Prediction of geological characteristics from shield operational parameters by integrating grid search and K-fold cross validation into stacking classification algorithm

This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm (SCA) with a grid search (GS) and K-fold cross validation (K-CV). The SCA includes two learner layers: a primary learner's layer and meta-classifier layer. The accu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Rock Mechanics and Geotechnical Engineering Jg. 14; H. 4; S. 1292 - 1303
Hauptverfasser: Yan, Tao, Shen, Shui-Long, Zhou, Annan, Chen, Xiangsheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.08.2022
MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China
Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%MOE Key Laboratory of Intelligent Manufacturing Technology,Department of Civil and Environmental Engineering,College of Engineering,Shantou University,Shantou,Guangdong 515063,China%Discipline of Civil and Infrastructure,School of Engineering,Royal Melbourne Institute of Technology(RMIT),Victoria,3001,Australia%College of Civil and Transportation Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China
Elsevier
Schlagworte:
ISSN:1674-7755
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!