Expectation-Maximization Gaussian-Mixture Approximate Message Passing

When recovering a sparse signal from noisy compressive linear measurements, the distribution of the signal's non-zero coefficients can have a profound effect on recovery mean-squared error (MSE). If this distribution was a priori known, then one could use computationally efficient approximate m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 61; číslo 19; s. 4658 - 4672
Hlavní autori: Vila, Jeremy P., Schniter, Philip
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.10.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract When recovering a sparse signal from noisy compressive linear measurements, the distribution of the signal's non-zero coefficients can have a profound effect on recovery mean-squared error (MSE). If this distribution was a priori known, then one could use computationally efficient approximate message passing (AMP) techniques for nearly minimum MSE (MMSE) recovery. In practice, however, the distribution is unknown, motivating the use of robust algorithms like LASSO-which is nearly minimax optimal-at the cost of significantly larger MSE for non-least-favorable distributions. As an alternative, we propose an empirical-Bayesian technique that simultaneously learns the signal distribution while MMSE-recovering the signal-according to the learned distribution-using AMP. In particular, we model the non-zero distribution as a Gaussian mixture and learn its parameters through expectation maximization, using AMP to implement the expectation step. Numerical experiments on a wide range of signal classes confirm the state-of-the-art performance of our approach, in both reconstruction error and runtime, in the high-dimensional regime, for most (but not all) sensing operators.
AbstractList When recovering a sparse signal from noisy compressive linear measurements, the distribution of the signal's non-zero coefficients can have a profound effect on recovery mean-squared error (MSE). If this distribution was a priori known, then one could use computationally efficient approximate message passing (AMP) techniques for nearly minimum MSE (MMSE) recovery. In practice, however, the distribution is unknown, motivating the use of robust algorithms like LASSO--which is nearly minimax optimal--at the cost of significantly larger MSE for non-least-favorable distributions. As an alternative, we propose an empirical-Bayesian technique that simultaneously learns the signal distribution while MMSE-recovering the signal--according to the learned distribution--using AMP. In particular, we model the non-zero distribution as a Gaussian mixture and learn its parameters through expectation maximization, using AMP to implement the expectation step. Numerical experiments on a wide range of signal classes confirm the state-of-the-art performance of our approach, in both reconstruction error and runtime, in the high-dimensional regime, for most (but not all) sensing operators.
Author Schniter, Philip
Vila, Jeremy P.
Author_xml – sequence: 1
  givenname: Jeremy P.
  surname: Vila
  fullname: Vila, Jeremy P.
  email: vila.2@osu.edu
  organization: Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA
– sequence: 2
  givenname: Philip
  surname: Schniter
  fullname: Schniter, Philip
  email: schniter@ece.osu.edu
  organization: Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27783901$$DView record in Pascal Francis
BookMark eNqFkc1LAkEYh4cwSK170EWIoMvazLw7X0cRs8BIyKDbMo6zMrLu2swuWH99Y4oHDzWX-Xp-73w8HdQqq9IidE1wnxCsHmZv0z7FBPqUCkqlOENtolKS4FTwVhxjBgmT4uMCdUJYYUzSVPE2Go22G2tqXbuqTF701q3d9--kN9ZNCE7HVbetG297g83GVxHQte292BD00vamOjLl8hKd57oI9urQd9H742g2fEomr-Pn4WCSmJRBnaiFFDnLDUkZywFLNZ8rPk_VwtCF4QspKQPLKUiBlYKcUYytknPMOQAlmkEX3e_rxpt8NjbU2doFY4tCl7ZqQka4IKAIYPU_moISICC2Lro9QVdV48v4kEgJogTFsCt4d6B0MLrIvS6NC9nGxx_xXxkVQoKKAroI7znjqxC8zY8IwdlOVRZVZTtV2UFVjPCTiHF7JbXXrvgreLMPOmvt8RzOGFdx9wfJhKBQ
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_JIOT_2022_3229768
crossref_primary_10_1109_TCOMM_2022_3151775
crossref_primary_10_1109_TSP_2017_2778695
crossref_primary_10_1109_LSP_2015_2414951
crossref_primary_10_1109_TCOMM_2022_3153957
crossref_primary_10_1016_j_sysarc_2017_10_003
crossref_primary_10_1109_TWC_2023_3291877
crossref_primary_10_1016_j_dsp_2025_105410
crossref_primary_10_1109_TSP_2019_2916100
crossref_primary_10_1109_TIP_2016_2556582
crossref_primary_10_1109_TVT_2025_3541278
crossref_primary_10_1109_TVT_2024_3519617
crossref_primary_10_1109_LWC_2024_3361916
crossref_primary_10_1109_MGRS_2022_3218801
crossref_primary_10_1371_journal_pone_0289868
crossref_primary_10_1109_TVT_2024_3377716
crossref_primary_10_1109_ACCESS_2018_2803262
crossref_primary_10_1109_TVT_2017_2787708
crossref_primary_10_1109_TWC_2015_2498922
crossref_primary_10_1109_TSP_2018_2887189
crossref_primary_10_1016_j_ejcon_2025_101332
crossref_primary_10_1109_TIM_2022_3150848
crossref_primary_10_3390_rs16071209
crossref_primary_10_1186_s13634_018_0565_5
crossref_primary_10_1109_LCOMM_2021_3123368
crossref_primary_10_1109_TPWRS_2015_2495214
crossref_primary_10_1109_JSAC_2020_3036964
crossref_primary_10_1109_TVT_2019_2908379
crossref_primary_10_1109_TCOMM_2022_3175178
crossref_primary_10_1109_LCOMM_2025_3544250
crossref_primary_10_1002_mrm_27083
crossref_primary_10_1109_TSP_2017_2764855
crossref_primary_10_1109_LCOMM_2021_3079307
crossref_primary_10_1016_j_sigpro_2019_107248
crossref_primary_10_1109_TCOMM_2019_2892719
crossref_primary_10_1109_TWC_2020_3047100
crossref_primary_10_1109_TII_2019_2895469
crossref_primary_10_1002_mrm_25904
crossref_primary_10_1016_j_asoc_2021_107286
crossref_primary_10_1109_TIFS_2024_3384112
crossref_primary_10_1016_j_image_2015_06_011
crossref_primary_10_1109_TSP_2020_2983827
crossref_primary_10_1109_TCOMM_2020_2973147
crossref_primary_10_1007_s11277_020_07927_6
crossref_primary_10_1109_TVT_2025_3557767
crossref_primary_10_1109_ACCESS_2017_2653119
crossref_primary_10_1109_TWC_2022_3157271
crossref_primary_10_1109_LWC_2019_2926260
crossref_primary_10_1109_TWC_2021_3120926
crossref_primary_10_1177_0959651817731249
crossref_primary_10_1016_j_sigpro_2019_107336
crossref_primary_10_1109_OJCOMS_2025_3544871
crossref_primary_10_1109_TSP_2019_2912879
crossref_primary_10_3390_electronics14153076
crossref_primary_10_1109_JSEN_2024_3418075
crossref_primary_10_1109_TSP_2016_2585123
crossref_primary_10_3390_s20164609
crossref_primary_10_1109_TSP_2014_2386294
crossref_primary_10_1109_TSP_2018_2812720
crossref_primary_10_1016_j_knosys_2025_113793
crossref_primary_10_1109_TSP_2014_2357773
crossref_primary_10_1109_TWC_2024_3374794
crossref_primary_10_4018_IJNCR_2019010101
crossref_primary_10_1109_JSTSP_2018_2850754
crossref_primary_10_3390_s19092208
crossref_primary_10_1002_cjs_11592
crossref_primary_10_1080_2150704X_2022_2091962
crossref_primary_10_1109_TAES_2020_2978374
crossref_primary_10_1109_TWC_2021_3107576
crossref_primary_10_1109_TWC_2021_3080923
crossref_primary_10_1109_TWC_2023_3324679
crossref_primary_10_1109_TIT_2016_2619373
crossref_primary_10_1109_JSEN_2024_3419053
crossref_primary_10_1109_LWC_2022_3161100
crossref_primary_10_1007_s12652_017_0634_x
crossref_primary_10_1109_TSP_2022_3141889
crossref_primary_10_1109_TSP_2016_2593691
crossref_primary_10_1016_j_engappai_2022_105079
crossref_primary_10_1109_TVT_2022_3176290
crossref_primary_10_1049_cmu2_70034
crossref_primary_10_1109_TAES_2019_2917494
crossref_primary_10_1186_s13638_019_1623_x
crossref_primary_10_1109_TWC_2023_3290622
crossref_primary_10_1109_TSP_2015_2408569
crossref_primary_10_1016_j_dsp_2021_103157
crossref_primary_10_1109_TVT_2021_3111081
crossref_primary_10_1109_TSP_2021_3106741
crossref_primary_10_1109_TWC_2023_3320760
crossref_primary_10_1109_JSAC_2025_3531551
crossref_primary_10_1109_TWC_2019_2909865
crossref_primary_10_1016_j_sigpro_2023_109193
crossref_primary_10_1109_TSP_2016_2546231
crossref_primary_10_1109_TSP_2014_2357776
crossref_primary_10_1109_TWC_2021_3071719
crossref_primary_10_1002_mrm_30295
crossref_primary_10_1109_LCOMM_2018_2881144
crossref_primary_10_1109_TWC_2025_3525738
crossref_primary_10_1109_JSAC_2022_3143260
crossref_primary_10_1109_TSP_2022_3146791
crossref_primary_10_1109_TCOMM_2015_2488651
crossref_primary_10_1109_JOE_2023_3337349
crossref_primary_10_1109_LSP_2020_2998357
crossref_primary_10_1109_TCOMM_2024_3400909
crossref_primary_10_1109_TSP_2022_3194348
crossref_primary_10_1109_TVT_2021_3113136
crossref_primary_10_1002_navi_455
crossref_primary_10_1109_TSP_2018_2886168
crossref_primary_10_1109_TSP_2020_3044847
crossref_primary_10_1109_TIM_2017_2654552
crossref_primary_10_1109_TGRS_2024_3394314
crossref_primary_10_1109_TSP_2019_2904018
crossref_primary_10_1109_TVT_2018_2828866
crossref_primary_10_1109_TWC_2022_3231088
crossref_primary_10_1007_s41060_022_00357_6
crossref_primary_10_1016_j_dsp_2024_104387
crossref_primary_10_1109_TWC_2024_3514210
crossref_primary_10_1109_LCOMM_2022_3184790
crossref_primary_10_1109_ACCESS_2019_2933640
crossref_primary_10_1109_TSP_2018_2824286
crossref_primary_10_1109_TWC_2023_3339151
crossref_primary_10_4218_etrij_2019_0336
crossref_primary_10_3390_math10101657
crossref_primary_10_1109_LSP_2024_3503365
crossref_primary_10_1109_TWC_2020_3033699
crossref_primary_10_1109_TSP_2014_2337841
crossref_primary_10_1007_s12652_022_04503_7
crossref_primary_10_1109_ACCESS_2018_2890146
crossref_primary_10_1109_TCOMM_2020_2995585
crossref_primary_10_1016_j_phycom_2023_102018
crossref_primary_10_1109_LCOMM_2020_3035326
crossref_primary_10_1109_TWC_2021_3067376
crossref_primary_10_1109_JSAC_2022_3143241
crossref_primary_10_1109_TSP_2022_3211672
crossref_primary_10_1109_ACCESS_2019_2910088
crossref_primary_10_1109_LWC_2022_3152323
crossref_primary_10_1049_iet_spr_2017_0568
crossref_primary_10_1109_TCOMM_2023_3261382
crossref_primary_10_1016_j_ultramic_2016_09_011
crossref_primary_10_1109_TAES_2018_2805141
crossref_primary_10_1109_MCI_2016_2601700
crossref_primary_10_1109_TWC_2021_3111104
crossref_primary_10_1109_LSP_2017_2789163
crossref_primary_10_1109_JSTSP_2015_2500363
crossref_primary_10_1109_TWC_2023_3327995
crossref_primary_10_1109_ACCESS_2018_2887261
crossref_primary_10_1109_ACCESS_2018_2873414
crossref_primary_10_3390_e21030247
crossref_primary_10_1109_ACCESS_2022_3141911
crossref_primary_10_1109_TGRS_2021_3111901
crossref_primary_10_1109_TCOMM_2019_2894629
crossref_primary_10_1109_TSP_2015_2407311
crossref_primary_10_1109_TWC_2020_3029400
crossref_primary_10_1109_TSP_2016_2599484
crossref_primary_10_1186_2047_217X_3_10
crossref_primary_10_1109_TCOMM_2024_3523972
crossref_primary_10_1109_TWC_2025_3549592
crossref_primary_10_1016_j_jfranklin_2023_04_022
crossref_primary_10_1109_JSAC_2020_3018799
crossref_primary_10_1109_TSG_2018_2861736
crossref_primary_10_1007_s10853_021_06547_0
crossref_primary_10_1109_TSP_2019_2928977
crossref_primary_10_1109_TWC_2022_3201207
crossref_primary_10_1109_JSAC_2024_3460064
crossref_primary_10_1109_TVT_2018_2860782
crossref_primary_10_1109_TWC_2024_3465488
crossref_primary_10_1109_TSP_2018_2879620
crossref_primary_10_1109_TWC_2019_2954883
crossref_primary_10_1109_TWC_2024_3466213
crossref_primary_10_1109_TIE_2017_2748034
crossref_primary_10_1109_TVT_2020_2986271
crossref_primary_10_4218_etrij_2018_0190
crossref_primary_10_1002_mrm_29303
crossref_primary_10_1109_ACCESS_2017_2756844
crossref_primary_10_1109_ACCESS_2019_2905761
crossref_primary_10_1109_LCOMM_2016_2518169
crossref_primary_10_1109_LCOMM_2021_3124608
crossref_primary_10_1109_TIT_2020_3025272
crossref_primary_10_1155_2018_7171352
crossref_primary_10_1007_s11042_016_3589_6
crossref_primary_10_1109_TVT_2020_3044190
crossref_primary_10_1109_TVT_2022_3206492
crossref_primary_10_1109_TAC_2023_3299550
crossref_primary_10_1109_OJVT_2025_3574934
crossref_primary_10_1109_TSP_2017_2708040
crossref_primary_10_1109_TWC_2023_3293315
crossref_primary_10_3390_app12136650
crossref_primary_10_1049_tje2_12120
crossref_primary_10_1109_TAP_2020_3028212
crossref_primary_10_1109_TWC_2025_3549499
crossref_primary_10_1016_j_vehcom_2021_100421
crossref_primary_10_1007_s11760_016_0922_5
crossref_primary_10_1109_TWC_2022_3152426
crossref_primary_10_1109_JPROC_2022_3170358
crossref_primary_10_1109_TIP_2016_2619260
crossref_primary_10_1109_TVT_2023_3240117
crossref_primary_10_1109_TCOMM_2025_3529207
crossref_primary_10_1109_TCI_2017_2777484
crossref_primary_10_1109_TSP_2018_2839622
crossref_primary_10_1109_JOE_2022_3162025
crossref_primary_10_1109_JOE_2022_3225006
crossref_primary_10_1109_ACCESS_2019_2928092
crossref_primary_10_1109_TWC_2014_2365813
crossref_primary_10_1109_LSP_2018_2876806
crossref_primary_10_1109_TCOMM_2021_3058999
crossref_primary_10_1109_TWC_2016_2536662
crossref_primary_10_1109_TWC_2019_2917905
crossref_primary_10_1109_TVT_2018_2857480
crossref_primary_10_1109_TCOMM_2020_3029568
crossref_primary_10_1186_s13638_017_0967_3
crossref_primary_10_1109_TCOMM_2024_3439448
crossref_primary_10_1109_JIOT_2023_3301018
crossref_primary_10_1088_1742_5468_2016_07_073401
crossref_primary_10_1016_j_physa_2019_122982
crossref_primary_10_1016_j_neunet_2023_03_005
crossref_primary_10_1109_TSP_2016_2539138
crossref_primary_10_1109_TVT_2021_3072227
crossref_primary_10_1109_LCOMM_2024_3387936
crossref_primary_10_1109_TCI_2015_2465161
crossref_primary_10_1109_JSYST_2023_3236954
crossref_primary_10_1109_TSP_2022_3167516
crossref_primary_10_1109_TVT_2022_3144734
crossref_primary_10_1109_TVT_2024_3357868
crossref_primary_10_1109_TSP_2016_2614489
crossref_primary_10_1109_JSTSP_2016_2539123
crossref_primary_10_1109_TIT_2016_2619365
crossref_primary_10_1016_j_cja_2018_04_015
crossref_primary_10_1109_TCOMM_2022_3198433
crossref_primary_10_1109_JSAC_2020_3019722
crossref_primary_10_1109_TVT_2024_3471653
crossref_primary_10_1109_LCOMM_2016_2598810
crossref_primary_10_1109_JSTSP_2024_3414137
crossref_primary_10_1109_JSYST_2015_2448661
crossref_primary_10_1109_JSYST_2023_3235879
crossref_primary_10_1109_LCOMM_2025_3575916
crossref_primary_10_1016_j_dsp_2023_104016
crossref_primary_10_1109_TAES_2020_2987050
crossref_primary_10_1111_rssb_12490
crossref_primary_10_1109_TVT_2019_2904405
crossref_primary_10_1109_JIOT_2016_2583465
crossref_primary_10_1109_LSP_2018_2873914
crossref_primary_10_1137_19M1310013
crossref_primary_10_1109_TIT_2014_2345260
crossref_primary_10_1109_JIOT_2020_2997336
crossref_primary_10_1109_TSP_2019_2924585
crossref_primary_10_1109_TVT_2023_3271214
crossref_primary_10_1109_TWC_2021_3056193
crossref_primary_10_1109_TSP_2017_2713759
crossref_primary_10_1016_j_actaastro_2020_07_041
crossref_primary_10_1088_1751_8121_aba028
crossref_primary_10_1186_s13059_025_03748_7
crossref_primary_10_1109_TVT_2025_3556519
crossref_primary_10_1109_TSP_2017_2781644
crossref_primary_10_1155_2023_5507814
crossref_primary_10_1109_JSEN_2020_3025453
crossref_primary_10_1109_TCOMM_2021_3126619
crossref_primary_10_1109_TCOMM_2023_3265115
crossref_primary_10_1109_ACCESS_2017_2697978
crossref_primary_10_1109_TSP_2023_3269151
crossref_primary_10_1109_TWC_2024_3510935
crossref_primary_10_1109_TWC_2022_3164970
crossref_primary_10_1109_TCCN_2023_3239739
crossref_primary_10_1109_TSP_2013_2295063
crossref_primary_10_3390_atmos9040126
crossref_primary_10_1007_s11277_019_06339_5
crossref_primary_10_1109_TWC_2021_3098241
crossref_primary_10_1109_TSP_2022_3165308
crossref_primary_10_1109_TSP_2025_3565018
crossref_primary_10_1109_JSAC_2020_3036947
crossref_primary_10_1109_TSP_2020_2967175
crossref_primary_10_1109_TWC_2017_2751046
crossref_primary_10_1109_LSP_2021_3065600
crossref_primary_10_1038_s41598_021_03323_7
crossref_primary_10_1109_TAP_2019_2952005
crossref_primary_10_1109_TCOMM_2024_3475270
crossref_primary_10_1109_TVT_2024_3375027
crossref_primary_10_1109_TSP_2015_2393845
crossref_primary_10_1109_TWC_2024_3506555
crossref_primary_10_1049_el_2019_3316
crossref_primary_10_1109_TCOMM_2020_3026377
crossref_primary_10_1109_TSP_2014_2375133
crossref_primary_10_1109_TWC_2023_3328437
crossref_primary_10_1007_s00034_023_02407_1
crossref_primary_10_1016_j_apacoust_2023_109703
crossref_primary_10_1016_j_iot_2023_100742
crossref_primary_10_1109_JSTSP_2024_3431919
Cites_doi 10.1109/TSP.2007.914345
10.1109/ITWKSPS.2010.5503193
10.1137/080716542
10.1162/15324430152748236
10.1109/TSP.2008.2007606
10.1109/ISIT.2011.6033942
10.1017/CBO9780511761362
10.1109/TIT.2009.2016006
10.1109/TIT.2010.2094817
10.1111/j.2517-6161.1977.tb01600.x
10.1111/j.2517-6161.1996.tb02080.x
10.1109/ACSSC.1993.342465
10.1090/mmono/188
10.1214/aos/1176346060
10.1137/S1064827596304010
10.1017/CBO9780511794308
10.1109/ACSSC.2011.6190117
10.1109/JSTSP.2011.2159773
10.1109/SSP.2012.6319694
10.1109/TIT.2012.2205894
10.1137/080714488
10.1109/MSP.2004.1311138
10.1109/TSP.2004.831016
10.1098/rsta.2009.0152
10.1109/ISIT.2012.6283554
10.1109/LSP.2012.2209640
10.1109/CISS.2012.6310932
10.1073/pnas.1219540110
10.1073/pnas.0909892106
10.1109/TIT.2011.2165823
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2013.2272287
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 4672
ExternalDocumentID 3169623101
27783901
10_1109_TSP_2013_2272287
6556987
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
H~9
ICLAB
IFJZH
VH1
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c453t-9d87f5fc1455f3089bb96b49dc2dc6d88253e623870993f5200e98b0663321a53
IEDL.DBID RIE
ISICitedReferencesCount 393
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324342900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sun Sep 28 00:40:14 EDT 2025
Sun Sep 28 06:26:53 EDT 2025
Mon Jun 30 10:09:19 EDT 2025
Mon Jul 21 09:15:24 EDT 2025
Sat Nov 29 04:10:29 EST 2025
Tue Nov 18 22:22:54 EST 2025
Tue Aug 26 16:46:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Performance evaluation
State of the art
belief propagation
Mixture theory
Implementation
Gaussian mixture model
Mean square error
Credal approach
Gaussian process
Message passing
Minimax method
A priori estimation
Signal processing
expectation maximization algorithms
Bayes methods
EM algorithm
Compressed sensing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-9d87f5fc1455f3089bb96b49dc2dc6d88253e623870993f5200e98b0663321a53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1471972039
PQPubID 23500
PageCount 15
ParticipantIDs pascalfrancis_primary_27783901
proquest_miscellaneous_1439737333
ieee_primary_6556987
crossref_citationtrail_10_1109_TSP_2013_2272287
crossref_primary_10_1109_TSP_2013_2272287
proquest_miscellaneous_1671391309
proquest_journals_1471972039
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
(ref37) 0
ref2
zhang (ref34) 2011
dempster (ref15) 1977; 39
ref17
ref16
cevher (ref35) 2009
ref19
ref18
vila (ref1) 2011
neal (ref23) 1999
bishop (ref24) 2007
buldygin (ref28) 2000
ref26
ref25
ref22
ref21
ref27
kamilov (ref20) 2012
ref29
ref8
ref7
ref9
ref4
ref3
ref5
tibshirani (ref6) 1996; 58
References_xml – ident: ref19
  doi: 10.1109/TSP.2007.914345
– start-page: 355
  year: 1999
  ident: ref23
  publication-title: Learning in Graphical Models
– ident: ref12
  doi: 10.1109/ITWKSPS.2010.5503193
– ident: ref26
  doi: 10.1137/080716542
– ident: ref17
  doi: 10.1162/15324430152748236
– ident: ref33
  doi: 10.1109/TSP.2008.2007606
– year: 2011
  ident: ref1
  article-title: An empirical-Bayes approach to compressive sensing via approximate message passing
  publication-title: Duke Workshop Sens Analy High-Dimensional Data
– ident: ref14
  doi: 10.1109/ISIT.2011.6033942
– ident: ref16
  doi: 10.1017/CBO9780511761362
– ident: ref30
  doi: 10.1109/TIT.2009.2016006
– ident: ref13
  doi: 10.1109/TIT.2010.2094817
– year: 2011
  ident: ref34
  publication-title: ?Master the usage of T-MSBL in 3 minutes ?
– volume: 39
  start-page: 1
  year: 1977
  ident: ref15
  article-title: Maximum-likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Statist Soc
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 58
  start-page: 267
  year: 1996
  ident: ref6
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Statist Soc B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref29
  doi: 10.1109/ACSSC.1993.342465
– year: 2000
  ident: ref28
  publication-title: Metric Characterization of Random Variables and Random Processes
  doi: 10.1090/mmono/188
– ident: ref22
  doi: 10.1214/aos/1176346060
– ident: ref7
  doi: 10.1137/S1064827596304010
– ident: ref4
  doi: 10.1017/CBO9780511794308
– ident: ref2
  doi: 10.1109/ACSSC.2011.6190117
– ident: ref31
  doi: 10.1109/JSTSP.2011.2159773
– ident: ref36
  doi: 10.1109/SSP.2012.6319694
– ident: ref11
  doi: 10.1109/TIT.2012.2205894
– year: 2007
  ident: ref24
  publication-title: Pattern Recognition and Machine Learning
– ident: ref32
  doi: 10.1137/080714488
– start-page: 2447
  year: 2012
  ident: ref20
  article-title: Approximate message passing with consistent parameter estimation and applications to sparse learning
  publication-title: Proc Neural Inf Process Syst Conf (NIPS)
– ident: ref25
  doi: 10.1109/MSP.2004.1311138
– ident: ref18
  doi: 10.1109/TSP.2004.831016
– ident: ref8
  doi: 10.1098/rsta.2009.0152
– ident: ref5
  doi: 10.1109/ISIT.2012.6283554
– ident: ref21
  doi: 10.1109/LSP.2012.2209640
– start-page: 261
  year: 2009
  ident: ref35
  article-title: Learning with compressible priors
  publication-title: Proc Neural Inf Process Syst Conf
– ident: ref3
  doi: 10.1109/CISS.2012.6310932
– ident: ref27
  doi: 10.1073/pnas.1219540110
– year: 0
  ident: ref37
  publication-title: Compressive Sensing Resources References and Software
– ident: ref10
  doi: 10.1073/pnas.0909892106
– ident: ref9
  doi: 10.1109/TIT.2011.2165823
SSID ssj0014496
Score 2.6070044
Snippet When recovering a sparse signal from noisy compressive linear measurements, the distribution of the signal's non-zero coefficients can have a profound effect...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4658
SubjectTerms Algorithms
Applied sciences
Approximation
Approximation algorithms
belief propagation
Complexity theory
Compressed sensing
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
expectation maximization algorithms
Gaussian mixture model
Information, signal and communications theory
Mathematical models
Maximization
Message passing
Noise
Noise measurement
Reconstruction
Recovery
Run time (computers)
Sampling, quantization
Sensors
Signal and communications theory
Signal, noise
Telecommunications and information theory
Vectors
Title Expectation-Maximization Gaussian-Mixture Approximate Message Passing
URI https://ieeexplore.ieee.org/document/6556987
https://www.proquest.com/docview/1471972039
https://www.proquest.com/docview/1439737333
https://www.proquest.com/docview/1671391309
Volume 61
WOSCitedRecordID wos000324342900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB6ckEN6aPNoqVrHKJBLIRsru9Ku9hhKkh5qY4gDvonVPoohsUtkl_z8zkiycGgJ5CbYkVjN7OPbnZlvAM4S44JzxrPESMnS4GkdLEsmQ-JKbaUzrmbX_6nG43w205MenHe5MN77OvjMX9Bj7ct3S7umq7KhzDKJZ-Qd2FFKNblanccgTetaXAgXBMtyNdu4JBM9nN5NKIZLXHCuOKfgua0tqK6pQhGRpkKlhKaaxT8Lc73b3Hx4Wz8P4H2LKuOrZhgcQs8vjuDdFtfgMVwTqbFtHO9sZJ7nj20GZnxr1hWlUrLR_Jn8CfEV8YyjAMLQeEQlUn75eIIgG7_zEe5vrqfff7C2hgKzaSZWTLtchSxY4iMPIsl1WWpZptpZ7tASiK8z4REC4bRFpBKIhMnrvCQgIvilycQn2F0sF_4zxJm2iSHHpEZMoEphjDKec3_pZbA4ICMYbtRa2JZgnOpcPBT1QSPRBRqiIEMUrSEi-Na98bsh13hF9pgU3cm1Oo5g8MJyXTtXKqf7nAj6G1MW7fSs8LyjqNxaInQEp10zTizylpiFX65JBqGaUEKIV2QknvE1wgD95f_d-wr79BNN9F8fdldPa38Ce_bPal49DeoR_BfqA-8U
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6drD2Yd3WlXprOw_2MpgaR7Ik67GMfowlIbAM8mZkfYzAlpQmKf3zd2c7pmOjsDeDzka-08dPurvfAXzIrI_e28AyqxTLY6B1sKqYipmvjFPe-ppdf6BHo2I6NeMt-NTlwoQQ6uCzcEaPtS_fL9yarsp6SkqFZ-QnsCPznPebbK3OZ5DndTUuBAyCyUJPN07JzPQm38YUxSXOONecU_jcg02orqpCMZF2iWqJTT2Lv5bmer-53P-_nr6A5y2uTM-bgfAStsL8Few9YBs8gAuiNXaN650N7f3sV5uDmV7Z9ZKSKdlwdk8ehfScmMZRAIFoOqQiKT9COkaYjd95Dd8vLyafr1lbRYG5XIoVM77QUUZHjORRZIWpKqOq3HjHPdoCEbYUAUEQTlzEKpFomIIpKoIigvetFIewPV_MwxGk0rjMkmvSICrQlbBW28B56AcVHQ7JBHobtZaupRinShc_y_qokZkSDVGSIcrWEAl87N64aeg1HpE9IEV3cq2OEzj9w3JdO9e6oBudBI43pizbCbrEE4-mgmuZMAm875pxapG_xM7DYk0yCNaEFkI8IqPwlG8QCJg3_-7eO3h2PRkOysGX0de3sEs_1MQCHsP26nYdTuCpu1vNlren9Wj-DX1i8ls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation-Maximization+Gaussian-Mixture+Approximate+Message+Passing&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Vila%2C+Jeremy+P&rft.au=Schniter%2C+Philip&rft.date=2013-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=61&rft.issue=19&rft.spage=4658&rft_id=info:doi/10.1109%2FTSP.2013.2272287&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3169623101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon