.120.093901Cc60R1
PhysRevLett.120.093901Cc3R1
PhysRevLett.120.093901Cc20R1
PhysRevLett.120.093901Cc45R1
PhysRevLett.120.093901Cc1R1
PhysRevLett.120.093901Cc22R1
PhysRevLett.120.093901Cc43R1
PhysRevLett.120.093901Cc64R1
PhysRevLett.120.093901Cc24R1
PhysRevLett.120.093901Cc49R1
PhysRevLett.120.093901Cc26R1
PhysRevLett.120.093901Cc47R1
PhysRevLett.120.093901Cc28R1
PhysRevLett.120.093901Cc9R1
PhysRevLett.120.093901Cc7R1
PhysRevLett.120.093901Cc51R1
PhysRevLett.120.093901Cc30R1
PhysRevLett.120.093901Cc5R1
PhysRevLett.120.093901Cc34R1
PhysRevLett.120.093901Cc55R1
PhysRevLett.120.093901Cc11R1
PhysRevLett.120.093901Cc32R1
PhysRevLett.120.093901Cc53R1
PhysRevLett.120.093901Cc13R1
PhysRevLett.120.093901Cc38R1
PhysRevLett.120.093901Cc59R1
PhysRevLett.120.093901Cc15R1
PhysRevLett.120.093901Cc36R1
PhysRevLett.120.093901Cc57R1
PhysRevLett.120.093901Cc17R1
PhysRevLett.120.093901Cc19R1
PhysRevLett.120.093901Cc40R1
PhysRevLett.120.093901Cc63R1
PhysRevLett.120.093901Cc61R1
PhysRevLett.120.093901Cc21R1
PhysRevLett.120.093901Cc44R1
PhysRevLett.120.093901Cc67R1
PhysRevLett.120.093901Cc2R1
PhysRevLett.120.093901Cc23R1
PhysRevLett.120.093901Cc42R1
PhysRevLett.120.093901Cc65R1
PhysRevLett.120.093901Cc25R1
PhysRevLett.120.093901Cc48R1
PhysRevLett.120.093901Cc27R1
PhysRevLett.120.093901Cc46R1
PhysRevLett.120.093901Cc29R1
PhysRevLett.120.093901Cc8R1
PhysRevLett.120.093901Cc6R1
PhysRevLett.120.093901Cc52R1
PhysRevLett.120.093901Cc4R1
PhysRevLett.120.093901Cc50R1
PhysRevLett.120.093901Cc10R1
PhysRevLett.120.093901Cc33R1
PhysRevLett.120.093901Cc12R1
PhysRevLett.120.093901Cc31R1
PhysRevLett.120.093901Cc54R1
PhysRevLett.120.093901Cc14R1
PhysRevLett.120.093901Cc37R1
PhysRevLett.120.093901Cc16R1
PhysRevLett.120.093901Cc35R1
PhysRevLett.120.093901Cc58R1
PhysRevLett.120.093901Cc18R1
PhysRevLett.120.093901Cc39R1
References_xml – ident: PhysRevLett.120.093901Cc26R1
  doi: 10.1103/PhysRevLett.80.5243
– ident: PhysRevLett.120.093901Cc38R1
  doi: 10.1103/PhysRevX.3.041030
– ident: PhysRevLett.120.093901Cc41R1
  doi: 10.1103/PhysRevX.4.031011
– ident: PhysRevLett.120.093901Cc27R1
  doi: 10.1063/1.532860
– ident: PhysRevLett.120.093901Cc3R1
  doi: 10.1038/nphoton.2012.302
– ident: PhysRevLett.120.093901Cc16R1
  doi: 10.1103/PhysRevLett.112.116402
– ident: PhysRevLett.120.093901Cc30R1
  doi: 10.1103/PhysRevLett.101.080402
– ident: PhysRevLett.120.093901Cc29R1
  doi: 10.1364/OL.32.002632
– ident: PhysRevLett.120.093901Cc8R1
  doi: 10.1038/nphys1420
– ident: PhysRevLett.120.093901Cc35R1
  doi: 10.1038/nphys1612
– ident: PhysRevLett.120.093901Cc48R1
  doi: 10.1126/science.1258479
– ident: PhysRevLett.120.093901Cc59R1
  doi: 10.1103/PhysRevB.96.064305
– ident: PhysRevLett.120.093901Cc21R1
  doi: 10.1209/0295-5075/105/30001
– ident: PhysRevLett.120.093901Cc64R1
  doi: 10.1126/science.aaf8533
– ident: PhysRevLett.120.093901Cc67R1
  doi: 10.1103/PhysRev.118.1190
– ident: PhysRevLett.120.093901Cc25R1
  doi: 10.1103/PhysRevA.92.063813
– ident: PhysRevLett.120.093901Cc28R1
  doi: 10.1103/PhysRevLett.89.270401
– ident: PhysRevLett.120.093901Cc19R1
  doi: 10.1103/PhysRevLett.113.236403
– ident: PhysRevLett.120.093901Cc14R1
  doi: 10.1103/PhysRevLett.106.236804
– ident: PhysRevLett.120.093901Cc61R1
  doi: 10.1103/RevModPhys.87.1037
– ident: PhysRevLett.120.093901Cc47R1
  doi: 10.1038/nmat3495
– ident: PhysRevLett.120.093901Cc18R1
  doi: 10.1103/PhysRevB.82.104209
– ident: PhysRevLett.120.093901Cc24R1
  doi: 10.1364/OL.40.005806
– ident: PhysRevLett.120.093901Cc62R1
  doi: 10.1038/npjqi.2015.1
– ident: PhysRevLett.120.093901Cc58R1
  doi: 10.1103/PhysRevA.96.011802
– ident: PhysRevLett.120.093901Cc12R1
  doi: 10.1103/PhysRevLett.84.143
– ident: PhysRevLett.120.093901Cc36R1
  doi: 10.1103/PhysRevA.82.031801
– ident: PhysRevLett.120.093901Cc37R1
  doi: 10.1103/PhysRevLett.106.093902
– ident: PhysRevLett.120.093901Cc1R1
  doi: 10.1103/PhysRevA.82.041402
– ident: PhysRevLett.120.093901Cc31R1
  doi: 10.1103/PhysRevLett.100.030402
– ident: PhysRevLett.120.093901Cc50R1
  doi: 10.1038/nphys2927
– ident: PhysRevLett.120.093901Cc5R1
  doi: 10.1103/PhysRevLett.114.245504
– ident: PhysRevLett.120.093901Cc43R1
  doi: 10.1103/PhysRevLett.106.213901
– ident: PhysRevLett.120.093901Cc45R1
  doi: 10.1038/nature11298
– ident: PhysRevLett.120.093901Cc39R1
  doi: 10.1103/PhysRevA.85.023802
– ident: PhysRevLett.120.093901Cc42R1
  doi: 10.1038/srep24889
– ident: PhysRevLett.120.093901Cc2R1
  doi: 10.1103/PhysRevA.87.023614
– ident: PhysRevLett.120.093901Cc9R1
  doi: 10.1002/ange.19971091705
– ident: PhysRevLett.120.093901Cc46R1
  doi: 10.1103/PhysRevLett.108.024101
– ident: PhysRevLett.120.093901Cc13R1
  doi: 10.1103/PhysRevLett.106.236802
– ident: PhysRevLett.120.093901Cc57R1
  doi: 10.1364/OL.38.004880
– ident: PhysRevLett.120.093901Cc20R1
  doi: 10.1103/PhysRevB.88.224203
– ident: PhysRevLett.120.093901Cc52R1
  doi: 10.1103/PhysRevA.89.062102
– ident: PhysRevLett.120.093901Cc33R1
  doi: 10.1103/PhysRevLett.103.093902
– ident: PhysRevLett.120.093901Cc49R1
  doi: 10.1126/science.1258480
– ident: PhysRevLett.120.093901Cc51R1
  doi: 10.1038/nphoton.2014.133
– ident: PhysRevLett.120.093901Cc32R1
  doi: 10.1103/PhysRevLett.100.103904
– ident: PhysRevLett.120.093901Cc4R1
  doi: 10.1103/PhysRevLett.114.245503
– ident: PhysRevLett.120.093901Cc63R1
  doi: 10.1103/PhysRevA.96.023820
– ident: PhysRevLett.120.093901Cc23R1
  doi: 10.1103/PhysRevA.92.052103
– ident: PhysRevLett.120.093901Cc60R1
  doi: 10.1088/0034-4885/75/7/076501
– ident: PhysRevLett.120.093901Cc17R1
  doi: 10.1103/PhysRevLett.116.066402
– ident: PhysRevLett.120.093901Cc34R1
  doi: 10.1103/PhysRevLett.102.220402
– ident: PhysRevLett.120.093901Cc44R1
  doi: 10.1038/nphys1515
– ident: PhysRevLett.120.093901Cc55R1
  doi: 10.1103/PhysRevA.95.023812
– ident: PhysRevLett.120.093901Cc22R1
  doi: 10.1002/andp.201600182
– ident: PhysRevLett.120.093901Cc65R1
  doi: 10.1038/nphoton.2016.216
– ident: PhysRevLett.120.093901Cc10R1
  doi: 10.1002/(SICI)1521-3757(19980302)110:5<664::AID-ANGE664>3.0.CO;2-8
– ident: PhysRevLett.120.093901Cc7R1
  doi: 10.1103/PhysRevLett.78.1932
– ident: PhysRevLett.120.093901Cc11R1
  doi: 10.1016/S0022-4596(03)00239-1
– ident: PhysRevLett.120.093901Cc6R1
  doi: 10.1103/PhysRevLett.115.143601
– ident: PhysRevLett.120.093901Cc40R1
  doi: 10.1103/PhysRevA.92.062135
– ident: PhysRevLett.120.093901Cc53R1
  doi: 10.1038/srep17022
– ident: PhysRevLett.120.093901Cc54R1
  doi: 10.1103/PhysRevLett.115.200402
– ident: PhysRevLett.120.093901Cc15R1
  doi: 10.1103/PhysRevB.86.241112
SSID ssj0001268
Score 2.604728
Snippet We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 093901
SubjectTerms Defects
Lattice vibration
Photonics
Symmetry
Unit cell
Title Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes
URI https://www.ncbi.nlm.nih.gov/pubmed/29547321
https://www.proquest.com/docview/2118387374
https://www.proquest.com/docview/2014955561
Volume 120
WOSCitedRecordID wos000426173800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB5kUfDF-1gvIvhaTZM2TR9FXRbURURl8aXkRGFpZdvd32_S1qKgyELpS5s0zGQy33QugDOdOp0qsAq0jVkQcZIGMnaCJ4XQVkSa6jor7eUuGY34eJw-LAH-3YMfYnrhIyEfzdxnt5yHBJ87EzxtErZ45FsW0Ptxd_SGhDVHL_VxBzhpU4L_nuanNvoDYtaqZrC--CI3YK2Fleiy2QebsGTyLVipwztVuQ2318aHbaAGWiL_J8o3J0I-uQQJNCryYOijYry4o8FEVFLkGhUWPbwVlS-ei17NtEC-cVq5A8-Dm6erYdC2UQhUFNMqUCo0qcMdSmvhuCIUM9zyMDSCOLhlhNRExtwwS91FI8uMtQmzDjcYLJ1FQXehlxe52QdEsGEkkkZKziIumEyJs2q1UAnmqZW4D_EXOTPV1hj3rS4mWW1rYJp9I1TmCJU1hOrDRTfuo6my8e-Ioy9uZa3UlZkzZjnlCU2iPpx2j528eCeIyE0xc-_UNqFvCtqHvYbL3Se9zzOhJDxYeDmHsOomrpMVMTmCXjWdmWNYVvPqvZye1JvU3ZMx_wSGM-VL
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+States+Emerging+from+a+Non-Hermitian+Flatband+of+Photonic+Zero+Modes&rft.jtitle=Physical+review+letters&rft.au=Qi%2C+Bingkun&rft.au=Zhang%2C+Lingxuan&rft.au=Ge%2C+Li&rft.date=2018-03-02&rft.eissn=1079-7114&rft.volume=120&rft.issue=9&rft.spage=093901&rft_id=info:doi/10.1103%2FPhysRevLett.120.093901&rft_id=info%3Apmid%2F29547321&rft.externalDocID=29547321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon