GCN-Based LSTM Autoencoder with Self-Attention for Bearing Fault Diagnosis

The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturi...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 24; no. 15; p. 4855
Main Authors: Lee, Daehee, Choo, Hyunseung, Jeong, Jongpil
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01.08.2024
Subjects:
ISSN:1424-8220, 1424-8220
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements and play essential roles in mechanical equipment with shafts. Given their importance, bearing failure diagnosis has been extensively studied. However, the imbalance in failure data and the complexity of time series data make diagnosis challenging. Conventional AI models (convolutional neural networks (CNNs), long short-term memory (LSTM), support vector machine (SVM), and extreme gradient boosting (XGBoost)) face limitations in diagnosing such failures. To address this problem, this paper proposes a bearing failure diagnosis model using a graph convolution network (GCN)-based LSTM autoencoder with self-attention. The model was trained on data extracted from the Case Western Reserve University (CWRU) dataset and a fault simulator testbed. The proposed model achieved 97.3% accuracy on the CWRU dataset and 99.9% accuracy on the fault simulator dataset.
AbstractList The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements and play essential roles in mechanical equipment with shafts. Given their importance, bearing failure diagnosis has been extensively studied. However, the imbalance in failure data and the complexity of time series data make diagnosis challenging. Conventional AI models (convolutional neural networks (CNNs), long short-term memory (LSTM), support vector machine (SVM), and extreme gradient boosting (XGBoost)) face limitations in diagnosing such failures. To address this problem, this paper proposes a bearing failure diagnosis model using a graph convolution network (GCN)-based LSTM autoencoder with self-attention. The model was trained on data extracted from the Case Western Reserve University (CWRU) dataset and a fault simulator testbed. The proposed model achieved 97.3% accuracy on the CWRU dataset and 99.9% accuracy on the fault simulator dataset.
The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements and play essential roles in mechanical equipment with shafts. Given their importance, bearing failure diagnosis has been extensively studied. However, the imbalance in failure data and the complexity of time series data make diagnosis challenging. Conventional AI models (convolutional neural networks (CNNs), long short-term memory (LSTM), support vector machine (SVM), and extreme gradient boosting (XGBoost)) face limitations in diagnosing such failures. To address this problem, this paper proposes a bearing failure diagnosis model using a graph convolution network (GCN)-based LSTM autoencoder with self-attention. The model was trained on data extracted from the Case Western Reserve University (CWRU) dataset and a fault simulator testbed. The proposed model achieved 97.3% accuracy on the CWRU dataset and 99.9% accuracy on the fault simulator dataset.The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements and play essential roles in mechanical equipment with shafts. Given their importance, bearing failure diagnosis has been extensively studied. However, the imbalance in failure data and the complexity of time series data make diagnosis challenging. Conventional AI models (convolutional neural networks (CNNs), long short-term memory (LSTM), support vector machine (SVM), and extreme gradient boosting (XGBoost)) face limitations in diagnosing such failures. To address this problem, this paper proposes a bearing failure diagnosis model using a graph convolution network (GCN)-based LSTM autoencoder with self-attention. The model was trained on data extracted from the Case Western Reserve University (CWRU) dataset and a fault simulator testbed. The proposed model achieved 97.3% accuracy on the CWRU dataset and 99.9% accuracy on the fault simulator dataset.
Audience Academic
Author Choo, Hyunseung
Jeong, Jongpil
Lee, Daehee
Author_xml – sequence: 1
  givenname: Daehee
  orcidid: 0009-0001-2280-972X
  surname: Lee
  fullname: Lee, Daehee
– sequence: 2
  givenname: Hyunseung
  orcidid: 0000-0002-6485-3155
  surname: Choo
  fullname: Choo, Hyunseung
– sequence: 3
  givenname: Jongpil
  orcidid: 0000-0002-4061-9532
  surname: Jeong
  fullname: Jeong, Jongpil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39123903$$D View this record in MEDLINE/PubMed
BookMark eNptkctuEzEUhi3UiraBBS-ARmIDi2l97XiWaaClVYBFy9ry2MfB0cRubY8Qb49DSlRVlRfHOvrO7f9P0EGIARB6R_ApYz0-y5QTwaUQr9Ax4ZS3klJ88OR_hE5yXmNMGWPyNTpiPaG1kB2jm6vF9_ZCZ7DN8vbuWzOfSoRgooXU_PblV3MLo2vnpUAoPobGxdRcgE4-rJpLPY2l-ez1KsTs8xt06PSY4e1jnKGfl1_uFl_b5Y-r68V82RouWKn7aCHBWkqsEa7HpJODHsTgwGrTOcBk4IIzPPDOOscYcGyEdp1lEgTmhM3Q9a6vjXqt7pPf6PRHRe3Vv0RMK6VT8WYERa2xhltOJcHc4KGvc7VjErsqiqhqzNDHXa_7FB8myEVtfDYwjjpAnLJiuColOTnHFf3wDF3HKYV66ZbCvej77rxSpztqpet8H1wsSZv6LGy8qbY5X_NzibkgHWO8Frx_bDsNG7D7e_5bVIFPO8CkmHMCt0cIVlv71d7-yp49Y40vemtc3cKPL1T8BQSOrYI
CitedBy_id crossref_primary_10_1038_s41598_025_96137_w
crossref_primary_10_21595_jme_2025_24805
crossref_primary_10_1007_s40747_025_02069_3
crossref_primary_10_1016_j_ast_2024_109756
crossref_primary_10_3390_app15147908
crossref_primary_10_3390_machines13040258
crossref_primary_10_3389_fnins_2025_1597777
crossref_primary_10_3390_s25133894
crossref_primary_10_1088_1361_6501_add7fb
crossref_primary_10_1186_s12967_025_06795_7
crossref_primary_10_3390_machines13040287
crossref_primary_10_1088_2631_8695_add6f1
Cites_doi 10.1016/j.heliyon.2023.e17584
10.1016/j.engappai.2023.106037
10.1016/j.compeleceng.2023.108760
10.3390/app112110307
10.1016/j.neunet.2023.11.047
10.3390/electronics12183971
10.1109/5254.708428
10.1007/s12206-018-0504-2
10.1109/ICAML51583.2020.00036
10.1007/s11071-024-09389-y
10.3390/s22010123
10.1016/j.ymssp.2020.107050
10.1016/j.jsv.2020.115641
10.1109/JIOT.2017.2737479
10.1016/j.engfailanal.2023.107518
10.5220/0009410001120118
10.1109/ACCESS.2020.2990528
10.1007/978-3-030-22741-8_5
10.1016/j.ijmecsci.2022.107536
10.3390/sym13071186
10.1016/j.conengprac.2020.104522
10.1109/TIM.2016.2570398
10.1007/s00500-023-08467-4
10.1145/3394486.3406704
10.1109/BigData50022.2020.9378015
10.1145/2939672.2939785
10.1016/j.nucengdes.2023.112161
10.1109/BCD57833.2023.10466341
10.20944/preprints202308.2013.v1
10.1007/s40436-023-00464-y
10.1016/j.sbspro.2015.10.090
10.3390/s23073770
10.1016/j.epsr.2008.06.004
10.1109/ECICE47484.2019.8942727
10.18653/v1/D15-1166
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOA
DOI 10.3390/s24154855
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
DOAJ : Directory of Open Access Journals [open access]
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_2dcdc4d428104c0b9eddaf380f220523
A804517334
39123903
10_3390_s24154855
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ALIPV
ARAPS
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c453t-82a58edd21dc5f90178bab5bfedac7fe01b45430b47dff33e40c5af7d38e50413
IEDL.DBID 7X7
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001287066700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Fri Oct 03 12:52:35 EDT 2025
Fri Sep 05 07:29:07 EDT 2025
Tue Oct 07 07:15:03 EDT 2025
Tue Nov 04 18:20:18 EST 2025
Wed Feb 19 02:06:57 EST 2025
Sat Nov 29 07:15:07 EST 2025
Tue Nov 18 22:11:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords fault simulator
self-attention
graph convolution network (GCN)
long short-term memory (LSTM) autoencoder
bearing fault diagnosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-82a58edd21dc5f90178bab5bfedac7fe01b45430b47dff33e40c5af7d38e50413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6485-3155
0000-0002-4061-9532
0009-0001-2280-972X
OpenAccessLink https://www.proquest.com/docview/3090959976?pq-origsite=%requestingapplication%
PMID 39123903
PQID 3090959976
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_2dcdc4d428104c0b9eddaf380f220523
proquest_miscellaneous_3091284160
proquest_journals_3090959976
gale_infotracacademiconefile_A804517334
pubmed_primary_39123903
crossref_primary_10_3390_s24154855
crossref_citationtrail_10_3390_s24154855
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Arslankaya (ref_9) 2015; 207
Lee (ref_19) 2023; 20
Zhang (ref_10) 2021; 35
Xu (ref_25) 2022; 230
Wan (ref_32) 2023; 122
ref_31
Wang (ref_33) 2022; 72
Li (ref_37) 2024; 12
ref_30
Neupane (ref_11) 2020; 8
ref_16
ref_38
Mian (ref_3) 2023; 109
ref_15
Lu (ref_13) 2017; 5
Wang (ref_12) 2020; 102
Jiang (ref_40) 2023; 27
Wang (ref_17) 2021; 24
Xu (ref_26) 2021; 146
Dong (ref_39) 2023; 404
Jin (ref_2) 2016; 65
Das (ref_14) 2023; 9
Dong (ref_36) 2024; 112
ref_24
ref_45
ref_22
ref_44
ref_21
Yu (ref_35) 2024; 170
ref_43
ref_42
ref_41
ref_1
ref_29
ref_28
Lee (ref_18) 2018; 32
ref_8
Hearst (ref_7) 1998; 13
ref_5
Zhang (ref_23) 2020; 488
ref_4
Samsi (ref_20) 2009; 79
Goyal (ref_34) 2023; 11
ref_6
Xu (ref_27) 2023; 152
References_xml – volume: 35
  start-page: 2118
  year: 2021
  ident: ref_10
  article-title: Unsupervised deep anomaly detection for multi-sensor time-series signals
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 9
  start-page: e17584
  year: 2023
  ident: ref_14
  article-title: Machine learning for fault analysis in rotating machinery: A comprehensive review
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e17584
– volume: 20
  start-page: 1
  year: 2023
  ident: ref_19
  article-title: Anomaly Detection based on 1D-CNN-LSTM Auto-Encoder for Bearing Data
  publication-title: WSEAS Trans. Inf. Sci. Appl.
– volume: 122
  start-page: 106037
  year: 2023
  ident: ref_32
  article-title: Anomaly detection of train wheels utilizing short-time Fourier transform and unsupervised learning algorithms
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106037
– ident: ref_5
– volume: 109
  start-page: 108760
  year: 2023
  ident: ref_3
  article-title: Artificial intelligence of things based approach for anomaly detection in rotating machines
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2023.108760
– ident: ref_21
  doi: 10.3390/app112110307
– volume: 11
  start-page: 5
  year: 2023
  ident: ref_34
  article-title: Lightweight LAE for Anomaly Detection with Sound based Architecture in Smart Poultry Farm
  publication-title: IEEE Internet Things J.
– volume: 170
  start-page: 478
  year: 2024
  ident: ref_35
  article-title: A filter-augmented auto-encoder with learnable normalization for robust multivariate time series anomaly detection
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.11.047
– ident: ref_4
  doi: 10.3390/electronics12183971
– volume: 13
  start-page: 18
  year: 1998
  ident: ref_7
  article-title: Support vector machines
  publication-title: IEEE Intell. Syst. Their Appl.
  doi: 10.1109/5254.708428
– volume: 32
  start-page: 2473
  year: 2018
  ident: ref_18
  article-title: Anomaly detection of tripod shafts using modified Mahalanobis distance
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-018-0504-2
– ident: ref_43
  doi: 10.1109/ICAML51583.2020.00036
– volume: 24
  start-page: 3
  year: 2021
  ident: ref_17
  article-title: Gear diagnostics based on LSTM anomaly detection
  publication-title: Int. J. Comadem
– ident: ref_1
– volume: 112
  start-page: 6439
  year: 2024
  ident: ref_36
  article-title: An intelligent bearing fault diagnosis framework: One-dimensional improved self-attention-enhanced CNN and empirical wavelet transform
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-024-09389-y
– ident: ref_44
  doi: 10.3390/s22010123
– volume: 146
  start-page: 107050
  year: 2021
  ident: ref_26
  article-title: High-speed train wheel set bearing fault diagnosis and prognostics: A new prognostic model based on extendable useful life
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107050
– volume: 488
  start-page: 115641
  year: 2020
  ident: ref_23
  article-title: Mechanism and method for the full-scale quantitative diagnosis of ball bearings with an inner race fault
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115641
– ident: ref_6
– volume: 5
  start-page: 2315
  year: 2017
  ident: ref_13
  article-title: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2737479
– volume: 152
  start-page: 107518
  year: 2023
  ident: ref_27
  article-title: A review of bearing failure Modes, mechanisms and causes
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2023.107518
– ident: ref_30
  doi: 10.5220/0009410001120118
– volume: 8
  start-page: 93155
  year: 2020
  ident: ref_11
  article-title: Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990528
– ident: ref_29
– ident: ref_42
  doi: 10.1007/978-3-030-22741-8_5
– volume: 230
  start-page: 107536
  year: 2022
  ident: ref_25
  article-title: Vibration characteristics of bearing-rotor systems with inner ring dynamic misalignment
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107536
– ident: ref_28
  doi: 10.3390/sym13071186
– volume: 102
  start-page: 104522
  year: 2020
  ident: ref_12
  article-title: Anomaly detection in the fan system of a thermal power plant monitored by continuous and two-valued variables
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104522
– volume: 65
  start-page: 2046
  year: 2016
  ident: ref_2
  article-title: Anomaly detection and fault prognosis for bearings
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2570398
– volume: 27
  start-page: 10509
  year: 2023
  ident: ref_40
  article-title: ALAE: Self-attention reconstruction network for multivariate time series anomaly identification
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-08467-4
– ident: ref_15
  doi: 10.1145/3394486.3406704
– ident: ref_16
  doi: 10.1109/BigData50022.2020.9378015
– ident: ref_8
  doi: 10.1145/2939672.2939785
– volume: 404
  start-page: 112161
  year: 2023
  ident: ref_39
  article-title: Attention-based time series analysis for data-driven anomaly detection in nuclear power plants
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2023.112161
– ident: ref_41
– ident: ref_38
  doi: 10.1109/BCD57833.2023.10466341
– ident: ref_22
  doi: 10.20944/preprints202308.2013.v1
– volume: 12
  start-page: 6
  year: 2024
  ident: ref_37
  article-title: A data-driven approach to RUL prediction of tools
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-023-00464-y
– volume: 207
  start-page: 214
  year: 2015
  ident: ref_9
  article-title: Maintenance management and lean manufacturing practices in a firm which produces dairy products
  publication-title: Procedia-Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2015.10.090
– ident: ref_24
  doi: 10.3390/s23073770
– volume: 79
  start-page: 239
  year: 2009
  ident: ref_20
  article-title: Early detection of stator voltage imbalance in three-phase induction motors
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2008.06.004
– ident: ref_31
  doi: 10.1109/ECICE47484.2019.8942727
– volume: 72
  start-page: 1
  year: 2022
  ident: ref_33
  article-title: Multiscale wavelet graph autoencoder for multivariate time-series anomaly detection
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_45
  doi: 10.18653/v1/D15-1166
SSID ssj0023338
Score 2.5118828
Snippet The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 4855
SubjectTerms Accuracy
Acoustics
Analysis
Artificial intelligence
bearing fault diagnosis
Bearings
Computational linguistics
Datasets
Deep learning
Failure
Fault diagnosis
fault simulator
Fourier transforms
graph convolution network (GCN)
Language processing
long short-term memory (LSTM) autoencoder
Maintenance costs
Manufacturing
Natural language interfaces
Neural networks
Preventive maintenance
Productivity
Research methodology
self-attention
Sensors
Social networks
Time series
Vibration analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ : Directory of Open Access Journals [open access]
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5k8aAH8W3rKlEEvTSbyWPSOc6sjiLrIOwqewvpPGBhmJGZHn-_VZ2eZn2AF6-dakjq0V9VuvIF4LUVWQfhVW0Re2o14bK2OlCHo8nCJC99f-r925lZLpvLS_vl2lVf1BNW6IGL4k5EDDGoiFkyFg6BtzbF6LNseKYjoqLn-eTGHoqpodSSWHkVHiGJRf3JjnCKaFB-QZ-epP_PT_FvCWYPNIu7cGfIENmszOwe3Ejr-3D7Gm_gA_j04XRZzxF_Ijs7v_jMZvtuQ4SUMW0Zbayy87TK9azrSi8jw8SUzdGl8WW28PtVx96VDrur3UP4unh_cfqxHi5FqIPSsqsb4XWDOhCTGHRGNDdN61vd5hR9MDnxSau0krxVJuYsZVI8aJ9NlE3SHCHrERytN-v0BFhOWgdtMAilVVaJNiglFdZj0zj11ogK3h6U5cLAGE4XV6wcVg6kVzfqtYJXo-j3QpPxN6E5aXwUIGbr_gHa2w32dv-ydwVvyF6O4g8nE_xwjACXRExWbtYQY46RUlVwfDCpGwJz5yS3tPOJSVgFL8dhDCn6T-LXabPvZQi1J1NewePiCuOcJQ7houTT_7GWZ3BLYI5U-gmP4ajb7tNzuBl-dFe77Yveo38COFj3bA
  priority: 102
  providerName: Directory of Open Access Journals
Title GCN-Based LSTM Autoencoder with Self-Attention for Bearing Fault Diagnosis
URI https://www.ncbi.nlm.nih.gov/pubmed/39123903
https://www.proquest.com/docview/3090959976
https://www.proquest.com/docview/3091284160
https://doaj.org/article/2dcdc4d428104c0b9eddaf380f220523
Volume 24
WOSCitedRecordID wos001287066700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BLgc48H4ElsogJLhEm_pRJyfULi0PbauKXVD3FDl-oJWqdmlSjvx2ZpI0y0tcuORgTyI74_E8PP4G4EXGg7LcyDhD3RPLfiLiTFnKcNSBa2-EqW-9fz7Ws1m6WGTzNuBWtmmVuz2x3qjd2lKM_FAkGYWsUHu-vvgaU9UoOl1tS2hchX0qm03rXC8uHS6B_leDJiTQtT8sSVsRGMovOqiG6v9zQ_7NzKzVzeTW_w70NtxsDU02bFbGHbjiV3fhxk_wg_fgw9ujWTxCNebY8cnplA231ZpwLZ3fMIrPshO_DPGwqpqUSIb2LRuhZODLbGK2y4q9aRL1zsv78GkyPj16F7e1FWIrlajilBuVeud431kV0CjQaWEKVQTvjNXBJ_1CKimSQmoXghBeJlaZoJ1IvUpQ8z2AvdV65R8BC14pqzTKsshkJnlhpRQS3bqBG5hM8whe7f52blvgcap_sczRASHG5B1jInjekV40aBt_IxoRyzoCAsiuG9abL3krbzl31lnp0LlCf9MmRYZzNUGkSaCbxVxE8JIYnpMY42CsaW8j4JQIECsfpgS8o4WQERzs-Jy38l3ml0yO4FnXjZJJxy1m5dfbmoaUf3-QRPCwWUvdmAV24aTE439__Alc52hENQmHB7BXbbb-KVyz36rzctOrF3v9THuwPxrP5h97dUwBn9PvY2ybv5_Oz34ANMsLsw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQceD8MBRYEgotVZx-x94BQ0hJamkZIDSg3s94HqhQlJXZA_Cl-IzO2k_IStx642mvLY3_-ZmZ39huAp5oHZbmRsUbfE8tOImKtLFU4poGn3ghT73r_MExHo2wy0e824PtqLwyVVa44sSZqN7c0R74tEk1TVug9X518jqlrFK2urlpoNLA48N--YspWvtzfxe_7jPPB6_HOXtx2FYitVKKKM25U5p3jHWdV0NSevjCFKoJ3xqbBJ51CKimSQqYuBCG8TKwyIXUi8ypBzsf7noPzyOMpJXvp5DTBE5jvNepFQuhkuyTvSOIrv_i8ujXAnw7gt7C2dm-Dq__bi7kGV9pAmvUa5F-HDT-7AZd_kle8CW_f7IziPrppx4ZH40PWW1Zz0u10fsFo_pkd-WmIe1XVlHwyjN9ZHy3Bi9nALKcV220KEY_LW_D-TIy5DZuz-czfBRa8UlalyFVCSy15YaUUEtPWrusanfIIXqy-bm5bYXXq7zHNMcEiIORrIETwZD30pFET-dugPkFkPYAEwOsD88WnvOWTnDvrrHSYPGI-bZNCo60miCwJtHOaiwieE8Byoil8GGva3RZoEgl-5b2MhIVSIWQEWytc5S1_lfkpqCJ4vD6NzEPLSWbm58t6DAU3nW4SwZ0Gu-tnFngKjRL3_n3zR3Bxb3w4zIf7o4P7cIljwNgUV27BZrVY-gdwwX6pjsvFw_pHY_DxrAH8A9qCZKE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48H4YCiwIBBcrzj5i-4BQ0hAITaNIbVE5mfU-UKUoKYkD4q_x65ixHfMUtx64etcrj_fbeezOfgPwJOVeGa5lmKLtCWUnEmGqDGU4xp7HTgtd3np_N44nk-T4OJ1uwbfNXRhKq9zoxFJR24WhPfK2iFLaskLr2fZ1WsR0MHx5-imkClJ00ropp1FBZM99_YLh2-rFaIBz_ZTz4avD3TdhXWEgNFKJIky4VomzlnesUT6lUvW5zlXundUm9i7q5FJJEeUytt4L4WRklPaxFYlTEep_HPccbKNLLnkLtqej_en7JtwTGP1VXEZCpFF7RbaSqFh-sYBloYA_zcFvTm5p7IZX_uffdBUu1y4261Vr4hpsufl1uPQT8eINePt6dxL20YBbNj443Ge9dbEgRk_rlox2ptmBm_mwVxRVMihDz571URJ8mQ31elawQZWieLK6CUdnIswtaM0Xc3cHmHdKGRWjFhOpTCXPjZRCYkDbtV2dxjyA55uZzkxNuU6VP2YZhl4EiqwBRQCPm66nFc_I3zr1CS5NB6IGLx8slh-zWtNk3BprpMWwEiNtE-Upyqq9SCJPd6q5COAZgS0jBYYfY3R9DwNFIiqwrJcQ5VAshAxgZ4OxrNZsq-wHwAJ41DSjTqKDJj13i3XZh9yeTjcK4HaF4-abBTahUOLuvwd_CBcQt9l4NNm7Bxc5epJV1uUOtIrl2t2H8-ZzcbJaPqhXHYMPZ43g70LBbvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GCN-Based+LSTM+Autoencoder+with+Self-Attention+for+Bearing+Fault+Diagnosis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Lee%2C+Daehee&rft.au=Choo%2C+Hyunseung&rft.au=Jeong%2C+Jongpil&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=15&rft_id=info:doi/10.3390%2Fs24154855&rft.externalDocID=A804517334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon