Revisiting the Münch pressure-flow hypothesis for long-distance transport of carbohydrates: modelling the dynamics of solute transport inside a semipermeable tube

A mathematical model of the Münch pressure-flow hypothesis for long-distance transport of carbohydrates via sieve tubes is constructed using the Navier-Stokes equation for the motion of a viscous fluid and the van't Hoff equation for osmotic pressure. Assuming spatial dimensions that are approp...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of experimental botany Ročník 53; číslo 373; s. 1411
Hlavní autori: Henton, S M, Greaves, A J, Piller, G J, Minchin, P E H
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 01.06.2002
Predmet:
ISSN:0022-0957
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A mathematical model of the Münch pressure-flow hypothesis for long-distance transport of carbohydrates via sieve tubes is constructed using the Navier-Stokes equation for the motion of a viscous fluid and the van't Hoff equation for osmotic pressure. Assuming spatial dimensions that are appropriate for a sieve tube and ensuring suitable initial profiles of the solute concentration and solution velocity lets the model become mathematically tractable and concise. In the steady-state case, it is shown via an analytical expression that the solute flux is diffusion-like with the apparent diffusivity coefficient being proportional to the local solute concentration and around seven orders of magnitude greater than a diffusivity coefficient for sucrose in water. It is also shown that, in the steady-state case, the hydraulic conductivity over one metre can be calculated explicitly from the tube radius and physical constants and so can be compared with experimentally determined values. In the time-dependent case, it is shown via numerical simulations that the solute (or water) can simultaneously travel in opposite directions at different locations along the tube and, similarly, change direction of travel over time at a particular location along the tube.
AbstractList A mathematical model of the Münch pressure-flow hypothesis for long-distance transport of carbohydrates via sieve tubes is constructed using the Navier-Stokes equation for the motion of a viscous fluid and the van't Hoff equation for osmotic pressure. Assuming spatial dimensions that are appropriate for a sieve tube and ensuring suitable initial profiles of the solute concentration and solution velocity lets the model become mathematically tractable and concise. In the steady-state case, it is shown via an analytical expression that the solute flux is diffusion-like with the apparent diffusivity coefficient being proportional to the local solute concentration and around seven orders of magnitude greater than a diffusivity coefficient for sucrose in water. It is also shown that, in the steady-state case, the hydraulic conductivity over one metre can be calculated explicitly from the tube radius and physical constants and so can be compared with experimentally determined values. In the time-dependent case, it is shown via numerical simulations that the solute (or water) can simultaneously travel in opposite directions at different locations along the tube and, similarly, change direction of travel over time at a particular location along the tube.
A mathematical model of the Münch pressure-flow hypothesis for long-distance transport of carbohydrates via sieve tubes is constructed using the Navier-Stokes equation for the motion of a viscous fluid and the van't Hoff equation for osmotic pressure. Assuming spatial dimensions that are appropriate for a sieve tube and ensuring suitable initial profiles of the solute concentration and solution velocity lets the model become mathematically tractable and concise. In the steady-state case, it is shown via an analytical expression that the solute flux is diffusion-like with the apparent diffusivity coefficient being proportional to the local solute concentration and around seven orders of magnitude greater than a diffusivity coefficient for sucrose in water. It is also shown that, in the steady-state case, the hydraulic conductivity over one metre can be calculated explicitly from the tube radius and physical constants and so can be compared with experimentally determined values. In the time-dependent case, it is shown via numerical simulations that the solute (or water) can simultaneously travel in opposite directions at different locations along the tube and, similarly, change direction of travel over time at a particular location along the tube.A mathematical model of the Münch pressure-flow hypothesis for long-distance transport of carbohydrates via sieve tubes is constructed using the Navier-Stokes equation for the motion of a viscous fluid and the van't Hoff equation for osmotic pressure. Assuming spatial dimensions that are appropriate for a sieve tube and ensuring suitable initial profiles of the solute concentration and solution velocity lets the model become mathematically tractable and concise. In the steady-state case, it is shown via an analytical expression that the solute flux is diffusion-like with the apparent diffusivity coefficient being proportional to the local solute concentration and around seven orders of magnitude greater than a diffusivity coefficient for sucrose in water. It is also shown that, in the steady-state case, the hydraulic conductivity over one metre can be calculated explicitly from the tube radius and physical constants and so can be compared with experimentally determined values. In the time-dependent case, it is shown via numerical simulations that the solute (or water) can simultaneously travel in opposite directions at different locations along the tube and, similarly, change direction of travel over time at a particular location along the tube.
Author Piller, G J
Henton, S M
Minchin, P E H
Greaves, A J
Author_xml – sequence: 1
  givenname: S M
  surname: Henton
  fullname: Henton, S M
  email: shenton@hortresearch.co.nz
  organization: Horticultural Research, Batchelor Research Centre, Private Bag 11030, Palmerston North, New Zealand. shenton@hortresearch.co.nz
– sequence: 2
  givenname: A J
  surname: Greaves
  fullname: Greaves, A J
– sequence: 3
  givenname: G J
  surname: Piller
  fullname: Piller, G J
– sequence: 4
  givenname: P E H
  surname: Minchin
  fullname: Minchin, P E H
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12021288$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtu2zAQRblw0TzaH8ii4Ko7OUPJDOXsCiMvIEGAol0bfAxjBhKpcKgk_p78Rnf9saiIDXQ1A8y5B5h7xGYxRWTsRMBcwLI5fcRXk8qpbOaNauZiIcSMHQLUdQVLqQ7YEdEjAEiQ8jM7EDXUom7bQ_b2E58DhRLiAy8b5Hd__0S74UNGojFj5bv0wjfbIU1HCsR9yrxL8aFygYqOFnnJOtKQcuHJc6uzSZuty7ognfM-Oey6vdtto-6DpX8gpW4s_4dDpOCQa07YhwFzj9p0EzAa_MI-ed0Rft3NY_b78uLX6rq6vb-6Wf24rexCNqWypkVAbOTCG2GMbYSDpRcLcGC9N7616JV2blq9QlUrEE5bI7VfojzTUB-z7x_eIaenEams-0B2ekBHTCOtlVCg2radwG87cDQ9uvWQQ6_zdr2vtX4HtQ6DTA
CitedBy_id crossref_primary_10_1103_PhysRevX_6_031008
crossref_primary_10_1007_s00468_025_02630_0
crossref_primary_10_1104_pp_103_024802
crossref_primary_10_1016_S0022_5193_03_00165_6
crossref_primary_10_1093_jxb_ert467
crossref_primary_10_1016_j_tplants_2005_11_009
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/jexbot/53.373.1411
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Botany
ExternalDocumentID 12021288
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
3O-
4.4
482
48X
53G
5GY
5VS
5WA
5WD
6.Y
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
ABBHK
ABDFA
ABDPE
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNGD
ABNKS
ABPPZ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABVGC
ABWST
ABXSQ
ABXVV
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ACZBC
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADQBN
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEHUL
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFSHK
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
APIBT
APJGH
APWMN
AQDSO
AQVQM
ARIXL
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
C1A
CAG
CDBKE
CGR
COF
CS3
CUY
CVF
CXTWN
CZ4
D-I
DAKXR
DATOO
DFGAJ
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
ECM
EE~
EIF
EJD
ELUNK
ESX
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NPM
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TLC
TN5
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
Z5M
ZCG
ZKX
~02
~91
~KM
7X8
ABPQP
ABXZS
ACUKT
ADNBA
AGQPQ
AJBYB
AJNCP
ALXQX
ID FETCH-LOGICAL-c453t-cb8e0ee354fb1bbc31d09f140d0cffbf8cef7addfbff7e72701dacb5af9e56a02
IEDL.DBID 7X8
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000175955600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-0957
IngestDate Sun Sep 28 14:01:10 EDT 2025
Wed Feb 19 01:35:18 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 373
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-cb8e0ee354fb1bbc31d09f140d0cffbf8cef7addfbff7e72701dacb5af9e56a02
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/jxb/article-pdf/53/373/1411/1245567/531411.pdf
PMID 12021288
PQID 71707888
PQPubID 23479
ParticipantIDs proquest_miscellaneous_71707888
pubmed_primary_12021288
PublicationCentury 2000
PublicationDate 2002-06-01
PublicationDateYYYYMMDD 2002-06-01
PublicationDate_xml – month: 06
  year: 2002
  text: 2002-06-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2002
SSID ssj0005055
Score 1.8351979
Snippet A mathematical model of the Münch pressure-flow hypothesis for long-distance transport of carbohydrates via sieve tubes is constructed using the Navier-Stokes...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1411
SubjectTerms Algorithms
Biological Transport
Carbohydrate Metabolism
Computer Simulation
Diffusion
Diffusion Chambers, Culture - instrumentation
Models, Biological
Osmotic Pressure
Plant Structures - physiology
Sucrose - metabolism
Time Factors
Water - chemistry
Water - metabolism
Title Revisiting the Münch pressure-flow hypothesis for long-distance transport of carbohydrates: modelling the dynamics of solute transport inside a semipermeable tube
URI https://www.ncbi.nlm.nih.gov/pubmed/12021288
https://www.proquest.com/docview/71707888
Volume 53
WOSCitedRecordID wos000175955600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DSy83y8PrAG7rpsEISFAIAZaVQhQtyq2z7SoJKVpgf4e_gYbf4yz2wgWxMASZbCjyD7ffWf7vo-Q_YhrYxAnBCo2JigDLsWEOy5CZjjTGrT1BKb312GtFjUacX2CHBe1MO5aZeETvaM2mXZ75IeYdjCXrp10nwOnGeXOVscCGpNkWiCQcTYdNr65wjG2y4IrHIFEOC6ZwRT-8BHeFOZ8UhyIUKCz4Px3gOkDzeX8_35xgcyNASY9HVnEIpmAdInMnGUIAofL5P3GV5O7u84UoR-tfn6kukX9bdhBDwLbyV5pa9h1dVl5O6cIaWknSx8C43AmGgjtF2zoNLNUJz2VtYbG8U3kR9TL6nSKb5uR2H3uGnoL_9m57XVCaUJzeGp3MTyAq-Gi_YGCFXJ3eXF7fhWMdRoCXZaiH2gVAQMQsmwVV0oLblhsMXMzTFurbKTBhuhH8dWGgICJcZNoJRMbg6wkrLRKptIshXVCTUWzmGHTCoTlikEzFyK0YJlMQHItN8heMfRNXAfucCNJIRvkzWLwN8jaaPaa3RFdR5OXHI19FG3-2XeLzHqxF7_Jsk2mLXoA2CEz-qXfznu73rzwWatXvwDE_eOT
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+M%C3%BCnch+pressure-flow+hypothesis+for+long-distance+transport+of+carbohydrates%3A+modelling+the+dynamics+of+solute+transport+inside+a+semipermeable+tube&rft.jtitle=Journal+of+experimental+botany&rft.au=Henton%2C+S+M&rft.au=Greaves%2C+A+J&rft.au=Piller%2C+G+J&rft.au=Minchin%2C+P+E+H&rft.date=2002-06-01&rft.issn=0022-0957&rft.volume=53&rft.issue=373&rft.spage=1411&rft_id=info:doi/10.1093%2Fjexbot%2F53.373.1411&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon