GCN-Based LSTM Autoencoder with Self-Attention for Bearing Fault Diagnosis
The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturi...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 24; číslo 15; s. 4855 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
01.08.2024
|
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements and play essential roles in mechanical equipment with shafts. Given their importance, bearing failure diagnosis has been extensively studied. However, the imbalance in failure data and the complexity of time series data make diagnosis challenging. Conventional AI models (convolutional neural networks (CNNs), long short-term memory (LSTM), support vector machine (SVM), and extreme gradient boosting (XGBoost)) face limitations in diagnosing such failures. To address this problem, this paper proposes a bearing failure diagnosis model using a graph convolution network (GCN)-based LSTM autoencoder with self-attention. The model was trained on data extracted from the Case Western Reserve University (CWRU) dataset and a fault simulator testbed. The proposed model achieved 97.3% accuracy on the CWRU dataset and 99.9% accuracy on the fault simulator dataset. |
|---|---|
| AbstractList | The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements and play essential roles in mechanical equipment with shafts. Given their importance, bearing failure diagnosis has been extensively studied. However, the imbalance in failure data and the complexity of time series data make diagnosis challenging. Conventional AI models (convolutional neural networks (CNNs), long short-term memory (LSTM), support vector machine (SVM), and extreme gradient boosting (XGBoost)) face limitations in diagnosing such failures. To address this problem, this paper proposes a bearing failure diagnosis model using a graph convolution network (GCN)-based LSTM autoencoder with self-attention. The model was trained on data extracted from the Case Western Reserve University (CWRU) dataset and a fault simulator testbed. The proposed model achieved 97.3% accuracy on the CWRU dataset and 99.9% accuracy on the fault simulator dataset. The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements and play essential roles in mechanical equipment with shafts. Given their importance, bearing failure diagnosis has been extensively studied. However, the imbalance in failure data and the complexity of time series data make diagnosis challenging. Conventional AI models (convolutional neural networks (CNNs), long short-term memory (LSTM), support vector machine (SVM), and extreme gradient boosting (XGBoost)) face limitations in diagnosing such failures. To address this problem, this paper proposes a bearing failure diagnosis model using a graph convolution network (GCN)-based LSTM autoencoder with self-attention. The model was trained on data extracted from the Case Western Reserve University (CWRU) dataset and a fault simulator testbed. The proposed model achieved 97.3% accuracy on the CWRU dataset and 99.9% accuracy on the fault simulator dataset.The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency and reliability of manufacturing processes. Motor-related failures, especially bearing defects, are common and serious issues in manufacturing processes. Bearings provide accurate and smooth movements and play essential roles in mechanical equipment with shafts. Given their importance, bearing failure diagnosis has been extensively studied. However, the imbalance in failure data and the complexity of time series data make diagnosis challenging. Conventional AI models (convolutional neural networks (CNNs), long short-term memory (LSTM), support vector machine (SVM), and extreme gradient boosting (XGBoost)) face limitations in diagnosing such failures. To address this problem, this paper proposes a bearing failure diagnosis model using a graph convolution network (GCN)-based LSTM autoencoder with self-attention. The model was trained on data extracted from the Case Western Reserve University (CWRU) dataset and a fault simulator testbed. The proposed model achieved 97.3% accuracy on the CWRU dataset and 99.9% accuracy on the fault simulator dataset. |
| Audience | Academic |
| Author | Choo, Hyunseung Jeong, Jongpil Lee, Daehee |
| Author_xml | – sequence: 1 givenname: Daehee orcidid: 0009-0001-2280-972X surname: Lee fullname: Lee, Daehee – sequence: 2 givenname: Hyunseung orcidid: 0000-0002-6485-3155 surname: Choo fullname: Choo, Hyunseung – sequence: 3 givenname: Jongpil orcidid: 0000-0002-4061-9532 surname: Jeong fullname: Jeong, Jongpil |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39123903$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkctuEzEUhi3UiraBBS-ARmIDi2l97XiWaaClVYBFy9ry2MfB0cRubY8Qb49DSlRVlRfHOvrO7f9P0EGIARB6R_ApYz0-y5QTwaUQr9Ax4ZS3klJ88OR_hE5yXmNMGWPyNTpiPaG1kB2jm6vF9_ZCZ7DN8vbuWzOfSoRgooXU_PblV3MLo2vnpUAoPobGxdRcgE4-rJpLPY2l-ez1KsTs8xt06PSY4e1jnKGfl1_uFl_b5Y-r68V82RouWKn7aCHBWkqsEa7HpJODHsTgwGrTOcBk4IIzPPDOOscYcGyEdp1lEgTmhM3Q9a6vjXqt7pPf6PRHRe3Vv0RMK6VT8WYERa2xhltOJcHc4KGvc7VjErsqiqhqzNDHXa_7FB8myEVtfDYwjjpAnLJiuColOTnHFf3wDF3HKYV66ZbCvej77rxSpztqpet8H1wsSZv6LGy8qbY5X_NzibkgHWO8Frx_bDsNG7D7e_5bVIFPO8CkmHMCt0cIVlv71d7-yp49Y40vemtc3cKPL1T8BQSOrYI |
| CitedBy_id | crossref_primary_10_1038_s41598_025_96137_w crossref_primary_10_21595_jme_2025_24805 crossref_primary_10_1007_s40747_025_02069_3 crossref_primary_10_1016_j_ast_2024_109756 crossref_primary_10_3390_app15147908 crossref_primary_10_3390_machines13040258 crossref_primary_10_3389_fnins_2025_1597777 crossref_primary_10_3390_s25133894 crossref_primary_10_1088_1361_6501_add7fb crossref_primary_10_1186_s12967_025_06795_7 crossref_primary_10_3390_machines13040287 crossref_primary_10_1088_2631_8695_add6f1 |
| Cites_doi | 10.1016/j.heliyon.2023.e17584 10.1016/j.engappai.2023.106037 10.1016/j.compeleceng.2023.108760 10.3390/app112110307 10.1016/j.neunet.2023.11.047 10.3390/electronics12183971 10.1109/5254.708428 10.1007/s12206-018-0504-2 10.1109/ICAML51583.2020.00036 10.1007/s11071-024-09389-y 10.3390/s22010123 10.1016/j.ymssp.2020.107050 10.1016/j.jsv.2020.115641 10.1109/JIOT.2017.2737479 10.1016/j.engfailanal.2023.107518 10.5220/0009410001120118 10.1109/ACCESS.2020.2990528 10.1007/978-3-030-22741-8_5 10.1016/j.ijmecsci.2022.107536 10.3390/sym13071186 10.1016/j.conengprac.2020.104522 10.1109/TIM.2016.2570398 10.1007/s00500-023-08467-4 10.1145/3394486.3406704 10.1109/BigData50022.2020.9378015 10.1145/2939672.2939785 10.1016/j.nucengdes.2023.112161 10.1109/BCD57833.2023.10466341 10.20944/preprints202308.2013.v1 10.1007/s40436-023-00464-y 10.1016/j.sbspro.2015.10.090 10.3390/s23073770 10.1016/j.epsr.2008.06.004 10.1109/ECICE47484.2019.8942727 10.18653/v1/D15-1166 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 DOA |
| DOI | 10.3390/s24154855 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_2dcdc4d428104c0b9eddaf380f220523 A804517334 39123903 10_3390_s24154855 |
| Genre | Journal Article |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. ABJCF ALIPV ARAPS HCIFZ KB. M7S NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO |
| ID | FETCH-LOGICAL-c453t-82a58edd21dc5f90178bab5bfedac7fe01b45430b47dff33e40c5af7d38e50413 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001287066700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:52:35 EDT 2025 Fri Sep 05 07:29:07 EDT 2025 Tue Oct 07 07:15:03 EDT 2025 Tue Nov 04 18:20:18 EST 2025 Wed Feb 19 02:06:57 EST 2025 Sat Nov 29 07:15:07 EST 2025 Tue Nov 18 22:11:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | fault simulator self-attention graph convolution network (GCN) long short-term memory (LSTM) autoencoder bearing fault diagnosis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c453t-82a58edd21dc5f90178bab5bfedac7fe01b45430b47dff33e40c5af7d38e50413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6485-3155 0000-0002-4061-9532 0009-0001-2280-972X |
| OpenAccessLink | https://doaj.org/article/2dcdc4d428104c0b9eddaf380f220523 |
| PMID | 39123903 |
| PQID | 3090959976 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2dcdc4d428104c0b9eddaf380f220523 proquest_miscellaneous_3091284160 proquest_journals_3090959976 gale_infotracacademiconefile_A804517334 pubmed_primary_39123903 crossref_primary_10_3390_s24154855 crossref_citationtrail_10_3390_s24154855 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Arslankaya (ref_9) 2015; 207 Lee (ref_19) 2023; 20 Zhang (ref_10) 2021; 35 Xu (ref_25) 2022; 230 Wan (ref_32) 2023; 122 ref_31 Wang (ref_33) 2022; 72 Li (ref_37) 2024; 12 ref_30 Neupane (ref_11) 2020; 8 ref_16 ref_38 Mian (ref_3) 2023; 109 ref_15 Lu (ref_13) 2017; 5 Wang (ref_12) 2020; 102 Jiang (ref_40) 2023; 27 Wang (ref_17) 2021; 24 Xu (ref_26) 2021; 146 Dong (ref_39) 2023; 404 Jin (ref_2) 2016; 65 Das (ref_14) 2023; 9 Dong (ref_36) 2024; 112 ref_24 ref_45 ref_22 ref_44 ref_21 Yu (ref_35) 2024; 170 ref_43 ref_42 ref_41 ref_1 ref_29 ref_28 Lee (ref_18) 2018; 32 ref_8 Hearst (ref_7) 1998; 13 ref_5 Zhang (ref_23) 2020; 488 ref_4 Samsi (ref_20) 2009; 79 Goyal (ref_34) 2023; 11 ref_6 Xu (ref_27) 2023; 152 |
| References_xml | – volume: 35 start-page: 2118 year: 2021 ident: ref_10 article-title: Unsupervised deep anomaly detection for multi-sensor time-series signals publication-title: IEEE Trans. Knowl. Data Eng. – volume: 9 start-page: e17584 year: 2023 ident: ref_14 article-title: Machine learning for fault analysis in rotating machinery: A comprehensive review publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e17584 – volume: 20 start-page: 1 year: 2023 ident: ref_19 article-title: Anomaly Detection based on 1D-CNN-LSTM Auto-Encoder for Bearing Data publication-title: WSEAS Trans. Inf. Sci. Appl. – volume: 122 start-page: 106037 year: 2023 ident: ref_32 article-title: Anomaly detection of train wheels utilizing short-time Fourier transform and unsupervised learning algorithms publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106037 – ident: ref_5 – volume: 109 start-page: 108760 year: 2023 ident: ref_3 article-title: Artificial intelligence of things based approach for anomaly detection in rotating machines publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2023.108760 – ident: ref_21 doi: 10.3390/app112110307 – volume: 11 start-page: 5 year: 2023 ident: ref_34 article-title: Lightweight LAE for Anomaly Detection with Sound based Architecture in Smart Poultry Farm publication-title: IEEE Internet Things J. – volume: 170 start-page: 478 year: 2024 ident: ref_35 article-title: A filter-augmented auto-encoder with learnable normalization for robust multivariate time series anomaly detection publication-title: Neural Netw. doi: 10.1016/j.neunet.2023.11.047 – ident: ref_4 doi: 10.3390/electronics12183971 – volume: 13 start-page: 18 year: 1998 ident: ref_7 article-title: Support vector machines publication-title: IEEE Intell. Syst. Their Appl. doi: 10.1109/5254.708428 – volume: 32 start-page: 2473 year: 2018 ident: ref_18 article-title: Anomaly detection of tripod shafts using modified Mahalanobis distance publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-018-0504-2 – ident: ref_43 doi: 10.1109/ICAML51583.2020.00036 – volume: 24 start-page: 3 year: 2021 ident: ref_17 article-title: Gear diagnostics based on LSTM anomaly detection publication-title: Int. J. Comadem – ident: ref_1 – volume: 112 start-page: 6439 year: 2024 ident: ref_36 article-title: An intelligent bearing fault diagnosis framework: One-dimensional improved self-attention-enhanced CNN and empirical wavelet transform publication-title: Nonlinear Dyn. doi: 10.1007/s11071-024-09389-y – ident: ref_44 doi: 10.3390/s22010123 – volume: 146 start-page: 107050 year: 2021 ident: ref_26 article-title: High-speed train wheel set bearing fault diagnosis and prognostics: A new prognostic model based on extendable useful life publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107050 – volume: 488 start-page: 115641 year: 2020 ident: ref_23 article-title: Mechanism and method for the full-scale quantitative diagnosis of ball bearings with an inner race fault publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115641 – ident: ref_6 – volume: 5 start-page: 2315 year: 2017 ident: ref_13 article-title: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2017.2737479 – volume: 152 start-page: 107518 year: 2023 ident: ref_27 article-title: A review of bearing failure Modes, mechanisms and causes publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2023.107518 – ident: ref_30 doi: 10.5220/0009410001120118 – volume: 8 start-page: 93155 year: 2020 ident: ref_11 article-title: Bearing fault detection and diagnosis using case western reserve university dataset with deep learning approaches: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2990528 – ident: ref_29 – ident: ref_42 doi: 10.1007/978-3-030-22741-8_5 – volume: 230 start-page: 107536 year: 2022 ident: ref_25 article-title: Vibration characteristics of bearing-rotor systems with inner ring dynamic misalignment publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107536 – ident: ref_28 doi: 10.3390/sym13071186 – volume: 102 start-page: 104522 year: 2020 ident: ref_12 article-title: Anomaly detection in the fan system of a thermal power plant monitored by continuous and two-valued variables publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104522 – volume: 65 start-page: 2046 year: 2016 ident: ref_2 article-title: Anomaly detection and fault prognosis for bearings publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2570398 – volume: 27 start-page: 10509 year: 2023 ident: ref_40 article-title: ALAE: Self-attention reconstruction network for multivariate time series anomaly identification publication-title: Soft Comput. doi: 10.1007/s00500-023-08467-4 – ident: ref_15 doi: 10.1145/3394486.3406704 – ident: ref_16 doi: 10.1109/BigData50022.2020.9378015 – ident: ref_8 doi: 10.1145/2939672.2939785 – volume: 404 start-page: 112161 year: 2023 ident: ref_39 article-title: Attention-based time series analysis for data-driven anomaly detection in nuclear power plants publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2023.112161 – ident: ref_41 – ident: ref_38 doi: 10.1109/BCD57833.2023.10466341 – ident: ref_22 doi: 10.20944/preprints202308.2013.v1 – volume: 12 start-page: 6 year: 2024 ident: ref_37 article-title: A data-driven approach to RUL prediction of tools publication-title: Adv. Manuf. doi: 10.1007/s40436-023-00464-y – volume: 207 start-page: 214 year: 2015 ident: ref_9 article-title: Maintenance management and lean manufacturing practices in a firm which produces dairy products publication-title: Procedia-Soc. Behav. Sci. doi: 10.1016/j.sbspro.2015.10.090 – ident: ref_24 doi: 10.3390/s23073770 – volume: 79 start-page: 239 year: 2009 ident: ref_20 article-title: Early detection of stator voltage imbalance in three-phase induction motors publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2008.06.004 – ident: ref_31 doi: 10.1109/ECICE47484.2019.8942727 – volume: 72 start-page: 1 year: 2022 ident: ref_33 article-title: Multiscale wavelet graph autoencoder for multivariate time-series anomaly detection publication-title: IEEE Trans. Instrum. Meas. – ident: ref_45 doi: 10.18653/v1/D15-1166 |
| SSID | ssj0023338 |
| Score | 2.5119538 |
| Snippet | The manufacturing industry has been operating within a constantly evolving technological environment, underscoring the importance of maintaining the efficiency... |
| SourceID | doaj proquest gale pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source |
| StartPage | 4855 |
| SubjectTerms | Accuracy Acoustics Analysis Artificial intelligence bearing fault diagnosis Bearings Computational linguistics Datasets Deep learning Failure Fault diagnosis fault simulator Fourier transforms graph convolution network (GCN) Language processing long short-term memory (LSTM) autoencoder Maintenance costs Manufacturing Natural language interfaces Neural networks Preventive maintenance Productivity Research methodology self-attention Sensors Social networks Time series Vibration analysis Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BwgEOvB-BBRmEBJdondiJnRNqFwpCUCHtIvUW-YlWqpqlSfn9zCRplpe4cI0nkZ2Z8Tw8_gbgRfS28NaZFH0P17cwS01ps7RSMbgsKmot0DebUMulXq2qz2PCrR3LKvd7Yr9R-8ZRjvxI8IpSVmg9X59_S6lrFJ2uji00LsMVaptNcq5WFwGXwPhrQBMSGNoftWStCAzlFxvUQ_X_uSH_5mb25mZx838negtujI4mmw2ScRsuhc0duP4T_OBd-PDueJnO0Yx59vHk9BOb7bqGcC192DLKz7KTsI7prOuGkkiG_i2bo2bgy2xhduuOvRkK9c7ae_Bl8fb0-H069lZInSxEl-rcFDp4n2feFRGdAqWtsYWNwRuHfOKZlYUU3ErlYxQiSO4KE5UXOhQcLd99ONg0m_AQWNQ8oFZLXZUOg-1olEUS7aWSPJSmTODV_m_XbgQep_4X6xoDEGJMPTEmgecT6fmAtvE3ojmxbCIggOz-QbP9Wo_6VufeeSc9BlcYbzpuK1yriULzSDeLc5HAS2J4TWqMk3FmvI2ASyJArHqmCXhHCSETONzzuR71u60vmJzAs2kYNZOOW8wmNLuehox_VvIEHgyyNM1Z4BAuSjz698cfw7Ucnaih4PAQDrrtLjyBq-57d9Zun_bC_gPpsAcc priority: 102 providerName: ProQuest |
| Title | GCN-Based LSTM Autoencoder with Self-Attention for Bearing Fault Diagnosis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39123903 https://www.proquest.com/docview/3090959976 https://www.proquest.com/docview/3091284160 https://doaj.org/article/2dcdc4d428104c0b9eddaf380f220523 |
| Volume | 24 |
| WOSCitedRecordID | wos001287066700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCa2bof1MOw9b22gDQO2i1HZki35mLTJHliCYO2A7GToCRQIkiJxeuxvH2U5RvcAdtlFB4kGJFI0SYn6CPDOW11YbVSKvodpS5ilqtRZWgnvTOZFKC3QFpsQs5lcLKr5rVJfIScswgNHxp3k1ljDLXrJGDgYqitnrfJMUh-eiOYtzicV1T6Y6kIthpFXxBFiGNSfbIOdCjAov1ifFqT_z1_xbw5ma2gmj-Bh5yGSYZzZY7jjVk_g8BZu4FP48vF0lo7Q_ljy9fxiSoa7Zh0AKa3bkHCwSs7d0qfDpom5jAQdUzLCLY0fk4naLRtyFjPsLrfP4PtkfHH6Ke2KIqSGF6xJZa4KiTzIM2sKj9ZcSK10ob2zyiCDaaZ5wRnVXFjvGXOcmkJ5YZl0BUWT9RwOVuuVewnES-pQHbmsSoNRsldCI4m0XHDqSlUm8GHPrNp0iOGhcMWyxsgh8LXu-ZrA2570KsJk_I1oFDjeEwRk67YD5V138q7_Je8E3gd51UH_cDJGdc8IcEkByaoeyoCYIxjjCRztRVp3irmtGa3CySc6YQm86YdRpcI9iVq59a6lCVY7K2kCL-JW6OfMcAgXxV79j7W8hgc5-kgxn_AIDprNzh3DfXPdXG43A7grFqJt5QDujcaz-bdBu8uxnd6MsW_-eTr_8RNxa_97 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qBQk4sC-GAgMCwcXq2DPeDgglLaGlaYTUVMrNjGdBlaK4xA6IP8Vv5D0vKZu49cDVfrbm2Z_fMp75PoDnzhSRKbTysfbQjYSZr-Ii8LPEWR24hKQFGrGJZDJJZ7PswwZ87_fC0LLKPiY2gdqUmubItwXPaMoKs-eb088-qUbR39VeQqOFxYH99hVbtur1_i6-3xdhOHo73dnzO1UBX8tI1H4aqii1xoSB0ZHLSJ6-UEVUOGuUxhHyoJCRFLyQiXFOCCu5jpRLjEhtxDHm430vwEWM4wk1e8nsrMET2O-17EVCZHy7ouxI5Cu_5LxGGuDPBPBbWdukt9H1_-3B3IBrXSHNBi3yb8KGXdyCqz_RK96G9-92Jv4Q07Rh46PpIRus6pJ4O41dMpp_Zkd27vxBXbdLPhnW72yInuDFbKRW85rttgsRT6o7cHwuztyFzUW5sPeBuZRbjFoyzWIt48yppECT1MhEchur2INX_dvNdUesTvoe8xwbLAJCvgaCB8_Wpqctm8jfjIYEkbUBEYA3B8rlp7yLJ3lotNHSYPOI_bTmRYa-KidS7mjndCg8eEkAyylM4WC06nZboEtE-JUPUiIWSoSQHmz1uMq7-FXlZ6Dy4On6NEYe-p2kFrZcNTZU3AQx9-Bei931mAWeQqfEg3_f_Alc3psejvPx_uTgIVwJsWBsF1duwWa9XNlHcEl_qU-q5ePmQ2Pw8bwB_ANwomZk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VFCF44D4MBRYEghcra6_PB4SShkBoG0VqkcqTWe-BKkVxiR0Qf41fx4wvTvHWB17tsbXj_XaO9ew3AE-szkOdK-li7KHqFmaujHLPTWNrlGdjai1QN5uI5_Pk-DhdbMG37iwMlVV2NrE21LpQtEc-FDylLSv0nkPblkUsJtOXp59c6iBFf1q7dhoNRPbM1y-YvpUvZhOc66e-P311tPvGbTsMuCoIReUmvgwTo7XvaRXalFrV5zIPc2u0VDha7uVBGAieB7G2VggTcBVKG2uRmJCj_cf3noNtDMkDfwDbi9nB4n2f7gnM_houIyFSPizJVxIVyy8esG4U8Kc7-C3IrZ3d9Mr__JmuwuU2xGajZk1cgy2zug6XfiJevAFvX-_O3TE6cM32D48O2GhTFcToqc2a0c40OzRL646qqikGZRjZszFqgg-zqdwsKzZpShRPypvw7kyUuQWDVbEyd4DZhBu0Z0GSRiqIUivjHEUSjXDgJpKRA8-7mc5US7lOnT-WGaZeBIqsB4UDj3vR04Zn5G9CY4JLL0DU4PWFYv0xay1N5mulVaAxrcRMW_E8RV2lFQm3dKbaFw48I7BlZMBwMEq25zBQJaICy0YJUQ7FQgQO7HQYy1rLVmY_AObAo_422iT60SRXptjUMhT2eBF34HaD437MAm-hUuLuv1_-EC4gbrP92XzvHlz0MZJsqi53YFCtN-Y-nFefq5Ny_aBddQw-nDWCvwP42XCz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GCN-Based+LSTM+Autoencoder+with+Self-Attention+for+Bearing+Fault+Diagnosis&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Daehee+Lee&rft.au=Hyunseung+Choo&rft.au=Jongpil+Jeong&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=15&rft.spage=4855&rft_id=info:doi/10.3390%2Fs24154855&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2dcdc4d428104c0b9eddaf380f220523 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |