A review on LED technology in water photodisinfection

The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Science of the total environment Ročník 885; s. 163963
Hlavní autori: Martín-Sómer, Miguel, Pablos, Cristina, Adán, Cristina, van Grieken, Rafael, Marugán, Javier
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 10.08.2023
Predmet:
ISSN:0048-9697, 1879-1026, 1879-1026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future. [Display omitted] •265 nm wavelength have higher germicidal effect, but 280 nm represses cell repair.•280 nm LED have higher electricity-to-photon conversion compared to 265 nm LED.•UVA exposure before UVC affects biological processes in bacterial inactivation.•Pulsed UVC LED does not affect activity but improves temperature control.•Expected deployment of UVC LED in the upcoming future in water disinfection
AbstractList The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future.
The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future.
The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future. [Display omitted] •265 nm wavelength have higher germicidal effect, but 280 nm represses cell repair.•280 nm LED have higher electricity-to-photon conversion compared to 265 nm LED.•UVA exposure before UVC affects biological processes in bacterial inactivation.•Pulsed UVC LED does not affect activity but improves temperature control.•Expected deployment of UVC LED in the upcoming future in water disinfection
The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future.The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future.
ArticleNumber 163963
Author Martín-Sómer, Miguel
Marugán, Javier
Adán, Cristina
Pablos, Cristina
van Grieken, Rafael
Author_xml – sequence: 1
  givenname: Miguel
  surname: Martín-Sómer
  fullname: Martín-Sómer, Miguel
– sequence: 2
  givenname: Cristina
  surname: Pablos
  fullname: Pablos, Cristina
– sequence: 3
  givenname: Cristina
  surname: Adán
  fullname: Adán, Cristina
– sequence: 4
  givenname: Rafael
  surname: van Grieken
  fullname: van Grieken, Rafael
– sequence: 5
  givenname: Javier
  surname: Marugán
  fullname: Marugán, Javier
  email: javier.marugan@urjc.es
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37149196$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuGyEURVHkKrGT_EI7y27G4Q0eBhZdWImbRLLUTbtGM_CmwRqDC9hW_r6M7HTRjRESm3PfE_fMyMR5h4R8AToHCvxhM4_aJp_QHeYVrdgcOJOcXZEpiEaWQCs-IVNKF6KUXDY3ZBbjhubTCLgmN6yBhQTJp6ReFgEPFo-Fd8V69VQk1G_OD_73e2FdcWwThmL35pM3NlrXo07WuzvyqW-HiPfn95b8-r76-fhSrn88vz4u16Ve1CyVeVmFpqpZpyvDdW1QNkKKrmeiBejAMNOxmtaib0WvRW24oIZiJ0AbupA9uyVfT3N3wf_ZY0xqa6PGYWgd-n1UDOp8OW-ai2glgMoKOIzo5zO677Zo1C7YbRve1UcrGfh2AnTwMQbsVS67HT-eQmsHBVSNFtRG_bOgRgvqZCHnm__yHysuJ5enJOZWs5Ywcug0Ghty9cp4e3HGX-9KpdQ
CitedBy_id crossref_primary_10_1016_j_jclepro_2024_142887
crossref_primary_10_1016_j_jece_2024_114874
crossref_primary_10_1016_j_watres_2024_122322
crossref_primary_10_1016_j_jenvman_2025_125678
crossref_primary_10_3389_fvets_2025_1512387
crossref_primary_10_1016_j_dwt_2024_100285
crossref_primary_10_1016_j_jwpe_2023_104751
crossref_primary_10_3390_antibiotics14080807
crossref_primary_10_1371_journal_pwat_0000306
crossref_primary_10_1016_j_susmat_2024_e01002
crossref_primary_10_59277_RomRepPhys_2025_77_907
crossref_primary_10_1128_aem_00403_25
crossref_primary_10_1016_j_jhazmat_2024_136666
crossref_primary_10_1016_j_aqrep_2025_102688
crossref_primary_10_1016_j_cej_2024_152546
crossref_primary_10_1111_1750_3841_16874
crossref_primary_10_1016_j_cej_2024_153518
crossref_primary_10_1051_e3sconf_202456002010
crossref_primary_10_1016_j_jhazmat_2024_136925
crossref_primary_10_1007_s00203_025_04324_0
crossref_primary_10_1038_s41598_024_71605_x
crossref_primary_10_7759_cureus_73609
crossref_primary_10_1016_j_watres_2024_121189
crossref_primary_10_1016_j_apsusc_2024_160609
crossref_primary_10_1016_j_scitotenv_2024_170200
crossref_primary_10_1515_zkri_2025_0019
crossref_primary_10_3390_app14135635
crossref_primary_10_3389_fchem_2023_1271410
crossref_primary_10_1080_02786826_2025_2498995
crossref_primary_10_1039_D5PY00485C
crossref_primary_10_3390_w16142028
crossref_primary_10_1016_j_jcat_2024_115403
crossref_primary_10_1016_j_jlumin_2025_121313
crossref_primary_10_1002_adom_202402379
crossref_primary_10_1016_j_scitotenv_2024_170655
crossref_primary_10_1038_s41598_024_64748_4
crossref_primary_10_1016_j_marpolbul_2025_118183
crossref_primary_10_1016_j_jenvman_2025_125053
crossref_primary_10_3390_machines11080792
crossref_primary_10_3390_pharmacy13010009
Cites_doi 10.1016/j.eti.2020.101147
10.1016/j.jhazmat.2019.121968
10.1016/j.jallcom.2013.08.193
10.1109/JQE.1987.1073430
10.1016/j.eti.2021.101909
10.1016/j.jphotobiol.2020.111865
10.1016/j.scitotenv.2019.02.041
10.1016/j.jphotobiol.2020.112044
10.1016/j.watres.2018.10.014
10.2166/ws.2019.022
10.1016/j.watres.2017.11.047
10.1016/j.ces.2020.116204
10.1016/j.watres.2020.116297
10.1039/C6EW00241B
10.1016/j.watres.2019.114965
10.1016/S1011-1344(01)00180-4
10.1016/j.watres.2019.01.006
10.1016/j.apsusc.2021.149768
10.3390/electronics9040619
10.1016/j.watres.2018.06.017
10.1080/09593330.2016.1144798
10.1007/s11356-020-11125-z
10.1149/2.0392001JSS
10.1016/j.ces.2019.04.034
10.1016/j.seppur.2013.10.008
10.1016/j.desal.2011.10.006
10.1016/j.jwpe.2020.101819
10.1016/j.watres.2013.04.056
10.1364/OE.16.001808
10.1016/j.cej.2020.127058
10.1016/j.watres.2019.114875
10.1016/j.lwt.2020.109422
10.1016/j.chemphys.2021.111144
10.1061/(ASCE)EE.1943-7870.0001061
10.1016/j.cattod.2016.03.015
10.1117/1.JPE.9.043105
10.1021/acschembio.7b01097
10.1016/j.jhazmat.2012.02.021
10.1016/j.ultsonch.2016.10.028
10.1016/j.jphotobiol.2018.06.001
10.1016/j.seppur.2015.01.007
10.3390/microorganisms8071014
10.1364/AO.51.001654
10.1016/j.scitotenv.2018.12.344
10.1016/j.cattod.2018.11.015
10.1002/aws2.1148
10.1016/j.jphotobiol.2021.112129
10.1016/j.parint.2020.102108
10.1143/APEX.4.082101
10.1089/ees.2020.0092
10.1016/j.cej.2018.10.131
10.1016/j.apcatb.2019.04.004
10.1016/j.apcatb.2020.118853
10.1109/JLT.2008.923628
10.1016/j.jphotochem.2017.10.047
10.1016/j.watres.2017.09.030
10.1089/pho.2016.4179
10.1016/j.jphotochem.2019.03.030
10.1007/s11270-020-04742-4
10.1016/j.apcatb.2017.05.048
10.1016/j.foodres.2016.11.042
10.1016/j.apcatb.2017.09.032
10.1038/nphoton.2007.34
10.1016/j.lwt.2019.108458
10.1016/j.jphotochem.2017.09.042
10.1016/j.jwpe.2021.102089
10.1016/j.watres.2014.08.031
10.1016/j.watres.2010.12.005
10.1016/j.cej.2020.127119
10.1016/j.watres.2019.03.080
10.1016/j.chemosphere.2020.125957
10.1016/j.cej.2011.02.066
10.1016/j.scitotenv.2018.08.367
10.1039/C9EN01318K
10.1016/j.watres.2010.11.015
10.1016/j.cej.2018.03.020
10.1016/j.cej.2020.124183
10.1016/j.watres.2018.05.021
10.1364/OL.31.002193
10.1016/j.jphotochem.2018.08.045
10.1016/j.jphotochem.2015.12.002
10.1016/j.watres.2016.11.024
10.1016/j.watres.2019.115022
10.3390/catal10040450
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2023.163963
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 37149196
10_1016_j_scitotenv_2023_163963
S0048969723025846
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
WUQ
XPP
ZXP
ZY4
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-c453t-7812ed253bc2d6c5de97898bf38a11b1d3db35058fa8fc85d680d0eb81cd049f3
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001004230400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-9697
1879-1026
IngestDate Sun Sep 28 00:56:42 EDT 2025
Wed Oct 01 13:16:54 EDT 2025
Thu Apr 03 07:03:08 EDT 2025
Sat Nov 29 07:24:51 EST 2025
Tue Nov 18 22:03:30 EST 2025
Fri Feb 23 02:35:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Water treatment
EE,O
MP
LP
TRB
Disinfection
LED
WPE
ARB
Photoreactivation
HAdV2
Hg-FL
ARG
CPC
IAVs
ROS
FCV
TLS
UV LED
Photodisinfection
HAdV5
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-7812ed253bc2d6c5de97898bf38a11b1d3db35058fa8fc85d680d0eb81cd049f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.scitotenv.2023.163963
PMID 37149196
PQID 2810921617
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153156677
proquest_miscellaneous_2810921617
pubmed_primary_37149196
crossref_citationtrail_10_1016_j_scitotenv_2023_163963
crossref_primary_10_1016_j_scitotenv_2023_163963
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_163963
PublicationCentury 2000
PublicationDate 2023-08-10
PublicationDateYYYYMMDD 2023-08-10
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cai, Deng, Zhu, Ye, Li, Zhou, Li, Li (bb0035) 2021; 404
Saravanan, Kumar, Jeevanantham, Karishma, Kiruthika (bb0330) 2021; 24
Yan, Zhou, Lan, Li, Zheng, Cao, Zhu, Liu (bb0445) 2018; 367
Shen, Griffith, Nyangaresi, Qin, Pang, Chen, Li, Lu, Zhang (bb0335) 2020; 386
Thatcher, Adams (bb0390) 2021; 230
Martino, Ochsner, Peters, Zitomer, Mayer (bb0210) 2020; 38
Ohl (bb0280) 1946
Zou, Lin, Xu, Cao, Tang, Pan, Gao, Gao (bb0480) 2019; 650
Aparici-Espert, Garcia-Lainez, Andreu, Miranda, Lhiaubet-Vallet (bb0005) 2018; 13
Zhang, Wang, Zhu, Liu, Li (bb0465) 2021; 556
Kim, Kang (bb0145) 2020; 130
Sun, Lee, Ma, Lee, Huang (bb0380) 2006; 31
Gillespie, Maclean, Given, Wilson, Judd, Timoshkin, MacGregor (bb0090) 2017; 35
Ray, Dhakal, Regmi, Yamaguchui, Lee (bb0300) 2018; 350
Jarvis, Autin, Goslan, Hassard (bb0120) 2019; 11
Elgohary, Mohamed, Nazer, Baaloudj, Alyami, Jery, Assadi, Amrane (bb0065) 2021; 11
Lee, Jang, Kim, Joo (bb0180) 2021
Wang, Wang, Li, Zhang (bb0405) 2012; 51
M. Kojima K. Mawatari T. Emoto R. Nishisaka-Nonaka T. Kim N. Bui T. Shimohata T. Uebanso M. Akutagawa Y. Kinouchi T. Wada M. Okamoto H. Ito K. Tojo T. Daidoji T. Nakaya A. Takahashi Microorganisms irradiation by a combination of different peak-wavelength ultraviolet-light emitting diodes enhances the inactivation of influenza s viruses, (n.d.). doi:10.3390/microorganisms8071014.
Oguma, Rattanakul, Bolton (bb0270) 2016; 142
Chen, Loeb, Kim (bb0045) 2017; 3
Song, Mohseni, Taghipour (bb0375) 2019; 163
Nguyen, Suwan, Koottatep, Beck (bb0250) 2019; 153
Xiong, Lu, Tang, Huang, Ruan, Jiang, Chen, Liu, Kang, Liu (bb0440) 2020; 248
Simons, Gabbai, Moram (bb0355) 2014; 66
Baaloudj, Assadi, Nasrallah, El Jery, Khezami, Assadi (bb0010) 2021; 42
Rediker (bb0305) 1987; 23
Takahashi, Matsubayashi, Ohashi, Naohara, Urakami, Sasai, Kido, Kaneko, Teramoto (bb0385) 2020; 77
García-Gil, Casado, Pablos, Marugán (bb0080) 2019; 376
Keshavarzfathy, Taghipour (bb0125) 2019; 166
Hutchinson, Fuller, Mullins (bb0115) 1980
Bourget (bb0025) 2008; 43
Kheyrandish, Taghipour, Mohseni (bb0140) 2018; 352
Casado, García-Gil, van Grieken, Marugán (bb0040) 2019; 252
Levchuk, Rueda-Márquez, Suihkonen, Manzano, Sillanpää (bb0185) 2015; 143
Moreno-SanSegundo, Casado, Marugán (bb0240) 2020; 388
Yu Jeco, Larroder, Oguma (bb0455) 2019; 9
Zheludev (bb0470) 2007; 1
Lee, Jin, Hong (bb0175) 2018; 185
Liu, Pan, Lv, Sun (bb0200) 2014; 583
Grandusky, Gibb, Mendrick, Moe, Wraback, Schowalter (bb0095) 2011; 4
Pousty, Hofmann, Gerchman, Mamane (bb0290) 2021; 217
Round (bb0320) 1991
Sholtes, Lowe, Walters, Sobsey, Linden, Casanova (bb0345) 2016; 37
Sholtes, Linden (bb0340) 2019; 165
Martín-Sómer, Pablos, van Grieken, Marugán (bb0215) 2017; 215
Rattanakul, Oguma (bb0295) 2018; 130
Sommer, Haider, Cabaj, Pribil, Lhotsky (bb0360) 1998
Oppezzo, Pizarro (bb0285) 2001; 62
Xiao, Chu, He, Liu, Hu (bb0425) 2018; 141
Kim, Kim, Kang (bb0150) 2017; 91
Fujioka, Kodamatani, Yoshikawa, Inoue, Ikehata (bb0075) 2020; 20
Lawal, Cosman, Pagan (bb0165) 2018; 20
S.E. Beck, H. Ryu, L.A. Boczek, J.L. Cashdollar, K.M. Jeanis, J.S. Rosenblum, O.R. Lawal, K.G. Linden, Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy, Water Res. 109 (n.d.) 207–216. doi:10.1016/j.watres.2016.11.024.
Hull, Linden (bb0105) 2018; 143
Wang, Liu, Dai, Dong, Zhang, Chen (bb0410) 2012; 215–216
Oguma, Rattanakul, Masaike (bb0275) 2019; 19
Natarajan, Thomas, Natarajan, Bajaj, Tayade (bb0245) 2011; 169
Würtele, Kolbe, Lipsz, Külberg, Weyers, Kneissl, Jekel (bb0420) 2011; 45
Keshavarzfathy, Hosoi, Oguma, Taghipour (bb0135) 2021; 407
Repo, Rengaraj, Pulkka, Castangnoli, Suihkonen, Sopanen, Sillanpää (bb0310) 2013; 120
Nyangaresi, Qin, Chen, Zhang, Lu, Shen (bb0255) 2018; 147
Chevremont, Farnet, Sergent, Coulomb, Boudenne (bb0050) 2012; 285
Gerchman, Mamane, Friedman, Mandelboim (bb0085) 2020; 212
Yin, Shang (bb0450) 2020; 185
Martín-Sómer, Benz, van Ommen, Marugán (bb0225) 2020; 10
Betzalel, Gerchman, Cohen-Yaniv, Mamane (bb0020) 2020; 207
Weisbuch (bb0415) 2020; 9
Lamar (bb0160) 2020; 9
Yu (bb0460) 2014
Moreno, Sun (bb0230) 2008; 16
Tokode, Prabhu, Lawton, Robertson (bb0395) 2016; 319–320
Martín-Sómer, Vega, Pablos, van Grieken, Marugán (bb0220) 2018; 221
Xiong, Hu (bb0430) 2013; 47
Feng-Tie, Huang (bb0070) 2011; 7
Keshavarzfathy, Taghipour (bb0130) 2019; 377
Deng, Li, Tang, Ouyang, Liao, Fang, Ding, Yang, Su, Gong (bb0055) 2020; 7
Rodríguez-González, Obregón, Patrón-Soberano, Terashima, Fujishima (bb0315) 2020; 270
Wang, Chang, Lin (bb0400) 2021; 40
Dupuis, Krames (bb0060) 2008; 26
Hull, Herold, Linden (bb0110) 2019; 1
Nyangaresi, Qin, Chen, Zhang, Lu, Shen (bb0260) 2019; 157
Kim, Shin, Kang, Kim, Kang (bb0155) 2020; 117
Moreno, Casado, Marugán (bb0235) 2019; 205
Nyangaresi, Qin, Chen, Zhang, Lu, Shen (bb0265) 2019; 335
Bertagna Silva, Buttiglieri, Babić (bb0015) 2021; 28
Silva, Leonel, Tonetti (bb0350) 2020; 231
Zhou, Li, Lan, Yan, Zhu (bb0475) 2017; 35
Li, Cai, Wang, Niu, Yang, Zhang (bb0195) 2019; 659
Le, Tran, Danh (bb0170) 2021; 545
Heathcote (bb0100) 2011
Song, Taghipour, Mohseni (bb0370) 2019; 665
Bowker, Sain, Shatalov, Ducoste (bb0030) 2011; 45
Li, Wang, Huo, Lu, Hu (bb0190) 2017; 126
Song, Taghipour, Mohseni (bb0365) 2018; 343
Xiong, Hu (bb0435) 2017; 282
Moreno (10.1016/j.scitotenv.2023.163963_bb0230) 2008; 16
Feng-Tie (10.1016/j.scitotenv.2023.163963_bb0070) 2011; 7
Fujioka (10.1016/j.scitotenv.2023.163963_bb0075) 2020; 20
Lawal (10.1016/j.scitotenv.2023.163963_bb0165) 2018; 20
Martino (10.1016/j.scitotenv.2023.163963_bb0210) 2020; 38
Zou (10.1016/j.scitotenv.2023.163963_bb0480) 2019; 650
Bowker (10.1016/j.scitotenv.2023.163963_bb0030) 2011; 45
Lee (10.1016/j.scitotenv.2023.163963_bb0175) 2018; 185
Nguyen (10.1016/j.scitotenv.2023.163963_bb0250) 2019; 153
Ohl (10.1016/j.scitotenv.2023.163963_bb0280) 1946
Tokode (10.1016/j.scitotenv.2023.163963_bb0395) 2016; 319–320
Nyangaresi (10.1016/j.scitotenv.2023.163963_bb0255) 2018; 147
Oguma (10.1016/j.scitotenv.2023.163963_bb0270) 2016; 142
Sholtes (10.1016/j.scitotenv.2023.163963_bb0345) 2016; 37
Keshavarzfathy (10.1016/j.scitotenv.2023.163963_bb0125) 2019; 166
Thatcher (10.1016/j.scitotenv.2023.163963_bb0390) 2021; 230
Elgohary (10.1016/j.scitotenv.2023.163963_bb0065) 2021; 11
Rattanakul (10.1016/j.scitotenv.2023.163963_bb0295) 2018; 130
Yin (10.1016/j.scitotenv.2023.163963_bb0450) 2020; 185
Shen (10.1016/j.scitotenv.2023.163963_bb0335) 2020; 386
Bourget (10.1016/j.scitotenv.2023.163963_bb0025) 2008; 43
Round (10.1016/j.scitotenv.2023.163963_bb0320) 1991
Xiong (10.1016/j.scitotenv.2023.163963_bb0430) 2013; 47
Würtele (10.1016/j.scitotenv.2023.163963_bb0420) 2011; 45
Zhang (10.1016/j.scitotenv.2023.163963_bb0465) 2021; 556
Li (10.1016/j.scitotenv.2023.163963_bb0195) 2019; 659
Wang (10.1016/j.scitotenv.2023.163963_bb0400) 2021; 40
Weisbuch (10.1016/j.scitotenv.2023.163963_bb0415) 2020; 9
Li (10.1016/j.scitotenv.2023.163963_bb0190) 2017; 126
Dupuis (10.1016/j.scitotenv.2023.163963_bb0060) 2008; 26
Jarvis (10.1016/j.scitotenv.2023.163963_bb0120) 2019; 11
Natarajan (10.1016/j.scitotenv.2023.163963_bb0245) 2011; 169
Casado (10.1016/j.scitotenv.2023.163963_bb0040) 2019; 252
Xiong (10.1016/j.scitotenv.2023.163963_bb0435) 2017; 282
Rediker (10.1016/j.scitotenv.2023.163963_bb0305) 1987; 23
Wang (10.1016/j.scitotenv.2023.163963_bb0405) 2012; 51
Kheyrandish (10.1016/j.scitotenv.2023.163963_bb0140) 2018; 352
Kim (10.1016/j.scitotenv.2023.163963_bb0150) 2017; 91
Pousty (10.1016/j.scitotenv.2023.163963_bb0290) 2021; 217
Silva (10.1016/j.scitotenv.2023.163963_bb0350) 2020; 231
Kim (10.1016/j.scitotenv.2023.163963_bb0145) 2020; 130
Le (10.1016/j.scitotenv.2023.163963_bb0170) 2021; 545
Chen (10.1016/j.scitotenv.2023.163963_bb0045) 2017; 3
Moreno-SanSegundo (10.1016/j.scitotenv.2023.163963_bb0240) 2020; 388
Nyangaresi (10.1016/j.scitotenv.2023.163963_bb0265) 2019; 335
Xiong (10.1016/j.scitotenv.2023.163963_bb0440) 2020; 248
Bertagna Silva (10.1016/j.scitotenv.2023.163963_bb0015) 2021; 28
Liu (10.1016/j.scitotenv.2023.163963_bb0200) 2014; 583
10.1016/j.scitotenv.2023.163963_bb0205
Repo (10.1016/j.scitotenv.2023.163963_bb0310) 2013; 120
Song (10.1016/j.scitotenv.2023.163963_bb0365) 2018; 343
Hull (10.1016/j.scitotenv.2023.163963_bb0105) 2018; 143
Ray (10.1016/j.scitotenv.2023.163963_bb0300) 2018; 350
Heathcote (10.1016/j.scitotenv.2023.163963_bb0100) 2011
Levchuk (10.1016/j.scitotenv.2023.163963_bb0185) 2015; 143
Rodríguez-González (10.1016/j.scitotenv.2023.163963_bb0315) 2020; 270
Sommer (10.1016/j.scitotenv.2023.163963_bb0360) 1998
Chevremont (10.1016/j.scitotenv.2023.163963_bb0050) 2012; 285
Keshavarzfathy (10.1016/j.scitotenv.2023.163963_bb0130) 2019; 377
Simons (10.1016/j.scitotenv.2023.163963_bb0355) 2014; 66
Martín-Sómer (10.1016/j.scitotenv.2023.163963_bb0225) 2020; 10
Sun (10.1016/j.scitotenv.2023.163963_bb0380) 2006; 31
Yu (10.1016/j.scitotenv.2023.163963_bb0460) 2014
Baaloudj (10.1016/j.scitotenv.2023.163963_bb0010) 2021; 42
Takahashi (10.1016/j.scitotenv.2023.163963_bb0385) 2020; 77
Betzalel (10.1016/j.scitotenv.2023.163963_bb0020) 2020; 207
Yan (10.1016/j.scitotenv.2023.163963_bb0445) 2018; 367
Martín-Sómer (10.1016/j.scitotenv.2023.163963_bb0220) 2018; 221
Song (10.1016/j.scitotenv.2023.163963_bb0370) 2019; 665
García-Gil (10.1016/j.scitotenv.2023.163963_bb0080) 2019; 376
Wang (10.1016/j.scitotenv.2023.163963_bb0410) 2012; 215–216
Oppezzo (10.1016/j.scitotenv.2023.163963_bb0285) 2001; 62
10.1016/j.scitotenv.2023.163963_bb0325
Deng (10.1016/j.scitotenv.2023.163963_bb0055) 2020; 7
Sholtes (10.1016/j.scitotenv.2023.163963_bb0340) 2019; 165
Zhou (10.1016/j.scitotenv.2023.163963_bb0475) 2017; 35
Cai (10.1016/j.scitotenv.2023.163963_bb0035) 2021; 404
Keshavarzfathy (10.1016/j.scitotenv.2023.163963_bb0135) 2021; 407
Song (10.1016/j.scitotenv.2023.163963_bb0375) 2019; 163
Nyangaresi (10.1016/j.scitotenv.2023.163963_bb0260) 2019; 157
Aparici-Espert (10.1016/j.scitotenv.2023.163963_bb0005) 2018; 13
Lamar (10.1016/j.scitotenv.2023.163963_bb0160) 2020; 9
Gerchman (10.1016/j.scitotenv.2023.163963_bb0085) 2020; 212
Hull (10.1016/j.scitotenv.2023.163963_bb0110) 2019; 1
Hutchinson (10.1016/j.scitotenv.2023.163963_bb0115)
Yu Jeco (10.1016/j.scitotenv.2023.163963_bb0455) 2019; 9
Xiao (10.1016/j.scitotenv.2023.163963_bb0425) 2018; 141
Zheludev (10.1016/j.scitotenv.2023.163963_bb0470) 2007; 1
Gillespie (10.1016/j.scitotenv.2023.163963_bb0090) 2017; 35
Lee (10.1016/j.scitotenv.2023.163963_bb0180) 2021
Saravanan (10.1016/j.scitotenv.2023.163963_bb0330) 2021; 24
Oguma (10.1016/j.scitotenv.2023.163963_bb0275) 2019; 19
Grandusky (10.1016/j.scitotenv.2023.163963_bb0095) 2011; 4
Kim (10.1016/j.scitotenv.2023.163963_bb0155) 2020; 117
Moreno (10.1016/j.scitotenv.2023.163963_bb0235) 2019; 205
Martín-Sómer (10.1016/j.scitotenv.2023.163963_bb0215) 2017; 215
References_xml – volume: 45
  start-page: 2011
  year: 2011
  end-page: 2019
  ident: bb0030
  article-title: Microbial UV fluence-response assessment using a novel UV-LED collimated beam system
  publication-title: Water Res.
– volume: 659
  start-page: 1415
  year: 2019
  end-page: 1427
  ident: bb0195
  article-title: Evaluation survey of microbial disinfection methods in UV-LED water treatment systems
  publication-title: Sci. Total Environ.
– volume: 147
  start-page: 331
  year: 2018
  end-page: 341
  ident: bb0255
  article-title: Effects of single and combined UV-LEDs on inactivation and subsequent reactivation of E. coli in water disinfection
  publication-title: Water Res.
– volume: 77
  year: 2020
  ident: bb0385
  article-title: Efficacy of ultraviolet light-emitting diodes (UV-LED) at four different peak wavelengths against Cryptosporidium parvum oocysts by inactivation assay using immunodeficient mice
  publication-title: Parasitol. Int.
– volume: 185
  year: 2020
  ident: bb0450
  article-title: Removal of micropollutants in drinking water using UV-LED/chlorine advanced oxidation process followed by activated carbon adsorption
  publication-title: Water Res.
– volume: 285
  start-page: 219
  year: 2012
  end-page: 225
  ident: bb0050
  article-title: Multivariate optimization of fecal bioindicator inactivation by coupling UV-A and UV-C LEDs
  publication-title: Desalination
– volume: 130
  year: 2020
  ident: bb0145
  article-title: Inactivation efficacy of a sixteen UVC LED module to control foodborne pathogens on selective media and sliced deli meat and spinach surfaces
  publication-title: LWT
– volume: 3
  start-page: 188
  year: 2017
  end-page: 202
  ident: bb0045
  article-title: LED revolution: fundamentals and prospects for UV disinfection applications
  publication-title: Environ. Sci. Water Res. Technol.
– volume: 143
  start-page: 1
  year: 2015
  end-page: 5
  ident: bb0185
  article-title: Application of UVA-LED based photocatalysis for plywood mill wastewater treatment
  publication-title: Sep. Purif. Technol.
– volume: 350
  start-page: 59
  year: 2018
  end-page: 68
  ident: bb0300
  article-title: Inactivation of Staphylococcus aureus in visible light by morphology tuned α-NiMoO4
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 556
  year: 2021
  ident: bb0465
  article-title: 1T and 2H mixed phase MoS2 nanobelts coupled with Ti3+ self-doped TiO2 nanosheets for enhanced photocatalytic degradation of RhB under visible light
  publication-title: Appl. Surf. Sci.
– volume: 31
  start-page: 2193
  year: 2006
  ident: bb0380
  article-title: Precise optical modeling for LED lighting verified by cross correlation in the midfield region
  publication-title: Opt. Lett.
– volume: 7
  start-page: 702
  year: 2020
  end-page: 723
  ident: bb0055
  article-title: What will happen when microorganisms “meet” photocatalysts and photocatalysis?
  publication-title: Environ. Sci.Nano
– volume: 143
  start-page: 292
  year: 2018
  end-page: 300
  ident: bb0105
  article-title: Synergy of MS2 disinfection by sequential exposure to tailored UV wavelengths
  publication-title: Water Res.
– volume: 388
  year: 2020
  ident: bb0240
  article-title: Enhanced numerical simulation of photocatalytic reactors with an improved solver for the radiative transfer equation
  publication-title: Chem. Eng. J.
– year: 1998
  ident: bb0360
  article-title: Time Dose Reciprocity in UV Disinfection of Water
– volume: 212
  year: 2020
  ident: bb0085
  article-title: UV-LED disinfection of coronavirus: wavelength effect
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 117
  year: 2020
  ident: bb0155
  article-title: Application of the 222 nm krypton-chlorine excilamp and 280 nm UVC light-emitting diode for the inactivation of Listeria monocytogenes and Salmonella typhimurium in water with various turbidities
  publication-title: LWT
– start-page: 879
  year: 1991
  ident: bb0320
  article-title: A note on carborundum
  publication-title: Semicond. Devices Pioneer. Pap
– volume: 343
  start-page: 362
  year: 2018
  end-page: 370
  ident: bb0365
  article-title: Microorganisms inactivation by continuous and pulsed irradiation of ultraviolet light-emitting diodes (UV-LEDs)
  publication-title: Chem. Eng. J.
– volume: 215–216
  start-page: 25
  year: 2012
  end-page: 31
  ident: bb0410
  article-title: CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor
  publication-title: J. Hazard. Mater.
– volume: 16
  start-page: 1808
  year: 2008
  ident: bb0230
  article-title: Modeling the radiation pattern of LEDs
  publication-title: Opt. Express
– volume: 230
  year: 2021
  ident: bb0390
  article-title: Impact of surface reflection on microbial inactivation in a UV LED treatment duct
  publication-title: Chem. Eng. Sci.
– volume: 153
  start-page: 53
  year: 2019
  end-page: 62
  ident: bb0250
  article-title: Application of a novel, continuous-feeding ultraviolet light emitting diode (UV-LED) system to disinfect domestic wastewater for discharge or agricultural reuse
  publication-title: Water Res.
– volume: 221
  start-page: 258
  year: 2018
  end-page: 265
  ident: bb0220
  article-title: Wavelength dependence of the efficiency of photocatalytic processes for water treatment
  publication-title: Appl. Catal. B Environ.
– volume: 66
  start-page: 338
  year: 2014
  end-page: 349
  ident: bb0355
  article-title: Optical fluence modelling for ultraviolet light emitting diode-based water treatment systems
  publication-title: Water Res.
– year: 2021
  ident: bb0180
  article-title: Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions
  publication-title: J. Ind. Eng. Chem.
– volume: 24
  year: 2021
  ident: bb0330
  article-title: Photocatalytic disinfection of micro-organisms: mechanisms and applications
  publication-title: Environ. Technol. Innov.
– volume: 13
  start-page: 542
  year: 2018
  end-page: 547
  ident: bb0005
  article-title: Oxidatively generated lesions as internal photosensitizers for pyrimidine dimerization in DNA
  publication-title: ACS Chem. Biol.
– volume: 319–320
  start-page: 96
  year: 2016
  end-page: 106
  ident: bb0395
  article-title: Controlled periodic illumination in semiconductor photocatalysis
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 231
  start-page: 1
  year: 2020
  end-page: 10
  ident: bb0350
  article-title: UV-LED for safe effluent reuse in agriculture
  publication-title: Water Air Soil Pollut.
– reference: M. Kojima K. Mawatari T. Emoto R. Nishisaka-Nonaka T. Kim N. Bui T. Shimohata T. Uebanso M. Akutagawa Y. Kinouchi T. Wada M. Okamoto H. Ito K. Tojo T. Daidoji T. Nakaya A. Takahashi Microorganisms irradiation by a combination of different peak-wavelength ultraviolet-light emitting diodes enhances the inactivation of influenza s viruses, (n.d.). doi:10.3390/microorganisms8071014.
– volume: 47
  start-page: 4547
  year: 2013
  end-page: 4555
  ident: bb0430
  article-title: Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system
  publication-title: Water Res.
– volume: 248
  year: 2020
  ident: bb0440
  article-title: UV-LED/chlorine degradation of propranolol in water: degradation pathway and product toxicity
  publication-title: Chemosphere
– volume: 404
  year: 2021
  ident: bb0035
  article-title: Enhanced oxidation of carbamazepine by UV-LED/persulfate and UV-LED/H2O2 processes in the presence of trace copper ions
  publication-title: Chem. Eng. J.
– year: 1980
  ident: bb0115
  article-title: Biological effects of ultraviolet radiation walter harm frontmatter more information
– volume: 282
  start-page: 48
  year: 2017
  end-page: 56
  ident: bb0435
  article-title: Decomposition of acetaminophen (Ace) using TiO2/UVA/LED system
  publication-title: Catal. Today
– volume: 217
  year: 2021
  ident: bb0290
  article-title: Wavelength-dependent time–dose reciprocity and stress mechanism for UV-LED disinfection of Escherichia coli
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 583
  start-page: 390
  year: 2014
  end-page: 395
  ident: bb0200
  article-title: CdS sensitized TiO2 film for photocatalytic reduction of Cr(VI) by microwave-assisted chemical bath deposition method
  publication-title: J. Alloys Compd.
– volume: 166
  year: 2019
  ident: bb0125
  article-title: Computational modeling of ultraviolet light-emitting diode (UV-LED) reactor for water treatment
  publication-title: Water Res.
– volume: 28
  start-page: 103
  year: 2021
  end-page: 120
  ident: bb0015
  article-title: State-of-the-art and current challenges for TiO2/UV-LED photocatalytic degradation of emerging organic micropollutants
  publication-title: Environ. Sci. Pollut. Res.
– volume: 20
  start-page: 22
  year: 2018
  end-page: 28
  ident: bb0165
  publication-title: UV-C LED devices and systems: current and future state
– volume: 157
  start-page: 218
  year: 2019
  end-page: 227
  ident: bb0260
  article-title: Comparison of the performance of pulsed and continuous UVC-LED irradiation in the inactivation of bacteria
  publication-title: Water Res.
– volume: 120
  start-page: 206
  year: 2013
  end-page: 214
  ident: bb0310
  article-title: Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation
  publication-title: Sep. Purif. Technol.
– volume: 650
  start-page: 210
  year: 2019
  end-page: 215
  ident: bb0480
  article-title: Enhanced inactivation of E. coli by pulsed UV-LED irradiation during water disinfection
  publication-title: Sci. Total Environ.
– volume: 19
  start-page: 1507
  year: 2019
  end-page: 1514
  ident: bb0275
  article-title: Inactivation of health-related microorganisms in water using UV light-emitting diodes
  publication-title: Water Sci. Technol.Water Supply
– year: 2011
  ident: bb0100
  article-title: UV-LED Overview Part 3- Diode Evolution and Manufacturing
– volume: 207
  year: 2020
  ident: bb0020
  article-title: Multiwell plates for obtaining a rapid microbial dose-response curve in UV-LED systems
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 386
  year: 2020
  ident: bb0335
  article-title: Efficacy of UVC-LED in water disinfection on Bacillus species with consideration of antibiotic resistance issue
  publication-title: J. Hazard. Mater.
– volume: 11
  start-page: 1498
  year: 2021
  ident: bb0065
  article-title: A review of the use of semiconductors as catalysts in the photocatalytic inactivation of microorganisms
  publication-title: Catal.
– volume: 215
  start-page: 1
  year: 2017
  end-page: 7
  ident: bb0215
  article-title: Influence of light distribution on the performance of photocatalytic reactors: LED vs mercury lamps
  publication-title: Appl. Catal. B Environ.
– volume: 545
  year: 2021
  ident: bb0170
  article-title: Remarkable enhancement of visible light driven photocatalytic performance of TiO2 by simultaneously doping with C, N, and S
  publication-title: Chem. Phys.
– volume: 205
  start-page: 151
  year: 2019
  end-page: 164
  ident: bb0235
  article-title: Improved discrete ordinate method for accurate simulation radiation transport using solar and LED light sources
  publication-title: Chem. Eng. Sci.
– volume: 35
  start-page: 150
  year: 2017
  end-page: 156
  ident: bb0090
  article-title: Efficacy of pulsed 405-nm light-emitting diodes for antimicrobial photodynamic inactivation: effects of intensity, frequency, and duty cycle
  publication-title: Photomed. Laser Surg.
– volume: 185
  start-page: 136
  year: 2018
  end-page: 142
  ident: bb0175
  article-title: Understanding possible underlying mechanism in declining germicidal efficiency of UV-LED reactor
  publication-title: J. Photochem. Photobiol. B Biol.
– volume: 169
  start-page: 126
  year: 2011
  end-page: 134
  ident: bb0245
  article-title: Study on UV-LED/TiO2 process for degradation of Rhodamine B dye
  publication-title: Chem. Eng. J.
– volume: 407
  year: 2021
  ident: bb0135
  article-title: Experimental and computational evaluation of a flow-through UV-LED reactor for MS2 and adenovirus inactivation
  publication-title: Chem. Eng. J.
– volume: 141
  start-page: 279
  year: 2018
  end-page: 288
  ident: bb0425
  article-title: Impact of UVA pre-radiation on UVC disinfection performance: inactivation, repair and mechanism study
  publication-title: Water Res.
– volume: 367
  start-page: 355
  year: 2018
  end-page: 364
  ident: bb0445
  article-title: Efficient photocatalytic disinfection of Escherichia coli by N-doped TiO2 coated on coal fly ash cenospheres
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 45
  start-page: 1481
  year: 2011
  end-page: 1489
  ident: bb0420
  article-title: Application of GaN-based ultraviolet-C light emitting diodes - UV LEDs - for water disinfection
  publication-title: Water Res.
– volume: 23
  start-page: 692
  year: 1987
  end-page: 695
  ident: bb0305
  article-title: Research at Lincoln Laboratory leading up to the development of the injection laser in 1962
  publication-title: IEEE J. Quantum Electron.
– reference: S.E. Beck, H. Ryu, L.A. Boczek, J.L. Cashdollar, K.M. Jeanis, J.S. Rosenblum, O.R. Lawal, K.G. Linden, Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy, Water Res. 109 (n.d.) 207–216. doi:10.1016/j.watres.2016.11.024.
– volume: 37
  start-page: 2183
  year: 2016
  end-page: 2188
  ident: bb0345
  article-title: Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water
  publication-title: Environ. Technol. (UK)
– volume: 11
  year: 2019
  ident: bb0120
  article-title: Application of ultraviolet light-emitting diodes (UV-LED) to full-scale drinking-water disinfection
  publication-title: Water (Switzerland)
– volume: 377
  start-page: 58
  year: 2019
  end-page: 66
  ident: bb0130
  article-title: Radiation modeling of ultraviolet light-emitting diode (UV-LED) for water treatment
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 252
  start-page: 1
  year: 2019
  end-page: 9
  ident: bb0040
  article-title: Critical role of the light spectrum on the simulation of solar photocatalytic reactors
  publication-title: Appl. Catal. B Environ.
– volume: 7
  start-page: 1673
  year: 2011
  end-page: 1905
  ident: bb0070
  publication-title: A Precise Model of LED Lighting and Its Application in Uni-form Illumination System
– volume: 26
  year: 2008
  ident: bb0060
  article-title: History, development, and applications of high-brightness visible light-emitting diodes
  publication-title: J. Light. Technol.
– volume: 10
  start-page: 450
  year: 2020
  ident: bb0225
  article-title: Multitarget evaluation of the photocatalytic activity of P25-SiO2 prepared by atomic layer deposition
  publication-title: Catalysts
– volume: 352
  start-page: 113
  year: 2018
  end-page: 121
  ident: bb0140
  article-title: UV-LED radiation modeling and its applications in UV dose determination for water treatment
  publication-title: J. Photochem. Photobiol. A Chem.
– volume: 665
  start-page: 1103
  year: 2019
  end-page: 1110
  ident: bb0370
  article-title: Microorganisms inactivation by wavelength combinations of ultraviolet light-emitting diodes (UV-LEDs)
  publication-title: Sci. Total Environ.
– volume: 9
  year: 2020
  ident: bb0415
  article-title: Review: on the search for efficient solid state light emitters: past, present, future
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 335
  start-page: 200
  year: 2019
  end-page: 207
  ident: bb0265
  article-title: Comparison of UV-LED photolytic and UV-LED/TiO2 photocatalytic disinfection for Escherichia coli in water
  publication-title: Catal. Today
– volume: 43
  start-page: 1944
  year: 2008
  end-page: 1946
  ident: bb0025
  article-title: An introduction to light-emitting diodes
  publication-title: Hort. Sci.
– volume: 62
  start-page: 158
  year: 2001
  end-page: 165
  ident: bb0285
  article-title: Sublethal effects of ultraviolet a radiation on Enterobacter cloacae
  publication-title: J. Photochem. Photobiol. B Biol.
– year: 1946
  ident: bb0280
  article-title: Alternating Current Rectifier
– volume: 4
  year: 2011
  ident: bb0095
  article-title: High output power from 260nm pseudomorphic ultraviolet light-emitting diodes with improved thermal performance
  publication-title: Appl. Phys. Express
– volume: 42
  year: 2021
  ident: bb0010
  article-title: Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: a review
  publication-title: J. Water Process Eng.
– volume: 20
  year: 2020
  ident: bb0075
  article-title: Assessment of 265-nm UV-LED for direct photolysis and advanced oxidation of N-nitrosamines and 1,4-dioxane
  publication-title: Environ. Technol. Innov.
– volume: 91
  start-page: 115
  year: 2017
  end-page: 123
  ident: bb0150
  article-title: Inactivation modeling of human enteric virus surrogates, MS2, Qβ, and ΦX174, in water using UVC-LEDs, a novel disinfecting system
  publication-title: Food Res. Int.
– year: 2014
  ident: bb0460
  article-title: Light Emitting Diode Based Photochemical Treatment of Contaminants in Aqueous Phase
– volume: 1
  year: 2019
  ident: bb0110
  article-title: UV LED water disinfection: validation and small system demonstration study
  publication-title: AWWA Water Sci.
– volume: 9
  start-page: 619
  year: 2020
  ident: bb0160
  article-title: Latest developments in LED drivers
  publication-title: Electronics
– volume: 376
  year: 2019
  ident: bb0080
  article-title: Novel procedure for the numerical simulation of solar water disinfection processes in flow reactors
  publication-title: Chem. Eng. J.
– volume: 38
  start-page: 458
  year: 2020
  end-page: 468
  ident: bb0210
  article-title: Virus and bacteria inactivation using ultraviolet light-emitting diodes
  publication-title: Environ. Eng. Sci.
– volume: 163
  year: 2019
  ident: bb0375
  article-title: Mechanisms investigation on bacterial inactivation through combinations of UV wavelengths
  publication-title: Water Res.
– volume: 35
  start-page: 471
  year: 2017
  end-page: 477
  ident: bb0475
  article-title: Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection
  publication-title: Ultrason. Sonochem.
– volume: 40
  year: 2021
  ident: bb0400
  article-title: Efficiency improvement of a flow-through water disinfection reactor using UV-C light emitting diodes
  publication-title: J. Water Process Eng.
– volume: 9
  start-page: 1
  year: 2019
  ident: bb0455
  article-title: Technosocial feasibility analysis of solar-powered UV-LED water treatment system in a remote island of Guimaras, Philippines
  publication-title: J. Photonics Energy
– volume: 1
  start-page: 189
  year: 2007
  end-page: 192
  ident: bb0470
  article-title: The life and times of the LED - a 100-year history
  publication-title: Nat. Photonics
– volume: 130
  start-page: 31
  year: 2018
  end-page: 37
  ident: bb0295
  article-title: Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms
  publication-title: Water Res.
– volume: 51
  start-page: 1654
  year: 2012
  end-page: 1659
  ident: bb0405
  article-title: Collimating lens for light-emitting-diode light source based on non-imaging optics
  publication-title: Appl. Opt.
– volume: 142
  start-page: 04015082
  year: 2016
  ident: bb0270
  article-title: Application of UV light–emitting diodes to adenovirus in water
  publication-title: J. Environ. Eng.
– volume: 270
  year: 2020
  ident: bb0315
  article-title: An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes
  publication-title: Appl. Catal. B Environ.
– volume: 126
  start-page: 134
  year: 2017
  end-page: 143
  ident: bb0190
  article-title: Comparison of UV-LED and low pressure UV for water disinfection: photoreactivation and dark repair of Escherichia coli
  publication-title: Water Res.
– volume: 165
  year: 2019
  ident: bb0340
  article-title: Pulsed and continuous light UV LED: microbial inactivation, electrical, and time efficiency
  publication-title: Water Res.
– volume: 20
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0075
  article-title: Assessment of 265-nm UV-LED for direct photolysis and advanced oxidation of N-nitrosamines and 1,4-dioxane
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2020.101147
– volume: 386
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0335
  article-title: Efficacy of UVC-LED in water disinfection on Bacillus species with consideration of antibiotic resistance issue
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121968
– volume: 583
  start-page: 390
  year: 2014
  ident: 10.1016/j.scitotenv.2023.163963_bb0200
  article-title: CdS sensitized TiO2 film for photocatalytic reduction of Cr(VI) by microwave-assisted chemical bath deposition method
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.08.193
– volume: 23
  start-page: 692
  year: 1987
  ident: 10.1016/j.scitotenv.2023.163963_bb0305
  article-title: Research at Lincoln Laboratory leading up to the development of the injection laser in 1962
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/JQE.1987.1073430
– volume: 24
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163963_bb0330
  article-title: Photocatalytic disinfection of micro-organisms: mechanisms and applications
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2021.101909
– volume: 207
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0020
  article-title: Multiwell plates for obtaining a rapid microbial dose-response curve in UV-LED systems
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2020.111865
– year: 2021
  ident: 10.1016/j.scitotenv.2023.163963_bb0180
  article-title: Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions
  publication-title: J. Ind. Eng. Chem.
– volume: 665
  start-page: 1103
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0370
  article-title: Microorganisms inactivation by wavelength combinations of ultraviolet light-emitting diodes (UV-LEDs)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.041
– volume: 212
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0085
  article-title: UV-LED disinfection of coronavirus: wavelength effect
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2020.112044
– volume: 147
  start-page: 331
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163963_bb0255
  article-title: Effects of single and combined UV-LEDs on inactivation and subsequent reactivation of E. coli in water disinfection
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.014
– volume: 19
  start-page: 1507
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0275
  article-title: Inactivation of health-related microorganisms in water using UV light-emitting diodes
  publication-title: Water Sci. Technol.Water Supply
  doi: 10.2166/ws.2019.022
– volume: 130
  start-page: 31
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163963_bb0295
  article-title: Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.11.047
– volume: 230
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163963_bb0390
  article-title: Impact of surface reflection on microbial inactivation in a UV LED treatment duct
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.116204
– volume: 185
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0450
  article-title: Removal of micropollutants in drinking water using UV-LED/chlorine advanced oxidation process followed by activated carbon adsorption
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116297
– volume: 3
  start-page: 188
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163963_bb0045
  article-title: LED revolution: fundamentals and prospects for UV disinfection applications
  publication-title: Environ. Sci. Water Res. Technol.
  doi: 10.1039/C6EW00241B
– volume: 165
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0340
  article-title: Pulsed and continuous light UV LED: microbial inactivation, electrical, and time efficiency
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114965
– volume: 62
  start-page: 158
  year: 2001
  ident: 10.1016/j.scitotenv.2023.163963_bb0285
  article-title: Sublethal effects of ultraviolet a radiation on Enterobacter cloacae
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/S1011-1344(01)00180-4
– volume: 153
  start-page: 53
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0250
  article-title: Application of a novel, continuous-feeding ultraviolet light emitting diode (UV-LED) system to disinfect domestic wastewater for discharge or agricultural reuse
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.01.006
– volume: 556
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163963_bb0465
  article-title: 1T and 2H mixed phase MoS2 nanobelts coupled with Ti3+ self-doped TiO2 nanosheets for enhanced photocatalytic degradation of RhB under visible light
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.149768
– volume: 9
  start-page: 619
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0160
  article-title: Latest developments in LED drivers
  publication-title: Electronics
  doi: 10.3390/electronics9040619
– volume: 143
  start-page: 292
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163963_bb0105
  article-title: Synergy of MS2 disinfection by sequential exposure to tailored UV wavelengths
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.06.017
– volume: 37
  start-page: 2183
  year: 2016
  ident: 10.1016/j.scitotenv.2023.163963_bb0345
  article-title: Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water
  publication-title: Environ. Technol. (UK)
  doi: 10.1080/09593330.2016.1144798
– volume: 28
  start-page: 103
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163963_bb0015
  article-title: State-of-the-art and current challenges for TiO2/UV-LED photocatalytic degradation of emerging organic micropollutants
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-020-11125-z
– volume: 9
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0415
  article-title: Review: on the search for efficient solid state light emitters: past, present, future
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0392001JSS
– volume: 205
  start-page: 151
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0235
  article-title: Improved discrete ordinate method for accurate simulation radiation transport using solar and LED light sources
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.04.034
– volume: 120
  start-page: 206
  year: 2013
  ident: 10.1016/j.scitotenv.2023.163963_bb0310
  article-title: Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2013.10.008
– volume: 285
  start-page: 219
  year: 2012
  ident: 10.1016/j.scitotenv.2023.163963_bb0050
  article-title: Multivariate optimization of fecal bioindicator inactivation by coupling UV-A and UV-C LEDs
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.10.006
– volume: 40
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163963_bb0400
  article-title: Efficiency improvement of a flow-through water disinfection reactor using UV-C light emitting diodes
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2020.101819
– volume: 47
  start-page: 4547
  year: 2013
  ident: 10.1016/j.scitotenv.2023.163963_bb0430
  article-title: Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.04.056
– volume: 7
  start-page: 1673
  year: 2011
  ident: 10.1016/j.scitotenv.2023.163963_bb0070
– volume: 16
  start-page: 1808
  year: 2008
  ident: 10.1016/j.scitotenv.2023.163963_bb0230
  article-title: Modeling the radiation pattern of LEDs
  publication-title: Opt. Express
  doi: 10.1364/OE.16.001808
– volume: 407
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163963_bb0135
  article-title: Experimental and computational evaluation of a flow-through UV-LED reactor for MS2 and adenovirus inactivation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127058
– volume: 163
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0375
  article-title: Mechanisms investigation on bacterial inactivation through combinations of UV wavelengths
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114875
– volume: 130
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0145
  article-title: Inactivation efficacy of a sixteen UVC LED module to control foodborne pathogens on selective media and sliced deli meat and spinach surfaces
  publication-title: LWT
  doi: 10.1016/j.lwt.2020.109422
– volume: 545
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163963_bb0170
  article-title: Remarkable enhancement of visible light driven photocatalytic performance of TiO2 by simultaneously doping with C, N, and S
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2021.111144
– volume: 142
  start-page: 04015082
  year: 2016
  ident: 10.1016/j.scitotenv.2023.163963_bb0270
  article-title: Application of UV light–emitting diodes to adenovirus in water
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)EE.1943-7870.0001061
– volume: 282
  start-page: 48
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163963_bb0435
  article-title: Decomposition of acetaminophen (Ace) using TiO2/UVA/LED system
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.03.015
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0455
  article-title: Technosocial feasibility analysis of solar-powered UV-LED water treatment system in a remote island of Guimaras, Philippines
  publication-title: J. Photonics Energy
  doi: 10.1117/1.JPE.9.043105
– volume: 13
  start-page: 542
  issue: 3
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163963_bb0005
  article-title: Oxidatively generated lesions as internal photosensitizers for pyrimidine dimerization in DNA
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.7b01097
– volume: 215–216
  start-page: 25
  year: 2012
  ident: 10.1016/j.scitotenv.2023.163963_bb0410
  article-title: CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.02.021
– volume: 35
  start-page: 471
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163963_bb0475
  article-title: Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.10.028
– volume: 43
  start-page: 1944
  year: 2008
  ident: 10.1016/j.scitotenv.2023.163963_bb0025
  article-title: An introduction to light-emitting diodes
  publication-title: Hort. Sci.
– volume: 185
  start-page: 136
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163963_bb0175
  article-title: Understanding possible underlying mechanism in declining germicidal efficiency of UV-LED reactor
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2018.06.001
– year: 2011
  ident: 10.1016/j.scitotenv.2023.163963_bb0100
– volume: 143
  start-page: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2023.163963_bb0185
  article-title: Application of UVA-LED based photocatalysis for plywood mill wastewater treatment
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2015.01.007
– ident: 10.1016/j.scitotenv.2023.163963_bb0205
  doi: 10.3390/microorganisms8071014
– volume: 51
  start-page: 1654
  year: 2012
  ident: 10.1016/j.scitotenv.2023.163963_bb0405
  article-title: Collimating lens for light-emitting-diode light source based on non-imaging optics
  publication-title: Appl. Opt.
  doi: 10.1364/AO.51.001654
– volume: 659
  start-page: 1415
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0195
  article-title: Evaluation survey of microbial disinfection methods in UV-LED water treatment systems
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.344
– volume: 335
  start-page: 200
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0265
  article-title: Comparison of UV-LED photolytic and UV-LED/TiO2 photocatalytic disinfection for Escherichia coli in water
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.11.015
– volume: 11
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0120
  article-title: Application of ultraviolet light-emitting diodes (UV-LED) to full-scale drinking-water disinfection
  publication-title: Water (Switzerland)
– volume: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0110
  article-title: UV LED water disinfection: validation and small system demonstration study
  publication-title: AWWA Water Sci.
  doi: 10.1002/aws2.1148
– start-page: 879
  year: 1991
  ident: 10.1016/j.scitotenv.2023.163963_bb0320
  article-title: A note on carborundum
– volume: 217
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163963_bb0290
  article-title: Wavelength-dependent time–dose reciprocity and stress mechanism for UV-LED disinfection of Escherichia coli
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2021.112129
– volume: 77
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0385
  article-title: Efficacy of ultraviolet light-emitting diodes (UV-LED) at four different peak wavelengths against Cryptosporidium parvum oocysts by inactivation assay using immunodeficient mice
  publication-title: Parasitol. Int.
  doi: 10.1016/j.parint.2020.102108
– volume: 4
  year: 2011
  ident: 10.1016/j.scitotenv.2023.163963_bb0095
  article-title: High output power from 260nm pseudomorphic ultraviolet light-emitting diodes with improved thermal performance
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.4.082101
– volume: 38
  start-page: 458
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0210
  article-title: Virus and bacteria inactivation using ultraviolet light-emitting diodes
  publication-title: Environ. Eng. Sci.
  doi: 10.1089/ees.2020.0092
– volume: 376
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0080
  article-title: Novel procedure for the numerical simulation of solar water disinfection processes in flow reactors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.10.131
– volume: 252
  start-page: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0040
  article-title: Critical role of the light spectrum on the simulation of solar photocatalytic reactors
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.04.004
– volume: 270
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0315
  article-title: An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2020.118853
– volume: 26
  year: 2008
  ident: 10.1016/j.scitotenv.2023.163963_bb0060
  article-title: History, development, and applications of high-brightness visible light-emitting diodes
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2008.923628
– volume: 352
  start-page: 113
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163963_bb0140
  article-title: UV-LED radiation modeling and its applications in UV dose determination for water treatment
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2017.10.047
– volume: 126
  start-page: 134
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163963_bb0190
  article-title: Comparison of UV-LED and low pressure UV for water disinfection: photoreactivation and dark repair of Escherichia coli
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.09.030
– volume: 35
  start-page: 150
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163963_bb0090
  article-title: Efficacy of pulsed 405-nm light-emitting diodes for antimicrobial photodynamic inactivation: effects of intensity, frequency, and duty cycle
  publication-title: Photomed. Laser Surg.
  doi: 10.1089/pho.2016.4179
– volume: 377
  start-page: 58
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0130
  article-title: Radiation modeling of ultraviolet light-emitting diode (UV-LED) for water treatment
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2019.03.030
– volume: 231
  start-page: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0350
  article-title: UV-LED for safe effluent reuse in agriculture
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-020-04742-4
– volume: 215
  start-page: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163963_bb0215
  article-title: Influence of light distribution on the performance of photocatalytic reactors: LED vs mercury lamps
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.05.048
– volume: 91
  start-page: 115
  year: 2017
  ident: 10.1016/j.scitotenv.2023.163963_bb0150
  article-title: Inactivation modeling of human enteric virus surrogates, MS2, Qβ, and ΦX174, in water using UVC-LEDs, a novel disinfecting system
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2016.11.042
– volume: 221
  start-page: 258
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163963_bb0220
  article-title: Wavelength dependence of the efficiency of photocatalytic processes for water treatment
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.09.032
– volume: 11
  start-page: 1498
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163963_bb0065
  article-title: A review of the use of semiconductors as catalysts in the photocatalytic inactivation of microorganisms
  publication-title: Catal.
– volume: 1
  start-page: 189
  year: 2007
  ident: 10.1016/j.scitotenv.2023.163963_bb0470
  article-title: The life and times of the LED - a 100-year history
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2007.34
– volume: 117
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0155
  article-title: Application of the 222 nm krypton-chlorine excilamp and 280 nm UVC light-emitting diode for the inactivation of Listeria monocytogenes and Salmonella typhimurium in water with various turbidities
  publication-title: LWT
  doi: 10.1016/j.lwt.2019.108458
– volume: 350
  start-page: 59
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163963_bb0300
  article-title: Inactivation of Staphylococcus aureus in visible light by morphology tuned α-NiMoO4
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2017.09.042
– volume: 42
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163963_bb0010
  article-title: Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: a review
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2021.102089
– volume: 66
  start-page: 338
  year: 2014
  ident: 10.1016/j.scitotenv.2023.163963_bb0355
  article-title: Optical fluence modelling for ultraviolet light emitting diode-based water treatment systems
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.08.031
– volume: 45
  start-page: 2011
  year: 2011
  ident: 10.1016/j.scitotenv.2023.163963_bb0030
  article-title: Microbial UV fluence-response assessment using a novel UV-LED collimated beam system
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.12.005
– volume: 404
  year: 2021
  ident: 10.1016/j.scitotenv.2023.163963_bb0035
  article-title: Enhanced oxidation of carbamazepine by UV-LED/persulfate and UV-LED/H2O2 processes in the presence of trace copper ions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127119
– volume: 157
  start-page: 218
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0260
  article-title: Comparison of the performance of pulsed and continuous UVC-LED irradiation in the inactivation of bacteria
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.03.080
– volume: 248
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0440
  article-title: UV-LED/chlorine degradation of propranolol in water: degradation pathway and product toxicity
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.125957
– volume: 169
  start-page: 126
  year: 2011
  ident: 10.1016/j.scitotenv.2023.163963_bb0245
  article-title: Study on UV-LED/TiO2 process for degradation of Rhodamine B dye
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.02.066
– volume: 650
  start-page: 210
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0480
  article-title: Enhanced inactivation of E. coli by pulsed UV-LED irradiation during water disinfection
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.08.367
– year: 1946
  ident: 10.1016/j.scitotenv.2023.163963_bb0280
– volume: 7
  start-page: 702
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0055
  article-title: What will happen when microorganisms “meet” photocatalysts and photocatalysis?
  publication-title: Environ. Sci.Nano
  doi: 10.1039/C9EN01318K
– volume: 45
  start-page: 1481
  year: 2011
  ident: 10.1016/j.scitotenv.2023.163963_bb0420
  article-title: Application of GaN-based ultraviolet-C light emitting diodes - UV LEDs - for water disinfection
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.11.015
– volume: 343
  start-page: 362
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163963_bb0365
  article-title: Microorganisms inactivation by continuous and pulsed irradiation of ultraviolet light-emitting diodes (UV-LEDs)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.020
– volume: 388
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0240
  article-title: Enhanced numerical simulation of photocatalytic reactors with an improved solver for the radiative transfer equation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124183
– volume: 141
  start-page: 279
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163963_bb0425
  article-title: Impact of UVA pre-radiation on UVC disinfection performance: inactivation, repair and mechanism study
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.05.021
– year: 2014
  ident: 10.1016/j.scitotenv.2023.163963_bb0460
– volume: 31
  start-page: 2193
  year: 2006
  ident: 10.1016/j.scitotenv.2023.163963_bb0380
  article-title: Precise optical modeling for LED lighting verified by cross correlation in the midfield region
  publication-title: Opt. Lett.
  doi: 10.1364/OL.31.002193
– volume: 367
  start-page: 355
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163963_bb0445
  article-title: Efficient photocatalytic disinfection of Escherichia coli by N-doped TiO2 coated on coal fly ash cenospheres
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2018.08.045
– volume: 319–320
  start-page: 96
  year: 2016
  ident: 10.1016/j.scitotenv.2023.163963_bb0395
  article-title: Controlled periodic illumination in semiconductor photocatalysis
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/j.jphotochem.2015.12.002
– ident: 10.1016/j.scitotenv.2023.163963_bb0325
  doi: 10.1016/j.watres.2016.11.024
– volume: 20
  start-page: 22
  year: 2018
  ident: 10.1016/j.scitotenv.2023.163963_bb0165
– volume: 166
  year: 2019
  ident: 10.1016/j.scitotenv.2023.163963_bb0125
  article-title: Computational modeling of ultraviolet light-emitting diode (UV-LED) reactor for water treatment
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115022
– ident: 10.1016/j.scitotenv.2023.163963_bb0115
– volume: 10
  start-page: 450
  year: 2020
  ident: 10.1016/j.scitotenv.2023.163963_bb0225
  article-title: Multitarget evaluation of the photocatalytic activity of P25-SiO2 prepared by atomic layer deposition
  publication-title: Catalysts
  doi: 10.3390/catal10040450
– year: 1998
  ident: 10.1016/j.scitotenv.2023.163963_bb0360
SSID ssj0000781
Score 2.593351
SecondaryResourceType review_article
Snippet The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 163963
SubjectTerms Disinfection
Disinfection - methods
DNA
energy
environment
industry
markets
Photodisinfection
Photoreactivation
Ultraviolet Rays
UV LED
Water Purification - methods
Water treatment
wavelengths
Title A review on LED technology in water photodisinfection
URI https://dx.doi.org/10.1016/j.scitotenv.2023.163963
https://www.ncbi.nlm.nih.gov/pubmed/37149196
https://www.proquest.com/docview/2810921617
https://www.proquest.com/docview/3153156677
Volume 885
WOSCitedRecordID wos001004230400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYBhISQlAYjI8pSIiXKlM-mtjhrWwZHyplgg71zYpjZ-s2OaFJx_jvOcdOUkSrjQdeosj1Janv_PPd-c6H0OuQAywmYWZ73EnAQBGRnSQss5nLiTquLBC1T_f7CI_HZDqNjoxDv6zLCWApydVVVPxXVkMbMFulzv4Du9uHQgPcA9PhCmyH640YP2zTUWR_FB_0q9Z5rnwbPxN1KmJxmlc5n5VNKJZc1lGV5DRT3kQQVLnKmVxKiusc2fOq3ms_kPY3dfPON-VYPs9OFqIN3zhK2IUO6NuvUUW2q8GQ1_SuXPWjSq56D8b8uQbHr0nWhPgbR4Xn2_XBscvgOwBsDXU4bgO-hAT9Yg-UQgACeyWka-_CGRj7AHFgR1zuqYcbkm4Va3bux1_o4fFoRCfxdPKm-GGr-mJqH94UW9lAWx4OIsC_reHHePqpW7Ux0dUVzUf-EQu48t3rNJl1lkqtsUweoPvG1LCGWkQeoltC9tAdXXz0Vw9txx07oZvheNlD97Qr19IZao9QMLS0RFm5tECirE6irJm0aomy_pKox-j4MJ7sf7BNtQ07HQR-ZcP_9wT3Ap-lHg_TgIsIk4iwzCeJ68Lc9TnzQV8mWUKylAQ8JA53BCNuysHMzPxttClzKZ4iS3CRYgyNqcgGmDEShEwwzAkLMyflwQ4Km5GjqTmKXlVEuaBNzOEZbYecqiGnesh3kNMSFvo0lutJ3jasoUap1MoiBQG7nvhVw0wKsKv20hIp8kVJPeI6kaecA-v7-KBNKPcIhj5PtCS0X60Oyoxg9Xt2A-rn6G43n16gzWq-EC_R7fSympXzXbSBp2TXiPNvGYi6BA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+LED+technology+in+water+photodisinfection&rft.jtitle=The+Science+of+the+total+environment&rft.au=Mart%C3%ADn-S%C3%B3mer%2C+Miguel&rft.au=Pablos%2C+Cristina&rft.au=Ad%C3%A1n%2C+Cristina&rft.au=van+Grieken%2C+Rafael&rft.date=2023-08-10&rft.issn=0048-9697&rft.volume=885+p.163963-&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.163963&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon