Vector Space of Feynman Integrals and Multivariate Intersection Numbers

Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm for the construction of multivariate intersection numbers relevant to Feynman integrals, and show for the first time how they can be used to so...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 123; no. 20; p. 201602
Main Authors: Frellesvig, Hjalte, Gasparotto, Federico, Mandal, Manoj K., Mastrolia, Pierpaolo, Mattiazzi, Luca, Mizera, Sebastian
Format: Journal Article
Language:English
Published: United States American Physical Society 15.11.2019
Subjects:
ISSN:0031-9007, 1079-7114, 1079-7114
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm for the construction of multivariate intersection numbers relevant to Feynman integrals, and show for the first time how they can be used to solve the problem of integral reduction to a basis of master integrals by projections, and to directly derive functional equations fulfilled by the latter. We apply it to the decomposition of a few Feynman integrals at one and two loops, as first steps toward potential applications to generic multiloop integrals. The proposed method can be more generally employed for the derivation of contiguity relations for special functions admitting multifold integral representations.
AbstractList Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm for the construction of multivariate intersection numbers relevant to Feynman integrals, and show for the first time how they can be used to solve the problem of integral reduction to a basis of master integrals by projections, and to directly derive functional equations fulfilled by the latter. We apply it to the decomposition of a few Feynman integrals at one and two loops, as first steps toward potential applications to generic multiloop integrals. The proposed method can be more generally employed for the derivation of contiguity relations for special functions admitting multifold integral representations.Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm for the construction of multivariate intersection numbers relevant to Feynman integrals, and show for the first time how they can be used to solve the problem of integral reduction to a basis of master integrals by projections, and to directly derive functional equations fulfilled by the latter. We apply it to the decomposition of a few Feynman integrals at one and two loops, as first steps toward potential applications to generic multiloop integrals. The proposed method can be more generally employed for the derivation of contiguity relations for special functions admitting multifold integral representations.
Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm for the construction of multivariate intersection numbers relevant to Feynman integrals, and show for the first time how they can be used to solve the problem of integral reduction to a basis of master integrals by projections, and to directly derive functional equations fulfilled by the latter. We apply it to the decomposition of a few Feynman integrals at one and two loops, as first steps toward potential applications to generic multiloop integrals. The proposed method can be more generally employed for the derivation of contiguity relations for special functions admitting multifold integral representations.
ArticleNumber 201602
Author Mandal, Manoj K.
Mastrolia, Pierpaolo
Gasparotto, Federico
Frellesvig, Hjalte
Mattiazzi, Luca
Mizera, Sebastian
Author_xml – sequence: 1
  givenname: Hjalte
  surname: Frellesvig
  fullname: Frellesvig, Hjalte
– sequence: 2
  givenname: Federico
  surname: Gasparotto
  fullname: Gasparotto, Federico
– sequence: 3
  givenname: Manoj K.
  surname: Mandal
  fullname: Mandal, Manoj K.
– sequence: 4
  givenname: Pierpaolo
  orcidid: 0000-0001-9711-7798
  surname: Mastrolia
  fullname: Mastrolia, Pierpaolo
– sequence: 5
  givenname: Luca
  surname: Mattiazzi
  fullname: Mattiazzi, Luca
– sequence: 6
  givenname: Sebastian
  surname: Mizera
  fullname: Mizera, Sebastian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31809080$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhq1qq7JQ_gKKxKWXLDN2No6lXtCqUKSFIgpcLceZhaDE2doO0v77mi4rVXvhNBrN887Xe8gmbnDE2AnCDBHE2e3zJtzR65JinCEXMw5YAv_EpghS5RKxmLApgMBcAcgDdhjCCwAgL6sv7EBgBQoqmLLLR7Jx8NnvtbGUDavsgjauNy67cpGevOlCZlyTXY9dbF-Nb02kfyUfkq4dXHYz9nXKvrLPqwTT8Xs8Yg8XP-4XP_Plr8urxfkyt8VcxNzKmtuGBAq5kpIaIQBrBdgIJRAaTEFhXVSmEFIRR1FRSUqiBUlz0VTiiH3b9l374c9IIeq-DZa6zjgaxqC54FzyeVGqhJ7uoS_D6F3aLlEoKznnWCbq5J0a654avfZtb_xG716UgO9bwPohBE8rbdto3m6P3rSdRtBvjuj_HNHJEb11JMnLPfluwgfCv3E5kWs
CitedBy_id crossref_primary_10_1007_JHEP09_2025_043
crossref_primary_10_1007_JHEP05_2021_053
crossref_primary_10_1088_1361_6471_acbaec
crossref_primary_10_1088_1751_8121_ab9462
crossref_primary_10_1007_JHEP03_2021_027
crossref_primary_10_1007_JHEP03_2025_009
crossref_primary_10_1007_JHEP01_2020_078
crossref_primary_10_1007_JHEP03_2023_155
crossref_primary_10_1007_JHEP02_2020_099
crossref_primary_10_1140_epjc_s10052_021_09235_0
crossref_primary_10_1007_JHEP09_2022_156
crossref_primary_10_1007_JHEP03_2024_156
crossref_primary_10_1007_JHEP02_2020_122
crossref_primary_10_1007_JHEP07_2023_051
crossref_primary_10_1007_JHEP09_2021_114
crossref_primary_10_1007_JHEP02_2023_178
crossref_primary_10_1007_JHEP12_2020_057
crossref_primary_10_1103_PhysRevResearch_2_033119
crossref_primary_10_1088_1674_1137_44_9_093106
crossref_primary_10_1007_JHEP02_2021_069
crossref_primary_10_1007_JHEP06_2023_128
crossref_primary_10_1007_s11433_023_2239_8
crossref_primary_10_1007_JHEP04_2022_078
crossref_primary_10_1016_j_physletb_2025_139340
crossref_primary_10_1007_JHEP07_2024_182
crossref_primary_10_1007_JHEP07_2024_062
crossref_primary_10_1007_JHEP07_2025_045
crossref_primary_10_1007_JHEP12_2019_087
crossref_primary_10_1007_JHEP02_2024_179
crossref_primary_10_1016_j_aam_2024_102832
crossref_primary_10_1007_JHEP07_2021_227
crossref_primary_10_1007_JHEP08_2023_109
crossref_primary_10_1103_PhysRevD_111_085016
crossref_primary_10_1007_JHEP05_2025_158
crossref_primary_10_1007_JHEP11_2023_202
crossref_primary_10_1007_JHEP06_2024_008
crossref_primary_10_1007_JHEP02_2020_079
crossref_primary_10_1007_JHEP03_2022_079
crossref_primary_10_1007_JHEP05_2023_168
crossref_primary_10_1007_JHEP06_2023_131
crossref_primary_10_1007_JHEP02_2025_014
crossref_primary_10_1007_JHEP07_2022_066
crossref_primary_10_1007_JHEP04_2020_096
crossref_primary_10_1016_j_physletb_2020_135449
crossref_primary_10_1007_JHEP02_2021_112
crossref_primary_10_1016_j_cpc_2025_109681
crossref_primary_10_1103_PhysRevLett_134_251603
crossref_primary_10_1007_JHEP12_2021_045
crossref_primary_10_1103_PhysRevD_111_076026
crossref_primary_10_1016_j_physletb_2021_136085
crossref_primary_10_1007_JHEP09_2024_018
crossref_primary_10_1007_JHEP04_2025_111
crossref_primary_10_1007_JHEP09_2024_015
crossref_primary_10_1016_j_cpc_2025_109607
crossref_primary_10_1007_JHEP11_2022_084
crossref_primary_10_1016_j_cpc_2023_108999
crossref_primary_10_1007_JHEP08_2022_200
crossref_primary_10_3390_math13060969
crossref_primary_10_1007_JHEP10_2021_131
crossref_primary_10_1007_JHEP09_2023_187
crossref_primary_10_1007_JHEP02_2021_080
crossref_primary_10_3390_sym13061029
crossref_primary_10_1140_epjc_s10052_025_13848_0
crossref_primary_10_1007_JHEP03_2025_113
crossref_primary_10_1007_JHEP11_2021_083
crossref_primary_10_1007_JHEP06_2025_257
crossref_primary_10_1007_JHEP07_2024_040
crossref_primary_10_1007_JHEP12_2020_054
crossref_primary_10_1103_PhysRevD_111_096005
crossref_primary_10_1007_JHEP05_2025_185
crossref_primary_10_1016_j_cpc_2025_109798
crossref_primary_10_3390_universe7090328
crossref_primary_10_1007_JHEP03_2024_096
crossref_primary_10_1007_JHEP09_2022_187
crossref_primary_10_1007_JHEP02_2024_158
crossref_primary_10_1007_JHEP08_2023_175
crossref_primary_10_1051_epjconf_202431400029
crossref_primary_10_1016_j_physrep_2021_03_006
crossref_primary_10_1016_j_cpc_2021_108024
crossref_primary_10_1016_j_nuclphysb_2023_116343
crossref_primary_10_1007_JHEP04_2021_222
crossref_primary_10_1007_s11005_024_01832_w
crossref_primary_10_1007_JHEP04_2021_104
crossref_primary_10_1088_1572_9494_aca253
crossref_primary_10_1007_JHEP03_2022_056
crossref_primary_10_1007_JHEP03_2025_040
crossref_primary_10_1007_JHEP08_2024_243
Cites_doi 10.4310/CNTP.2009.v3.n1.a1
10.1090/amsip/050/19
10.1007/s00220-002-0766-4
10.1007/JHEP07(2019)031
10.1619/fesi.46.213
10.1016/j.cpc.2014.11.024
10.1007/JHEP06(2018)153
10.1103/PhysRevLett.119.051601
10.1007/JHEP04(2017)083
10.1007/978-4-431-53938-4
10.1007/JHEP03(2018)064
10.1007/s00220-004-1138-z
10.1007/s11005-010-0450-0
10.1007/JHEP05(2019)029
10.1007/JHEP02(2019)139
10.1016/0550-3213(94)00488-Z
10.1007/JHEP08(2017)097
10.1215/00277630-2873714
10.1016/j.physletb.2015.03.029
10.1007/JHEP11(2013)165
10.2206/kyushujm.48.335
10.1016/0550-3213(94)90179-1
10.1016/0550-3213(81)90199-1
10.1103/PhysRevD.93.041701
10.1007/s11005-018-1114-8
10.1016/0010-4655(94)90034-5
10.1016/j.cpc.2009.02.020
10.2206/kyushujm.69.203
10.1016/j.cpc.2018.04.012
10.1142/S0129167X13500948
10.1016/S0168-9002(97)00126-5
10.1103/PhysRevLett.120.141602
10.1007/JHEP05(2019)153
10.1007/JHEP12(2016)030
10.1142/S0217751X11053687
10.2969/jmsj/02720248
10.1007/s002220050096
10.1017/S0027763000005304
10.1142/S0217751X00002159
ContentType Journal Article
Copyright Copyright American Physical Society Nov 15, 2019
Copyright_xml – notice: Copyright American Physical Society Nov 15, 2019
DBID AAYXX
CITATION
NPM
7U5
8FD
H8D
L7M
7X8
DOI 10.1103/PhysRevLett.123.201602
DatabaseName CrossRef
PubMed
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 31809080
10_1103_PhysRevLett_123_201602
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
186
2-P
29O
3MX
3O-
41~
5VS
6TJ
85S
8NH
8WZ
9M8
A6W
AAYJJ
AAYXX
ABSSX
ABUFD
ACBEA
ACGFO
ACKIV
ACNCT
ADXHL
AECSF
AENEX
AEQTI
AETEA
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CITATION
CS3
D0L
DU5
EBS
EJD
ER.
F5P
H~9
MVM
N9A
NEJ
NHB
NPBMV
OHT
OK1
P0-
P2P
RNS
ROL
S7W
SJN
T9H
TN5
UBC
UBE
VOH
WH7
XOL
XSW
YNT
YYP
ZCG
ZPR
ZY4
~02
NPM
UCJ
VQA
7U5
8FD
H8D
L7M
7X8
ID FETCH-LOGICAL-c453t-c7b2cde3137f77ed3301b901d39310d139391b48a4379e2138e6e971c07e53d83
IEDL.DBID 3MX
ISICitedReferencesCount 112
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000495979600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-9007
1079-7114
IngestDate Wed Oct 01 12:46:54 EDT 2025
Mon Jun 30 04:10:47 EDT 2025
Thu Jan 02 23:00:03 EST 2025
Sat Nov 29 05:55:33 EST 2025
Tue Nov 18 21:45:01 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-c7b2cde3137f77ed3301b901d39310d139391b48a4379e2138e6e971c07e53d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9711-7798
OpenAccessLink http://link.aps.org/pdf/10.1103/PhysRevLett.123.201602
PMID 31809080
PQID 2317875216
PQPubID 2048222
ParticipantIDs proquest_miscellaneous_2322725469
proquest_journals_2317875216
pubmed_primary_31809080
crossref_citationtrail_10_1103_PhysRevLett_123_201602
crossref_primary_10_1103_PhysRevLett_123_201602
PublicationCentury 2000
PublicationDate 2019-Nov-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: College Park
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2019
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevLett.123.201602Cc6R1
PhysRevLett.123.201602Cc9R1
PhysRevLett.123.201602Cc8R1
S. Abreu (PhysRevLett.123.201602Cc40R1)
Y. Goto (PhysRevLett.123.201602Cc17R1) 2015; 52
PhysRevLett.123.201602Cc28R1
PhysRevLett.123.201602Cc27R1
PhysRevLett.123.201602Cc48R1
PhysRevLett.123.201602Cc3R1
PhysRevLett.123.201602Cc2R1
PhysRevLett.123.201602Cc5R1
PhysRevLett.123.201602Cc62R1
PhysRevLett.123.201602Cc24R1
PhysRevLett.123.201602Cc46R1
PhysRevLett.123.201602Cc1R1
PhysRevLett.123.201602Cc44R1
PhysRevLett.123.201602Cc45R1
PhysRevLett.123.201602Cc23R1
K. Matsumoto (PhysRevLett.123.201602Cc13R1) 1998; 35
J. Milnor (PhysRevLett.123.201602Cc52R1) 2016
PhysRevLett.123.201602Cc61R1
PhysRevLett.123.201602Cc60R1
K. Aomoto (PhysRevLett.123.201602Cc30R1) 2011
M. Yoshida (PhysRevLett.123.201602Cc31R1) 2013
M. Marcolli (PhysRevLett.123.201602Cc47R1) 2010; 11
PhysRevLett.123.201602Cc16R1
PhysRevLett.123.201602Cc39R1
PhysRevLett.123.201602Cc15R1
PhysRevLett.123.201602Cc18R1
PhysRevLett.123.201602Cc38R1
PhysRevLett.123.201602Cc19R1
PhysRevLett.123.201602Cc54R1
PhysRevLett.123.201602Cc32R1
PhysRevLett.123.201602Cc53R1
PhysRevLett.123.201602Cc10R1
PhysRevLett.123.201602Cc51R1
PhysRevLett.123.201602Cc12R1
PhysRevLett.123.201602Cc35R1
PhysRevLett.123.201602Cc11R1
PhysRevLett.123.201602Cc36R1
PhysRevLett.123.201602Cc57R1
PhysRevLett.123.201602Cc14R1
PhysRevLett.123.201602Cc33R1
PhysRevLett.123.201602Cc34R1
PhysRevLett.123.201602Cc55R1
References_xml – ident: PhysRevLett.123.201602Cc46R1
  doi: 10.4310/CNTP.2009.v3.n1.a1
– ident: PhysRevLett.123.201602Cc53R1
  doi: 10.1090/amsip/050/19
– ident: PhysRevLett.123.201602Cc33R1
  doi: 10.1007/s00220-002-0766-4
– ident: PhysRevLett.123.201602Cc8R1
  doi: 10.1007/JHEP07(2019)031
– ident: PhysRevLett.123.201602Cc14R1
  doi: 10.1619/fesi.46.213
– ident: PhysRevLett.123.201602Cc57R1
  doi: 10.1016/j.cpc.2014.11.024
– ident: PhysRevLett.123.201602Cc35R1
  doi: 10.1007/JHEP06(2018)153
– ident: PhysRevLett.123.201602Cc39R1
  doi: 10.1103/PhysRevLett.119.051601
– ident: PhysRevLett.123.201602Cc24R1
  doi: 10.1007/JHEP04(2017)083
– volume-title: Theory of Hypergeometric Functions
  year: 2011
  ident: PhysRevLett.123.201602Cc30R1
  doi: 10.1007/978-4-431-53938-4
– ident: PhysRevLett.123.201602Cc38R1
  doi: 10.1007/JHEP03(2018)064
– volume-title: Proc. Sci.
  ident: PhysRevLett.123.201602Cc40R1
– ident: PhysRevLett.123.201602Cc34R1
  doi: 10.1007/s00220-004-1138-z
– ident: PhysRevLett.123.201602Cc44R1
  doi: 10.1007/s11005-010-0450-0
– volume: 52
  start-page: 861
  issn: 0030-6126
  year: 2015
  ident: PhysRevLett.123.201602Cc17R1
  publication-title: Osaka Journal of mathematics
– ident: PhysRevLett.123.201602Cc36R1
  doi: 10.1007/JHEP05(2019)029
– ident: PhysRevLett.123.201602Cc9R1
  doi: 10.1007/JHEP02(2019)139
– ident: PhysRevLett.123.201602Cc28R1
  doi: 10.1016/0550-3213(94)00488-Z
– ident: PhysRevLett.123.201602Cc32R1
  doi: 10.1007/JHEP08(2017)097
– ident: PhysRevLett.123.201602Cc16R1
  doi: 10.1215/00277630-2873714
– ident: PhysRevLett.123.201602Cc5R1
  doi: 10.1016/j.physletb.2015.03.029
– ident: PhysRevLett.123.201602Cc45R1
  doi: 10.1007/JHEP11(2013)165
– ident: PhysRevLett.123.201602Cc12R1
  doi: 10.2206/kyushujm.48.335
– volume-title: Hypergeometric Functions, My Love: Modular Interpretations of Configuration Spaces
  year: 2013
  ident: PhysRevLett.123.201602Cc31R1
– ident: PhysRevLett.123.201602Cc27R1
  doi: 10.1016/0550-3213(94)90179-1
– volume: 11
  start-page: 409
  year: 2010
  ident: PhysRevLett.123.201602Cc47R1
  publication-title: Clay Math. Proc.
– ident: PhysRevLett.123.201602Cc1R1
  doi: 10.1016/0550-3213(81)90199-1
– ident: PhysRevLett.123.201602Cc55R1
  doi: 10.1103/PhysRevD.93.041701
– ident: PhysRevLett.123.201602Cc48R1
  doi: 10.1007/s11005-018-1114-8
– ident: PhysRevLett.123.201602Cc62R1
  doi: 10.1016/0010-4655(94)90034-5
– ident: PhysRevLett.123.201602Cc61R1
  doi: 10.1016/j.cpc.2009.02.020
– ident: PhysRevLett.123.201602Cc18R1
  doi: 10.2206/kyushujm.69.203
– ident: PhysRevLett.123.201602Cc60R1
  doi: 10.1016/j.cpc.2018.04.012
– ident: PhysRevLett.123.201602Cc15R1
  doi: 10.1142/S0129167X13500948
– ident: PhysRevLett.123.201602Cc23R1
  doi: 10.1016/S0168-9002(97)00126-5
– ident: PhysRevLett.123.201602Cc19R1
  doi: 10.1103/PhysRevLett.120.141602
– ident: PhysRevLett.123.201602Cc11R1
  doi: 10.1007/JHEP05(2019)153
– ident: PhysRevLett.123.201602Cc6R1
  doi: 10.1007/JHEP12(2016)030
– ident: PhysRevLett.123.201602Cc3R1
  doi: 10.1142/S0217751X11053687
– ident: PhysRevLett.123.201602Cc51R1
  doi: 10.2969/jmsj/02720248
– ident: PhysRevLett.123.201602Cc54R1
  doi: 10.1007/s002220050096
– volume-title: Annals of Mathematics Studies No. v. 51
  year: 2016
  ident: PhysRevLett.123.201602Cc52R1
– ident: PhysRevLett.123.201602Cc10R1
  doi: 10.1017/S0027763000005304
– volume: 35
  start-page: 873
  issn: 0030-6126
  year: 1998
  ident: PhysRevLett.123.201602Cc13R1
  publication-title: Osaka Journal of mathematics
– ident: PhysRevLett.123.201602Cc2R1
  doi: 10.1142/S0217751X00002159
SSID ssj0001268
Score 2.6726363
Snippet Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products between vector spaces. We present a general algorithm...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 201602
SubjectTerms Algorithms
Functional equations
Integrals
Multivariate analysis
Vector spaces
Title Vector Space of Feynman Integrals and Multivariate Intersection Numbers
URI https://www.ncbi.nlm.nih.gov/pubmed/31809080
https://www.proquest.com/docview/2317875216
https://www.proquest.com/docview/2322725469
Volume 123
WOSCitedRecordID wos000495979600005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABR
  databaseName: American Physical Society Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: 3MX
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://journals.aps.org/
  providerName: American Physical Society
– providerCode: PRVIAO
  databaseName: SCOAP3 Journals
  customDbUrl:
  eissn: 1079-7114
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001268
  issn: 0031-9007
  databaseCode: ER.
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB5EFHzxPtaLCL5Wm6bN8Sjiqg8u4sW-lVwLgnZlu7vgv3eS1kVBEV9KIU0aJpnJl2TmG4BjXOOYUZlP8kLzJFccVcoYlzhZaG2o8MrqmGxC9Hqy31e3c5D-fINPU3YaPCHv_DREt5ygmQ3eWLxhj5R5mNjspj8zvTTjjellwe8gFW1I8O_NfF-NfoGYcanprvy_k6uw3MJKctbMgzWY89U6LEb3TltvwOVTPJwn97hD9mQ4IF3_Xr3qilw3bBEvNdGVIzEad4q7ZwSgsWhUR0-tivRi4pB6Ex67Fw_nV0mbQiGxecHGiRUms84zysRACO8Y6rNBCOBwiGjqEP4xRU0udaAl9Bll0nOvBLWp8AVzkm3BfDWs_A4QI2hhHZOcG5lLo-RA8NxqrbHtwPLWgeJTlKVt-cVDmouXMu4zUlZ-EVKJQiobIXXgdFbvrWHY-LPG_udIla3G1SXiVLQ9CEZ4B45mxagr4QJEV344Cd9kmQgJAFQHtpsRnv2SBSIzhM-7_-7OHizhiwoBirTYh_nxaOIPYMFOx8_16DBOUHyKvvwAYpriQg
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vector+Space+of+Feynman+Integrals+and+Multivariate+Intersection+Numbers&rft.jtitle=Physical+review+letters&rft.au=Frellesvig%2C+Hjalte&rft.au=Gasparotto%2C+Federico&rft.au=Mandal%2C+Manoj+K.&rft.au=Mastrolia%2C+Pierpaolo&rft.date=2019-11-15&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=123&rft.issue=20&rft_id=info:doi/10.1103%2FPhysRevLett.123.201602&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevLett_123_201602
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon