Vector Space of Feynman Integrals and Multivariate Intersection Numbers

Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm for the construction of multivariate intersection numbers relevant to Feynman integrals, and show for the first time how they can be used to so...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physical review letters Ročník 123; číslo 20; s. 201602
Hlavní autori: Frellesvig, Hjalte, Gasparotto, Federico, Mandal, Manoj K., Mastrolia, Pierpaolo, Mattiazzi, Luca, Mizera, Sebastian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Physical Society 15.11.2019
Predmet:
ISSN:0031-9007, 1079-7114, 1079-7114
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm for the construction of multivariate intersection numbers relevant to Feynman integrals, and show for the first time how they can be used to solve the problem of integral reduction to a basis of master integrals by projections, and to directly derive functional equations fulfilled by the latter. We apply it to the decomposition of a few Feynman integrals at one and two loops, as first steps toward potential applications to generic multiloop integrals. The proposed method can be more generally employed for the derivation of contiguity relations for special functions admitting multifold integral representations.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0031-9007
1079-7114
1079-7114
DOI:10.1103/PhysRevLett.123.201602