Unsupervised Learning for Machinery Adaptive Fault Detection Using Wide-Deep Convolutional Autoencoder with Kernelized Attention Mechanism

Applying deep learning to unsupervised bearing fault diagnosis in complex industrial environments is challenging. Traditional fault detection methods rely on labeled data, which is costly and labor-intensive to obtain. This paper proposes a novel unsupervised approach, WDCAE-LKA, combining a wide ke...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 24; no. 24; p. 8053
Main Authors: Yan, Hao, Si, Xiangfeng, Liang, Jianqiang, Duan, Jian, Shi, Tielin
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01.12.2024
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Applying deep learning to unsupervised bearing fault diagnosis in complex industrial environments is challenging. Traditional fault detection methods rely on labeled data, which is costly and labor-intensive to obtain. This paper proposes a novel unsupervised approach, WDCAE-LKA, combining a wide kernel convolutional autoencoder (WDCAE) with a large kernel attention (LKA) mechanism to improve fault detection under unlabeled conditions, and the adaptive threshold module based on a multi-layer perceptron (MLP) dynamically adjusts thresholds, boosting model robustness in imbalanced scenarios. Experimental validation on two datasets (CWRU and a customized ball screw dataset) demonstrates that the proposed model outperforms both traditional and state-of-the-art methods. Notably, WDCAE-LKA achieved an average diagnostic accuracy of 90.29% in varying fault scenarios on the CWRU dataset and 72.89% in the customized ball screw dataset and showed remarkable robustness under imbalanced conditions; compared with advanced models, it shortens training time by 10–26% and improves average fault diagnosis accuracy by 5–10%. The results underscore the potential of the WDCAE-LKA model as a robust and effective solution for intelligent fault diagnosis in industrial applications.
AbstractList Applying deep learning to unsupervised bearing fault diagnosis in complex industrial environments is challenging. Traditional fault detection methods rely on labeled data, which is costly and labor-intensive to obtain. This paper proposes a novel unsupervised approach, WDCAE-LKA, combining a wide kernel convolutional autoencoder (WDCAE) with a large kernel attention (LKA) mechanism to improve fault detection under unlabeled conditions, and the adaptive threshold module based on a multi-layer perceptron (MLP) dynamically adjusts thresholds, boosting model robustness in imbalanced scenarios. Experimental validation on two datasets (CWRU and a customized ball screw dataset) demonstrates that the proposed model outperforms both traditional and state-of-the-art methods. Notably, WDCAE-LKA achieved an average diagnostic accuracy of 90.29% in varying fault scenarios on the CWRU dataset and 72.89% in the customized ball screw dataset and showed remarkable robustness under imbalanced conditions; compared with advanced models, it shortens training time by 10–26% and improves average fault diagnosis accuracy by 5–10%. The results underscore the potential of the WDCAE-LKA model as a robust and effective solution for intelligent fault diagnosis in industrial applications.
Applying deep learning to unsupervised bearing fault diagnosis in complex industrial environments is challenging. Traditional fault detection methods rely on labeled data, which is costly and labor-intensive to obtain. This paper proposes a novel unsupervised approach, WDCAE-LKA, combining a wide kernel convolutional autoencoder (WDCAE) with a large kernel attention (LKA) mechanism to improve fault detection under unlabeled conditions, and the adaptive threshold module based on a multi-layer perceptron (MLP) dynamically adjusts thresholds, boosting model robustness in imbalanced scenarios. Experimental validation on two datasets (CWRU and a customized ball screw dataset) demonstrates that the proposed model outperforms both traditional and state-of-the-art methods. Notably, WDCAE-LKA achieved an average diagnostic accuracy of 90.29% in varying fault scenarios on the CWRU dataset and 72.89% in the customized ball screw dataset and showed remarkable robustness under imbalanced conditions; compared with advanced models, it shortens training time by 10-26% and improves average fault diagnosis accuracy by 5-10%. The results underscore the potential of the WDCAE-LKA model as a robust and effective solution for intelligent fault diagnosis in industrial applications.Applying deep learning to unsupervised bearing fault diagnosis in complex industrial environments is challenging. Traditional fault detection methods rely on labeled data, which is costly and labor-intensive to obtain. This paper proposes a novel unsupervised approach, WDCAE-LKA, combining a wide kernel convolutional autoencoder (WDCAE) with a large kernel attention (LKA) mechanism to improve fault detection under unlabeled conditions, and the adaptive threshold module based on a multi-layer perceptron (MLP) dynamically adjusts thresholds, boosting model robustness in imbalanced scenarios. Experimental validation on two datasets (CWRU and a customized ball screw dataset) demonstrates that the proposed model outperforms both traditional and state-of-the-art methods. Notably, WDCAE-LKA achieved an average diagnostic accuracy of 90.29% in varying fault scenarios on the CWRU dataset and 72.89% in the customized ball screw dataset and showed remarkable robustness under imbalanced conditions; compared with advanced models, it shortens training time by 10-26% and improves average fault diagnosis accuracy by 5-10%. The results underscore the potential of the WDCAE-LKA model as a robust and effective solution for intelligent fault diagnosis in industrial applications.
Audience Academic
Author Yan, Hao
Liang, Jianqiang
Si, Xiangfeng
Duan, Jian
Shi, Tielin
Author_xml – sequence: 1
  givenname: Hao
  surname: Yan
  fullname: Yan, Hao
– sequence: 2
  givenname: Xiangfeng
  orcidid: 0009-0009-3098-8260
  surname: Si
  fullname: Si, Xiangfeng
– sequence: 3
  givenname: Jianqiang
  orcidid: 0000-0002-7422-714X
  surname: Liang
  fullname: Liang, Jianqiang
– sequence: 4
  givenname: Jian
  surname: Duan
  fullname: Duan, Jian
– sequence: 5
  givenname: Tielin
  orcidid: 0000-0001-6977-9700
  surname: Shi
  fullname: Shi, Tielin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39771789$$D View this record in MEDLINE/PubMed
BookMark eNplks1uEzEQgC1URNvAgRdAlrjAYVv_7Ga9xyilUJGKCxFHy2uPE0cbO9jeoPIIPDVO01aoyAdb48_fyDNzjk588IDQW0ouOO_IZWI1qwVp-At0RsuxEoyRk3_Op-g8pQ0hjHMuXqFT3rUtbUV3hv4sfRp3EPcugcELUNE7v8I2RHyr9Np5iHd4ZtQuuz3gazUOGV9BBp1d8HiZDvAPZ6C6AtjhefD7MIyHOzXg2ZgDeB0MRPzL5TX-CtHD4H6XTLOcwd87bkGvlXdp-xq9tGpI8OZhn6Dl9afv8y_V4tvnm_lsUem64bnqqVVsKkxPlO6gJ522XFFtqDLG1qaf6sbanjQ9pVZYAy0tZRCaCgBCe9bwCbo5ek1QG7mLbqvinQzKyftAiCupYnZ6AFm3mpDO2J5pqJnhqqQRAgiDzhrStcX14ejaxfBzhJTl1iUNw6A8hDFJThsuWsan04K-f4ZuwhhLnQ5U3bUNI6U7E3RxpFaq5HfehhyVLsvA1unSdutKfCYY7dopK-YJevegHfstmKf_PLa4AJdHQMeQUgQrtcvqUPpidoOkRB6GSD4NUXnx8dmLR-n_7F9tvMhM
CitedBy_id crossref_primary_10_3390_electronics14142774
crossref_primary_10_3390_s25144348
crossref_primary_10_1016_j_measurement_2025_116881
Cites_doi 10.1016/j.ymssp.2022.110074
10.1016/j.engappai.2024.108098
10.1109/MetroAutomotive54295.2022.9855137
10.1109/CCDC.2018.8407419
10.1016/j.conengprac.2024.105871
10.1109/TII.2018.2810226
10.1007/s00521-021-05919-6
10.1016/j.engappai.2023.107407
10.1016/j.ymssp.2023.110499
10.1109/TCYB.2021.3123667
10.1109/TNNLS.2021.3060494
10.1109/ACCESS.2020.2990528
10.1007/s00521-021-05933-8
10.1016/j.jmsy.2021.11.016
10.3390/s22228760
10.1109/TII.2023.3316264
10.3390/s23229048
10.1016/j.ymssp.2022.109955
10.1016/j.ress.2022.108357
10.1109/TPWRS.2019.2936293
10.1109/TII.2022.3224979
10.1007/978-3-030-58452-8_13
10.3390/app12052405
10.1016/j.neunet.2024.106230
10.1016/j.ymssp.2024.111950
10.1109/TNNLS.2022.3232147
10.1016/j.grets.2024.100083
10.1109/TII.2024.3353921
10.3390/electronics12081816
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/s24248053
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
CrossRef

PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_47c009dfb2ce42d3acd188e02e9fd097
A821976272
39771789
10_3390_s24248053
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c453t-b1fa268db0ac9eb09cf3a1cd1addf4db6c5ffb05b11f8fde711428c18ee01b253
IEDL.DBID 7X7
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001387170800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Mon Dec 08 03:37:20 EST 2025
Fri Sep 05 09:48:04 EDT 2025
Tue Oct 07 08:25:08 EDT 2025
Tue Dec 02 03:52:00 EST 2025
Mon Jul 21 05:46:55 EDT 2025
Tue Nov 18 22:16:51 EST 2025
Sat Nov 29 07:12:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords auto-encoder
kernelized attention
machinery fault detection
adaptive thresholding
unsupervised feature learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-b1fa268db0ac9eb09cf3a1cd1addf4db6c5ffb05b11f8fde711428c18ee01b253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6977-9700
0000-0002-7422-714X
0009-0009-3098-8260
0009-0007-3939-2012
OpenAccessLink https://www.proquest.com/docview/3149752033?pq-origsite=%requestingapplication%
PMID 39771789
PQID 3149752033
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_47c009dfb2ce42d3acd188e02e9fd097
proquest_miscellaneous_3153872366
proquest_journals_3149752033
gale_infotracacademiconefile_A821976272
pubmed_primary_39771789
crossref_citationtrail_10_3390_s24248053
crossref_primary_10_3390_s24248053
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_18) 2024; 145
Li (ref_5) 2023; 200
Zhang (ref_7) 2022; 222
Neupane (ref_32) 2020; 8
Liu (ref_2) 2021; 33
Tang (ref_11) 2024; 127
ref_14
ref_13
ref_12
Zhao (ref_16) 2024; 20
ref_31
ref_30
Yu (ref_27) 2022; 34
ref_15
Huang (ref_20) 2023; 53
Fang (ref_19) 2024; 174
Wang (ref_4) 2025; 224
Liu (ref_28) 2024; 20
Zhao (ref_21) 2023; 19
Dong (ref_8) 2024; 133
ref_25
ref_24
ref_23
ref_22
Cao (ref_17) 2022; 62
Javaid (ref_1) 2024; 2
Yao (ref_6) 2023; 187
Zhang (ref_29) 2023; 35
Wang (ref_3) 2022; 33
Zhao (ref_10) 2023; 189
Wang (ref_9) 2019; 15
Ryu (ref_26) 2020; 35
References_xml – volume: 189
  start-page: 110074
  year: 2023
  ident: ref_10
  article-title: Mutual-assistance semisupervised domain generalization network for intelligent fault diagnosis under unseen working conditions
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.110074
– volume: 133
  start-page: 108098
  year: 2024
  ident: ref_8
  article-title: Dynamic normalization supervised contrastive network with multiscale compound attention mechanism for gearbox imbalanced fault diagnosis
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108098
– ident: ref_13
  doi: 10.1109/MetroAutomotive54295.2022.9855137
– ident: ref_24
  doi: 10.1109/CCDC.2018.8407419
– volume: 145
  start-page: 105871
  year: 2024
  ident: ref_18
  article-title: Unsupervised learning of part-based representations using sparsity optimized auto-encoder for machinery fault diagnosis
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2024.105871
– volume: 15
  start-page: 105
  year: 2019
  ident: ref_9
  article-title: Feature Trend Extraction and Adaptive Density Peaks Search for Intelligent Fault Diagnosis of Machines
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2810226
– volume: 33
  start-page: 12737
  year: 2021
  ident: ref_2
  article-title: Residual attention convolutional autoencoder for feature learning and fault detection in nonlinear industrial processes
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05919-6
– volume: 127
  start-page: 107407
  year: 2024
  ident: ref_11
  article-title: A parallel ensemble optimization and transfer learning based intelligent fault diagnosis framework for bearings
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107407
– volume: 200
  start-page: 110499
  year: 2023
  ident: ref_5
  article-title: A spectral self-focusing fault diagnosis method for automotive transmissions under gear-shifting conditions
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2023.110499
– volume: 53
  start-page: 443
  year: 2023
  ident: ref_20
  article-title: Wavelet Packet Decomposition-Based Multiscale CNN for Fault Diagnosis of Wind Turbine Gearbox
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3123667
– ident: ref_23
– volume: 33
  start-page: 4757
  year: 2022
  ident: ref_3
  article-title: Feature-Level Attention-Guided Multitask CNN for Fault Diagnosis and Working Conditions Identification of Rolling Bearing
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3060494
– volume: 8
  start-page: 93155
  year: 2020
  ident: ref_32
  article-title: Bearing Fault Detection and Diagnosis Using Case Western Reserve University Dataset With Deep Learning Approaches: A Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990528
– volume: 34
  start-page: 2503
  year: 2022
  ident: ref_27
  article-title: A model-based collaborate filtering algorithm based on stacked AutoEncoder
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05933-8
– volume: 62
  start-page: 186
  year: 2022
  ident: ref_17
  article-title: Unsupervised domain-share CNN for machine fault transfer diagnosis from steady speeds to time-varying speeds
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.11.016
– ident: ref_12
  doi: 10.3390/s22228760
– volume: 20
  start-page: 4492
  year: 2024
  ident: ref_16
  article-title: Class-Aware Adversarial Multiwavelet Convolutional Neural Network for Cross-Domain Fault Diagnosis
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3316264
– ident: ref_25
– ident: ref_31
– ident: ref_15
  doi: 10.3390/s23229048
– volume: 187
  start-page: 109955
  year: 2023
  ident: ref_6
  article-title: An integrated framework via key-spectrum entropy and statistical properties for bearing dynamic health monitoring and performance degradation assessment
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109955
– volume: 222
  start-page: 108357
  year: 2022
  ident: ref_7
  article-title: An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108357
– volume: 35
  start-page: 1048
  year: 2020
  ident: ref_26
  article-title: Convolutional Autoencoder Based Feature Extraction and Clustering for Customer Load Analysis
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2936293
– volume: 19
  start-page: 9091
  year: 2023
  ident: ref_21
  article-title: A Fault Diagnosis Method for Rotating Machinery Based on CNN With Mixed Information
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3224979
– ident: ref_30
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref_22
  doi: 10.3390/app12052405
– volume: 174
  start-page: 106230
  year: 2024
  ident: ref_19
  article-title: Source-free unsupervised domain adaptation: A survey
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2024.106230
– volume: 224
  start-page: 111950
  year: 2025
  ident: ref_4
  article-title: A trackable multi-domain collaborative generative adversarial network for rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2024.111950
– volume: 35
  start-page: 6231
  year: 2023
  ident: ref_29
  article-title: An Integrated Multitasking Intelligent Bearing Fault Diagnosis Scheme Based on Representation Learning Under Imbalanced Sample Condition
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3232147
– volume: 2
  start-page: 100083
  year: 2024
  ident: ref_1
  article-title: Digital economy to improve the culture of industry 4.0: A study on features, implementation and challenges
  publication-title: Green Technol. Sustain.
  doi: 10.1016/j.grets.2024.100083
– volume: 20
  start-page: 7545
  year: 2024
  ident: ref_28
  article-title: Variable-Wise Stacked Temporal Autoencoder for Intelligent Fault Diagnosis of Industrial Systems
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2024.3353921
– ident: ref_14
  doi: 10.3390/electronics12081816
SSID ssj0023338
Score 2.4640021
Snippet Applying deep learning to unsupervised bearing fault diagnosis in complex industrial environments is challenging. Traditional fault detection methods rely on...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 8053
SubjectTerms Accuracy
Adaptability
adaptive thresholding
Artificial intelligence
auto-encoder
Bearings
Clustering
Datasets
Deep learning
Efficiency
Embedded systems
Fault diagnosis
kernelized attention
Machinery
machinery fault detection
Neural networks
Systems stability
unsupervised feature learning
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5k8aAH8W10lVYEvYTtR5LuHMddB0F38eDi3kKnu1oGxsyQx4L-BH-1VUlmWB_gxWvS0JWud7rqK8Ze5s6FugwxBYm5SQYFpC6Aw0CuAC9z41QYG4U_mLMze3FRfrwy6otqwiZ44OngjjLjMQwIsVYeMhW080FaC0JBGYMoxz5yYcpdMjWnWhozrwlHSGNSf9RRE4QVuf7F-4wg_X-a4t8CzNHRLG-zW3OEyBcTZXfYNWjusptXcAPvsR_nTTdsScs7CHyGSP3CMf7kp2NxJLTf-CK4LdkyvnTDuucn0I9VVw0fqwT451WA9ARgy483zeUsgLTv0G8I3DJAy-knLX8PbQPr1XfcadH3U3UkPwXqGF51X--z8-XbT8fv0nmoQuqzXPdpLaNThQ21cL6EWpQ-aifxUNHQxSzUhc9jrEVeSxltDGCo2dZ6aQGErFWuH7CDZtPAI8Zpvo00ka5WMcnLohMqBge5yqLyJoiEvd4dduVnxHEafLGuMPMgvlR7viTsxX7pdoLZ-NuiN8Sx_QJCxh4foLxUs7xU_5KXhL0iflekv0iMd3MbAn4SIWFVC4s2HD2EUQk73IlENSt2V2nMKE2uhEZqnu9fo0rSPYtrYDPQGvQiRumiSNjDSZT2NFO8LY0tH_-Pb3nCbiiMsabqmkN20LcDPGXX_WW_6tpno0b8BCCrFQM
  priority: 102
  providerName: Directory of Open Access Journals
Title Unsupervised Learning for Machinery Adaptive Fault Detection Using Wide-Deep Convolutional Autoencoder with Kernelized Attention Mechanism
URI https://www.ncbi.nlm.nih.gov/pubmed/39771789
https://www.proquest.com/docview/3149752033
https://www.proquest.com/docview/3153872366
https://doaj.org/article/47c009dfb2ce42d3acd188e02e9fd097
Volume 24
WOSCitedRecordID wos001387170800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceD8CS2UQElyijZ2HkxPq7rYCQasKsaKcIsceryqVJCTpSnDgB_Cr8Thpl5e4cPHBsWJbHs_LM98Q8iyWUheZNj4wa5tEkIAvNUiryCWgWCwk1y5R-K2Yz9PlMlsMDrd2CKvc8kTHqHWl0Ed-GFpVXsQ8CMOX9Wcfq0bh6-pQQuMy2cey2UjnYnlhcIXW_urRhEJr2h-2mAqRBnH4iwxyUP1_MuTf1EwnbqY3_nehN8n1QdGk454ybpFLUN4m136CH7xDvp-W7aZGZtGCpgPS6hm1aiyduRhLaL7QsZY1skQ6lZt1R0-gc8FbJXXBBvTDSoN_AlDT46o8H-gY5910FWJkamgo-nrpG2hKWK--2pnGXdcHWdIZYOLxqv10l5xOJ--PX_lDbQZfRXHY-QUzkiepLgKpMiiCTJlQMqWZ5Zcm0kWiYmOKIC4YM6nRIDBnN1UsBQhYwePwHtkrqxIeEIplcpgw-EJrbcXIyIAbLSHmkeFK6MAjL7anlasBuBzrZ6xza8Dgwea7g_XI093Qukfr-NugIzzy3QAE2HYdVXOWD_c1j4Sy2qc2BVcQcR1Ku7U0hYBDZnSQCY88R4LJkQ3YxSg5ZDPYLSGgVj5OrSiwgkZwjxxs6SQf-EObXxCJR57sPtubjc81soRqg2OsMBI8TBKP3O9pcbdmVNuZSLOH__75I3KVWyWsD785IHtds4HH5Io671ZtM3KXxbXpiOwfTeaLdyPnk7Dt7NvE9i1ezxYffwCLVChz
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLaqggQc2JdAAYNAcIma2EmcHBAaOoxazSIOrZhb6tjP1UhDEpJMUfkJ_Bh-I35JZsombj1wTax4yefvvWe_hZAXoZQ6S7Rxwbe2SQARuFKDtIpcBMoPhWS6DRSeiNksns-TD1vk-zoWBt0q15zYErUuFJ6R73KryouQeZy_LT-7WDUKb1fXJTQ6WIzh7Is12eo3B0P7f18yNnp_uLfv9lUFXBWEvHEz30gWxTrzpEog8xJluPSV9u1ON4HOIhUak3lh5vsmNhoERpvGyo8BPD9jWCXCUv4ly-MCjT0xPzfwuLX3uuxFnCfebo2hF7EX8l9kXlsa4E8B8Jta24q30Y3_bWFukuu9Ik0HHfJvkS3Ib5NrP6VXvEO-HeX1qkQyrEHTPpPsCbVqOp22PqRQndGBliVSPh3J1bKhQ2ha57Scts4U9ONCgzsEKOlekZ_2-xT7XTUF5gDVUFE8y6ZjqHJYLr7angZN0zmR0ilgYPWi_nSXHF3IYtwj23mRwwNCsQyQLwzeQFtbODDSY0ZLCFlgmBLac8jrNTpS1Sdmx_ogy9QaaAikdAMkhzzfNC27bCR_a_QOIbZpgAnE2wdFdZL2fJQGQlntWpuMKQiY5tJOLY7BY5AY7SXCIa8QoCnSnB2Mkn20hp0SJgxLB7EVdVaQCuaQnTUu057_6vQclA55tnltmQuvo2QOxQrbWGErGI8ih9zvsL8ZM5olvoiTh__--FNyZf9wOkknB7PxI3KVWYWzczXaIdtNtYLH5LI6bRZ19aTdqJQcX_QG-AEEkYNr
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFB5VKUJwYF8MBQYEgosVe7wfEAoNEVGaKAcq2pMZz7ypIgU72E5R-Qn8JH4d79lOWMWtB672k2fx97aZtzD2NJBSZ4k2Nrjom_gQgi01SDTkQlBuEEmhm0Thg2g2i4-OkvkO-7bJhaGwyo1MbAS1LhSdkfc9NOWjQDie1zddWMR8OHq1-mRTBym6ad2002ghMoGzz-i-VS_HQ_zXz4QYvXm3_9buOgzYyg-82s5cI0UY68yRKoHMSZTxpKu0i1xvfJ2FKjAmc4LMdU1sNESUeRorNwZw3ExQxwgU_7tokvuix3bn4-n8eOvueej9tbWMPC9x-hUlYsRO4P2iAZtGAX-qg9-M3EbZja7-z9t0jV3pTGw-aHniOtuB_Aa7_FPhxZvs62FerVckJivQvKsxe8LRgOfTJroUyjM-0HJFyoCP5HpZ8yHUTdhazpswC_5-ocEeAqz4fpGfdhxM467rgqqDaig5nXLzCZQ5LBdfcKRBXbfhpXwKlHK9qD7eYofnshm3WS8vcrjLODUIciNDd9PoJftGOsJoCYHwjVCRdiz2YoOUVHUl26lzyDJF141AlW5BZbEnW9JVW6fkb0SvCW5bAiot3jwoypO0k1SpHym0u7XJhAJfaE_i0uIYHAGJ0U4SWew5gTUlAYiTUbLL48AlUSmxdBCjEkQVGwmL7W0wmnaSsUp_ANRij7evUabRRZXMoVgTDarhSHhhaLE7LR9s50wOixvFyb1_f_wRu4i4Tw_Gs8l9dkmgJdrGIO2xXl2u4QG7oE7rRVU-7LiWsw_nzQHfATnvjbo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Learning+for+Machinery+Adaptive+Fault+Detection+Using+Wide-Deep+Convolutional+Autoencoder+with+Kernelized+Attention+Mechanism&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Yan%2C+Hao&rft.au=Si%2C+Xiangfeng&rft.au=Liang%2C+Jianqiang&rft.au=Duan%2C+Jian&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=24&rft.spage=8053&rft_id=info:doi/10.3390%2Fs24248053&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon