Optimality conditions and Mond–Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints

In this paper, the class of differentiable semi-infinite multiobjective programming problems with vanishing constraints is considered. Both Karush–Kuhn–Tucker necessary optimality conditions and, under appropriate invexity hypotheses, sufficient optimality conditions are proved for such nonconvex sm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:4OR Jg. 20; H. 3; S. 417 - 442
1. Verfasser: Antczak, Tadeusz
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2022
Springer Nature B.V
Schlagworte:
ISSN:1619-4500, 1614-2411
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the class of differentiable semi-infinite multiobjective programming problems with vanishing constraints is considered. Both Karush–Kuhn–Tucker necessary optimality conditions and, under appropriate invexity hypotheses, sufficient optimality conditions are proved for such nonconvex smooth vector optimization problems. Further, vector duals in the sense of Mond–Weir are defined for the considered differentiable semi-infinite multiobjective programming problems with vanishing constraints and several duality results are established also under invexity hypotheses.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1619-4500
1614-2411
DOI:10.1007/s10288-021-00482-1