Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes
We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-h...
Uloženo v:
| Vydáno v: | Physical review letters Ročník 120; číslo 9; s. 093901 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Physical Society
02.03.2018
|
| Témata: | |
| ISSN: | 0031-9007, 1079-7114, 1079-7114 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength. |
|---|---|
| AbstractList | We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength. We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength. |
| ArticleNumber | 093901 |
| Author | Ge, Li Zhang, Lingxuan Qi, Bingkun |
| Author_xml | – sequence: 1 givenname: Bingkun surname: Qi fullname: Qi, Bingkun – sequence: 2 givenname: Lingxuan surname: Zhang fullname: Zhang, Lingxuan – sequence: 3 givenname: Li surname: Ge fullname: Ge, Li |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29547321$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1rVTEQhoNU7G31L5SAGzfnOpOcT3AjtR_iVYutGzchJ2fSppyT1CS30H9v5LYg3QjDzOZ5Z4b3PWB7Pnhi7AhhjQjy_cXNQ_pB9xvKeY0C1jDIAfAFWyF0Q9Uh1ntsBSCxGgC6fXaQ0i0AoGj7V2xfDE3dSYEr9uUTWTKZX2adKfGTheK189fcxrBwzb8FX51TXFx22vPTWedR-4kHyy9uQg7eGf6LYuBfw0TpNXtp9ZzozeM8ZD9PT66Oz6vN97PPxx83lakbmStjkIZaDmaatAajTUu97RFJi74pfZzE2PTUWllK1rYla7vWCiEJRgmtPGTvdnvvYvi9pZTV4pKhedaewjYpAVgPTdO0WNC3z9DbsI2-fKcEYi_7TnZ1oY4eqe240KTuolt0fFBPNhXgww4wMaQUySrjimEu-By1mxWC-puK-icVVVJRu1SKvH0mf7rwH-Ef1PyT9g |
| CitedBy_id | crossref_primary_10_1103_PhysRevLett_129_243901 crossref_primary_10_1016_j_physrep_2024_01_006 crossref_primary_10_1088_1367_2630_ab4d09 crossref_primary_10_1007_s11467_024_1412_9 crossref_primary_10_1088_2040_8986_ac2e15 crossref_primary_10_1364_PRJ_413873 crossref_primary_10_1088_1751_8121_ab5b27 crossref_primary_10_1515_nanoph_2024_0135 crossref_primary_10_1002_apxr_202300066 crossref_primary_10_1209_0295_5075_125_10006 crossref_primary_10_1088_1367_2630_ade7a8 crossref_primary_10_1080_23746149_2018_1473052 crossref_primary_10_1103_PhysRevResearch_6_L022006 crossref_primary_10_1002_lpor_202000041 crossref_primary_10_1063_5_0069633 crossref_primary_10_1088_2515_7639_ab4092 crossref_primary_10_1109_JSTQE_2020_3010586 crossref_primary_10_1103_PhysRevB_103_014111 crossref_primary_10_1103_PhysRevResearch_5_013003 crossref_primary_10_1140_epjd_e2020_10021_0 crossref_primary_10_1002_lpor_202000204 crossref_primary_10_1016_j_physleta_2023_128893 crossref_primary_10_1103_PhysRevB_103_195142 crossref_primary_10_1088_0256_307X_41_2_027201 crossref_primary_10_1103_PhysRevApplied_15_014009 crossref_primary_10_1103_slwj_33nx crossref_primary_10_1007_s12200_019_0949_7 crossref_primary_10_1007_s11082_020_02480_9 crossref_primary_10_1103_PhysRevResearch_5_023044 crossref_primary_10_1364_PRJ_6_000A10 crossref_primary_10_1088_1402_4896_ac7a6c crossref_primary_10_1038_s42005_025_01989_3 crossref_primary_10_1063_5_0174456 crossref_primary_10_1364_PRJ_478167 crossref_primary_10_1103_PhysRevB_111_085120 crossref_primary_10_1002_adom_201900694 crossref_primary_10_1038_s41598_020_58018_2 crossref_primary_10_1103_PhysRevX_9_041015 crossref_primary_10_1103_PhysRevResearch_2_033127 crossref_primary_10_1103_PhysRevResearch_2_033149 crossref_primary_10_1016_j_physleta_2023_129113 crossref_primary_10_1103_PhysRevLett_131_223801 crossref_primary_10_1103_PhysRevResearch_2_032057 crossref_primary_10_1063_1_5043279 crossref_primary_10_1088_1361_648X_ab9fd4 crossref_primary_10_1103_PhysRevB_107_104106 crossref_primary_10_1016_j_ijmecsci_2022_107352 crossref_primary_10_1364_PRJ_440050 |
| Cites_doi | 10.1103/PhysRevLett.80.5243 10.1103/PhysRevX.3.041030 10.1103/PhysRevX.4.031011 10.1063/1.532860 10.1038/nphoton.2012.302 10.1103/PhysRevLett.112.116402 10.1103/PhysRevLett.101.080402 10.1364/OL.32.002632 10.1038/nphys1420 10.1038/nphys1612 10.1126/science.1258479 10.1103/PhysRevB.96.064305 10.1209/0295-5075/105/30001 10.1126/science.aaf8533 10.1103/PhysRev.118.1190 10.1103/PhysRevA.92.063813 10.1103/PhysRevLett.89.270401 10.1103/PhysRevLett.113.236403 10.1103/PhysRevLett.106.236804 10.1103/RevModPhys.87.1037 10.1038/nmat3495 10.1103/PhysRevB.82.104209 10.1364/OL.40.005806 10.1038/npjqi.2015.1 10.1103/PhysRevA.96.011802 10.1103/PhysRevLett.84.143 10.1103/PhysRevA.82.031801 10.1103/PhysRevLett.106.093902 10.1103/PhysRevA.82.041402 10.1103/PhysRevLett.100.030402 10.1038/nphys2927 10.1103/PhysRevLett.114.245504 10.1103/PhysRevLett.106.213901 10.1038/nature11298 10.1103/PhysRevA.85.023802 10.1038/srep24889 10.1103/PhysRevA.87.023614 10.1002/ange.19971091705 10.1103/PhysRevLett.108.024101 10.1103/PhysRevLett.106.236802 10.1364/OL.38.004880 10.1103/PhysRevB.88.224203 10.1103/PhysRevA.89.062102 10.1103/PhysRevLett.103.093902 10.1126/science.1258480 10.1038/nphoton.2014.133 10.1103/PhysRevLett.100.103904 10.1103/PhysRevLett.114.245503 10.1103/PhysRevA.96.023820 10.1103/PhysRevA.92.052103 10.1088/0034-4885/75/7/076501 10.1103/PhysRevLett.116.066402 10.1103/PhysRevLett.102.220402 10.1038/nphys1515 10.1103/PhysRevA.95.023812 10.1002/andp.201600182 10.1038/nphoton.2016.216 10.1002/(SICI)1521-3757(19980302)110:5<664::AID-ANGE664>3.0.CO;2-8 10.1103/PhysRevLett.78.1932 10.1016/S0022-4596(03)00239-1 10.1103/PhysRevLett.115.143601 10.1103/PhysRevA.92.062135 10.1038/srep17022 10.1103/PhysRevLett.115.200402 10.1103/PhysRevB.86.241112 |
| ContentType | Journal Article |
| Copyright | Copyright American Physical Society Mar 2, 2018 |
| Copyright_xml | – notice: Copyright American Physical Society Mar 2, 2018 |
| DBID | AAYXX CITATION NPM 7U5 8FD H8D L7M 7X8 |
| DOI | 10.1103/PhysRevLett.120.093901 |
| DatabaseName | CrossRef PubMed Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1079-7114 |
| ExternalDocumentID | 29547321 10_1103_PhysRevLett_120_093901 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X 123 186 2-P 29O 3MX 3O- 41~ 5VS 6TJ 85S 8NH 8WZ 9M8 A6W AAYJJ AAYXX ABSSX ABUFD ACBEA ACGFO ACKIV ACNCT ADXHL AECSF AENEX AEQTI AETEA AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CITATION CS3 D0L DU5 EBS EJD ER. F5P H~9 MVM N9A NEJ NHB NPBMV OHT OK1 P0- P2P RNS ROL S7W SJN T9H TN5 UBC UBE VOH WH7 XOL XSW YNT YYP ZCG ZPR ZY4 ~02 NPM UCJ VQA 7U5 8FD H8D L7M 7X8 |
| ID | FETCH-LOGICAL-c453t-cc1e9439cddaa0cac6e8f811ea2851eabd2b58e6f36f334f6eff76f223e0b3063 |
| IEDL.DBID | 3MX |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426173800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-9007 1079-7114 |
| IngestDate | Thu Jul 10 23:39:03 EDT 2025 Sun Jun 29 15:26:44 EDT 2025 Thu Jan 02 23:09:19 EST 2025 Tue Nov 18 22:11:11 EST 2025 Sat Nov 29 01:46:47 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c453t-cc1e9439cddaa0cac6e8f811ea2851eabd2b58e6f36f334f6eff76f223e0b3063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://ir.opt.ac.cn/handle/181661/30753 |
| PMID | 29547321 |
| PQID | 2118387374 |
| PQPubID | 2048222 |
| ParticipantIDs | proquest_miscellaneous_2014955561 proquest_journals_2118387374 pubmed_primary_29547321 crossref_citationtrail_10_1103_PhysRevLett_120_093901 crossref_primary_10_1103_PhysRevLett_120_093901 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Mar-02 |
| PublicationDateYYYYMMDD | 2018-03-02 |
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-Mar-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: College Park |
| PublicationTitle | Physical review letters |
| PublicationTitleAlternate | Phys Rev Lett |
| PublicationYear | 2018 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevLett.120.093901Cc41R1 PhysRevLett.120.093901Cc62R1 PhysRevLett.120.093901Cc60R1 PhysRevLett.120.093901Cc3R1 PhysRevLett.120.093901Cc20R1 PhysRevLett.120.093901Cc45R1 PhysRevLett.120.093901Cc1R1 PhysRevLett.120.093901Cc22R1 PhysRevLett.120.093901Cc43R1 PhysRevLett.120.093901Cc64R1 PhysRevLett.120.093901Cc24R1 PhysRevLett.120.093901Cc49R1 PhysRevLett.120.093901Cc26R1 PhysRevLett.120.093901Cc47R1 PhysRevLett.120.093901Cc28R1 PhysRevLett.120.093901Cc9R1 PhysRevLett.120.093901Cc7R1 PhysRevLett.120.093901Cc51R1 PhysRevLett.120.093901Cc30R1 PhysRevLett.120.093901Cc5R1 PhysRevLett.120.093901Cc34R1 PhysRevLett.120.093901Cc55R1 PhysRevLett.120.093901Cc11R1 PhysRevLett.120.093901Cc32R1 PhysRevLett.120.093901Cc53R1 PhysRevLett.120.093901Cc13R1 PhysRevLett.120.093901Cc38R1 PhysRevLett.120.093901Cc59R1 PhysRevLett.120.093901Cc15R1 PhysRevLett.120.093901Cc36R1 PhysRevLett.120.093901Cc57R1 PhysRevLett.120.093901Cc17R1 PhysRevLett.120.093901Cc19R1 PhysRevLett.120.093901Cc40R1 PhysRevLett.120.093901Cc63R1 PhysRevLett.120.093901Cc61R1 PhysRevLett.120.093901Cc21R1 PhysRevLett.120.093901Cc44R1 PhysRevLett.120.093901Cc67R1 PhysRevLett.120.093901Cc2R1 PhysRevLett.120.093901Cc23R1 PhysRevLett.120.093901Cc42R1 PhysRevLett.120.093901Cc65R1 PhysRevLett.120.093901Cc25R1 PhysRevLett.120.093901Cc48R1 PhysRevLett.120.093901Cc27R1 PhysRevLett.120.093901Cc46R1 PhysRevLett.120.093901Cc29R1 PhysRevLett.120.093901Cc8R1 PhysRevLett.120.093901Cc6R1 PhysRevLett.120.093901Cc52R1 PhysRevLett.120.093901Cc4R1 PhysRevLett.120.093901Cc50R1 PhysRevLett.120.093901Cc10R1 PhysRevLett.120.093901Cc33R1 PhysRevLett.120.093901Cc12R1 PhysRevLett.120.093901Cc31R1 PhysRevLett.120.093901Cc54R1 PhysRevLett.120.093901Cc14R1 PhysRevLett.120.093901Cc37R1 PhysRevLett.120.093901Cc16R1 PhysRevLett.120.093901Cc35R1 PhysRevLett.120.093901Cc58R1 PhysRevLett.120.093901Cc18R1 PhysRevLett.120.093901Cc39R1 |
| References_xml | – ident: PhysRevLett.120.093901Cc26R1 doi: 10.1103/PhysRevLett.80.5243 – ident: PhysRevLett.120.093901Cc38R1 doi: 10.1103/PhysRevX.3.041030 – ident: PhysRevLett.120.093901Cc41R1 doi: 10.1103/PhysRevX.4.031011 – ident: PhysRevLett.120.093901Cc27R1 doi: 10.1063/1.532860 – ident: PhysRevLett.120.093901Cc3R1 doi: 10.1038/nphoton.2012.302 – ident: PhysRevLett.120.093901Cc16R1 doi: 10.1103/PhysRevLett.112.116402 – ident: PhysRevLett.120.093901Cc30R1 doi: 10.1103/PhysRevLett.101.080402 – ident: PhysRevLett.120.093901Cc29R1 doi: 10.1364/OL.32.002632 – ident: PhysRevLett.120.093901Cc8R1 doi: 10.1038/nphys1420 – ident: PhysRevLett.120.093901Cc35R1 doi: 10.1038/nphys1612 – ident: PhysRevLett.120.093901Cc48R1 doi: 10.1126/science.1258479 – ident: PhysRevLett.120.093901Cc59R1 doi: 10.1103/PhysRevB.96.064305 – ident: PhysRevLett.120.093901Cc21R1 doi: 10.1209/0295-5075/105/30001 – ident: PhysRevLett.120.093901Cc64R1 doi: 10.1126/science.aaf8533 – ident: PhysRevLett.120.093901Cc67R1 doi: 10.1103/PhysRev.118.1190 – ident: PhysRevLett.120.093901Cc25R1 doi: 10.1103/PhysRevA.92.063813 – ident: PhysRevLett.120.093901Cc28R1 doi: 10.1103/PhysRevLett.89.270401 – ident: PhysRevLett.120.093901Cc19R1 doi: 10.1103/PhysRevLett.113.236403 – ident: PhysRevLett.120.093901Cc14R1 doi: 10.1103/PhysRevLett.106.236804 – ident: PhysRevLett.120.093901Cc61R1 doi: 10.1103/RevModPhys.87.1037 – ident: PhysRevLett.120.093901Cc47R1 doi: 10.1038/nmat3495 – ident: PhysRevLett.120.093901Cc18R1 doi: 10.1103/PhysRevB.82.104209 – ident: PhysRevLett.120.093901Cc24R1 doi: 10.1364/OL.40.005806 – ident: PhysRevLett.120.093901Cc62R1 doi: 10.1038/npjqi.2015.1 – ident: PhysRevLett.120.093901Cc58R1 doi: 10.1103/PhysRevA.96.011802 – ident: PhysRevLett.120.093901Cc12R1 doi: 10.1103/PhysRevLett.84.143 – ident: PhysRevLett.120.093901Cc36R1 doi: 10.1103/PhysRevA.82.031801 – ident: PhysRevLett.120.093901Cc37R1 doi: 10.1103/PhysRevLett.106.093902 – ident: PhysRevLett.120.093901Cc1R1 doi: 10.1103/PhysRevA.82.041402 – ident: PhysRevLett.120.093901Cc31R1 doi: 10.1103/PhysRevLett.100.030402 – ident: PhysRevLett.120.093901Cc50R1 doi: 10.1038/nphys2927 – ident: PhysRevLett.120.093901Cc5R1 doi: 10.1103/PhysRevLett.114.245504 – ident: PhysRevLett.120.093901Cc43R1 doi: 10.1103/PhysRevLett.106.213901 – ident: PhysRevLett.120.093901Cc45R1 doi: 10.1038/nature11298 – ident: PhysRevLett.120.093901Cc39R1 doi: 10.1103/PhysRevA.85.023802 – ident: PhysRevLett.120.093901Cc42R1 doi: 10.1038/srep24889 – ident: PhysRevLett.120.093901Cc2R1 doi: 10.1103/PhysRevA.87.023614 – ident: PhysRevLett.120.093901Cc9R1 doi: 10.1002/ange.19971091705 – ident: PhysRevLett.120.093901Cc46R1 doi: 10.1103/PhysRevLett.108.024101 – ident: PhysRevLett.120.093901Cc13R1 doi: 10.1103/PhysRevLett.106.236802 – ident: PhysRevLett.120.093901Cc57R1 doi: 10.1364/OL.38.004880 – ident: PhysRevLett.120.093901Cc20R1 doi: 10.1103/PhysRevB.88.224203 – ident: PhysRevLett.120.093901Cc52R1 doi: 10.1103/PhysRevA.89.062102 – ident: PhysRevLett.120.093901Cc33R1 doi: 10.1103/PhysRevLett.103.093902 – ident: PhysRevLett.120.093901Cc49R1 doi: 10.1126/science.1258480 – ident: PhysRevLett.120.093901Cc51R1 doi: 10.1038/nphoton.2014.133 – ident: PhysRevLett.120.093901Cc32R1 doi: 10.1103/PhysRevLett.100.103904 – ident: PhysRevLett.120.093901Cc4R1 doi: 10.1103/PhysRevLett.114.245503 – ident: PhysRevLett.120.093901Cc63R1 doi: 10.1103/PhysRevA.96.023820 – ident: PhysRevLett.120.093901Cc23R1 doi: 10.1103/PhysRevA.92.052103 – ident: PhysRevLett.120.093901Cc60R1 doi: 10.1088/0034-4885/75/7/076501 – ident: PhysRevLett.120.093901Cc17R1 doi: 10.1103/PhysRevLett.116.066402 – ident: PhysRevLett.120.093901Cc34R1 doi: 10.1103/PhysRevLett.102.220402 – ident: PhysRevLett.120.093901Cc44R1 doi: 10.1038/nphys1515 – ident: PhysRevLett.120.093901Cc55R1 doi: 10.1103/PhysRevA.95.023812 – ident: PhysRevLett.120.093901Cc22R1 doi: 10.1002/andp.201600182 – ident: PhysRevLett.120.093901Cc65R1 doi: 10.1038/nphoton.2016.216 – ident: PhysRevLett.120.093901Cc10R1 doi: 10.1002/(SICI)1521-3757(19980302)110:5<664::AID-ANGE664>3.0.CO;2-8 – ident: PhysRevLett.120.093901Cc7R1 doi: 10.1103/PhysRevLett.78.1932 – ident: PhysRevLett.120.093901Cc11R1 doi: 10.1016/S0022-4596(03)00239-1 – ident: PhysRevLett.120.093901Cc6R1 doi: 10.1103/PhysRevLett.115.143601 – ident: PhysRevLett.120.093901Cc40R1 doi: 10.1103/PhysRevA.92.062135 – ident: PhysRevLett.120.093901Cc53R1 doi: 10.1038/srep17022 – ident: PhysRevLett.120.093901Cc54R1 doi: 10.1103/PhysRevLett.115.200402 – ident: PhysRevLett.120.093901Cc15R1 doi: 10.1103/PhysRevB.86.241112 |
| SSID | ssj0001268 |
| Score | 2.604728 |
| Snippet | We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 093901 |
| SubjectTerms | Defects Lattice vibration Photonics Symmetry Unit cell |
| Title | Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29547321 https://www.proquest.com/docview/2118387374 https://www.proquest.com/docview/2014955561 |
| Volume | 120 |
| WOSCitedRecordID | wos000426173800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABR databaseName: American Physical Society Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: 3MX dateStart: 20020101 isFulltext: true titleUrlDefault: https://journals.aps.org/ providerName: American Physical Society – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 1079-7114 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001268 issn: 0031-9007 databaseCode: ER. dateStart: 20180101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB5kUfDF-1gvIvhaTZM2TR9FXRbURURl8aXkRGFpZdvd32_S1qKgyELpS5s0zGQy33QugDOdOp0qsAq0jVkQcZIGMnaCJ4XQVkSa6jor7eUuGY34eJw-LAH-3YMfYnrhIyEfzdxnt5yHBJ87EzxtErZ45FsW0Ptxd_SGhDVHL_VxBzhpU4L_nuanNvoDYtaqZrC--CI3YK2Fleiy2QebsGTyLVipwztVuQ2318aHbaAGWiL_J8o3J0I-uQQJNCryYOijYry4o8FEVFLkGhUWPbwVlS-ei17NtEC-cVq5A8-Dm6erYdC2UQhUFNMqUCo0qcMdSmvhuCIUM9zyMDSCOLhlhNRExtwwS91FI8uMtQmzDjcYLJ1FQXehlxe52QdEsGEkkkZKziIumEyJs2q1UAnmqZW4D_EXOTPV1hj3rS4mWW1rYJp9I1TmCJU1hOrDRTfuo6my8e-Ioy9uZa3UlZkzZjnlCU2iPpx2j528eCeIyE0xc-_UNqFvCtqHvYbL3Se9zzOhJDxYeDmHsOomrpMVMTmCXjWdmWNYVvPqvZye1JvU3ZMx_wSGM-VL |
| linkProvider | American Physical Society |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+States+Emerging+from+a+Non-Hermitian+Flatband+of+Photonic+Zero+Modes&rft.jtitle=Physical+review+letters&rft.au=Qi%2C+Bingkun&rft.au=Zhang%2C+Lingxuan&rft.au=Ge%2C+Li&rft.date=2018-03-02&rft.eissn=1079-7114&rft.volume=120&rft.issue=9&rft.spage=093901&rft_id=info:doi/10.1103%2FPhysRevLett.120.093901&rft_id=info%3Apmid%2F29547321&rft.externalDocID=29547321 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |