Microhomology-mediated circular DNA formation from oligonucleosomal fragments during spermatogenesis

The landscape of extrachromosomal circular DNA (eccDNA) during mammalian spermatogenesis, as well as the biogenesis mechanism, remains to be explored. Here, we revealed widespread eccDNA formation in human sperms and mouse spermatogenesis. We noted that germline eccDNAs are derived from oligonucleos...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:eLife Ročník 12
Hlavní autoři: Hu, Jun, Zhang, Zhe, Xiao, Sai, Cao, Yalei, Chen, Yinghong, Weng, Jiaming, Jiang, Hui, Li, Wei, Chen, Jia-Yu, Liu, Chao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge eLife Sciences Publications Ltd 17.10.2023
eLife Sciences Publications, Ltd
Témata:
ISSN:2050-084X, 2050-084X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The landscape of extrachromosomal circular DNA (eccDNA) during mammalian spermatogenesis, as well as the biogenesis mechanism, remains to be explored. Here, we revealed widespread eccDNA formation in human sperms and mouse spermatogenesis. We noted that germline eccDNAs are derived from oligonucleosomal DNA fragmentation in cells likely undergoing cell death, providing a potential new way for quality assessment of human sperms. Interestingly, small-sized eccDNAs are associated with euchromatin, while large-sized ones are preferentially generated from heterochromatin. By comparing sperm eccDNAs with meiotic recombination hotspots and structural variations, we found that they are barely associated with de novo germline deletions. We further developed a bioinformatics pipeline to achieve nucleotide-resolution eccDNA detection even with the presence of microhomologous sequences that interfere with precise breakpoint identification. Empowered by our method, we provided strong evidence to show that microhomology-mediated end joining is the major eccDNA biogenesis mechanism. Together, our results shed light on eccDNA biogenesis mechanism in mammalian germline cells.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ISSN:2050-084X
2050-084X
DOI:10.7554/eLife.87115