A review on LED technology in water photodisinfection
The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for...
Uložené v:
| Vydané v: | The Science of the total environment Ročník 885; s. 163963 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
10.08.2023
|
| Predmet: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future.
[Display omitted]
•265 nm wavelength have higher germicidal effect, but 280 nm represses cell repair.•280 nm LED have higher electricity-to-photon conversion compared to 265 nm LED.•UVA exposure before UVC affects biological processes in bacterial inactivation.•Pulsed UVC LED does not affect activity but improves temperature control.•Expected deployment of UVC LED in the upcoming future in water disinfection |
|---|---|
| AbstractList | The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future. The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future. The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future. [Display omitted] •265 nm wavelength have higher germicidal effect, but 280 nm represses cell repair.•280 nm LED have higher electricity-to-photon conversion compared to 265 nm LED.•UVA exposure before UVC affects biological processes in bacterial inactivation.•Pulsed UVC LED does not affect activity but improves temperature control.•Expected deployment of UVC LED in the upcoming future in water disinfection The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future.The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the past few years. This paper presents an in-depth review based on recent studies on the suitability and performance of UV LED-driven processes for water disinfection. The effect of different UV wavelengths and their combinations was analysed for the inactivation of various microorganisms and the inhibition of repair mechanisms. Whereas 265 nm UVC LED present a higher DNA damaging potential, 280 nm radiation is reported to repress photoreactivation and dark repair. No synergistic effects have been proved to exist when coupling UVB + UVC whereas sequential UVA-UVC radiation seemed to enhance inactivation. Benefits of pulsed over continuous radiation in terms of germicidal effects and energy consumption were also analysed, but with inconclusive results. However, pulsed radiation may be promising for improving thermal management. As a challenge, the use of UV LED sources introduces significant inhomogeneities in the light distribution, pushing for the development of adequate simulation methods to ensure that the minimum target dose required for the target microbes is achieved. Concerning energy consumption, selecting the optimal wavelength of the UV LED needs a compromise between the quantum efficiency of the process and the electricity-to-photon conversion. The expected development of the UV LED industry in the next few years points to UVC LED as a promising technology for water disinfection at a large scale that could be competitive in the market in the near future. |
| ArticleNumber | 163963 |
| Author | Martín-Sómer, Miguel Marugán, Javier Adán, Cristina Pablos, Cristina van Grieken, Rafael |
| Author_xml | – sequence: 1 givenname: Miguel surname: Martín-Sómer fullname: Martín-Sómer, Miguel – sequence: 2 givenname: Cristina surname: Pablos fullname: Pablos, Cristina – sequence: 3 givenname: Cristina surname: Adán fullname: Adán, Cristina – sequence: 4 givenname: Rafael surname: van Grieken fullname: van Grieken, Rafael – sequence: 5 givenname: Javier surname: Marugán fullname: Marugán, Javier email: javier.marugan@urjc.es |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37149196$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkcFuGyEURVHkKrGT_EI7y27G4Q0eBhZdWImbRLLUTbtGM_CmwRqDC9hW_r6M7HTRjRESm3PfE_fMyMR5h4R8AToHCvxhM4_aJp_QHeYVrdgcOJOcXZEpiEaWQCs-IVNKF6KUXDY3ZBbjhubTCLgmN6yBhQTJp6ReFgEPFo-Fd8V69VQk1G_OD_73e2FdcWwThmL35pM3NlrXo07WuzvyqW-HiPfn95b8-r76-fhSrn88vz4u16Ve1CyVeVmFpqpZpyvDdW1QNkKKrmeiBejAMNOxmtaib0WvRW24oIZiJ0AbupA9uyVfT3N3wf_ZY0xqa6PGYWgd-n1UDOp8OW-ai2glgMoKOIzo5zO677Zo1C7YbRve1UcrGfh2AnTwMQbsVS67HT-eQmsHBVSNFtRG_bOgRgvqZCHnm__yHysuJ5enJOZWs5Ywcug0Ghty9cp4e3HGX-9KpdQ |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2024_142887 crossref_primary_10_1016_j_jece_2024_114874 crossref_primary_10_1016_j_watres_2024_122322 crossref_primary_10_1016_j_jenvman_2025_125678 crossref_primary_10_3389_fvets_2025_1512387 crossref_primary_10_1016_j_dwt_2024_100285 crossref_primary_10_1016_j_jwpe_2023_104751 crossref_primary_10_3390_antibiotics14080807 crossref_primary_10_1371_journal_pwat_0000306 crossref_primary_10_1016_j_susmat_2024_e01002 crossref_primary_10_59277_RomRepPhys_2025_77_907 crossref_primary_10_1128_aem_00403_25 crossref_primary_10_1016_j_jhazmat_2024_136666 crossref_primary_10_1016_j_aqrep_2025_102688 crossref_primary_10_1016_j_cej_2024_152546 crossref_primary_10_1111_1750_3841_16874 crossref_primary_10_1016_j_cej_2024_153518 crossref_primary_10_1051_e3sconf_202456002010 crossref_primary_10_1016_j_jhazmat_2024_136925 crossref_primary_10_1007_s00203_025_04324_0 crossref_primary_10_1038_s41598_024_71605_x crossref_primary_10_7759_cureus_73609 crossref_primary_10_1016_j_watres_2024_121189 crossref_primary_10_1016_j_apsusc_2024_160609 crossref_primary_10_1016_j_scitotenv_2024_170200 crossref_primary_10_1515_zkri_2025_0019 crossref_primary_10_3390_app14135635 crossref_primary_10_3389_fchem_2023_1271410 crossref_primary_10_1080_02786826_2025_2498995 crossref_primary_10_1039_D5PY00485C crossref_primary_10_3390_w16142028 crossref_primary_10_1016_j_jcat_2024_115403 crossref_primary_10_1016_j_jlumin_2025_121313 crossref_primary_10_1002_adom_202402379 crossref_primary_10_1016_j_scitotenv_2024_170655 crossref_primary_10_1038_s41598_024_64748_4 crossref_primary_10_1016_j_marpolbul_2025_118183 crossref_primary_10_1016_j_jenvman_2025_125053 crossref_primary_10_3390_machines11080792 crossref_primary_10_3390_pharmacy13010009 |
| Cites_doi | 10.1016/j.eti.2020.101147 10.1016/j.jhazmat.2019.121968 10.1016/j.jallcom.2013.08.193 10.1109/JQE.1987.1073430 10.1016/j.eti.2021.101909 10.1016/j.jphotobiol.2020.111865 10.1016/j.scitotenv.2019.02.041 10.1016/j.jphotobiol.2020.112044 10.1016/j.watres.2018.10.014 10.2166/ws.2019.022 10.1016/j.watres.2017.11.047 10.1016/j.ces.2020.116204 10.1016/j.watres.2020.116297 10.1039/C6EW00241B 10.1016/j.watres.2019.114965 10.1016/S1011-1344(01)00180-4 10.1016/j.watres.2019.01.006 10.1016/j.apsusc.2021.149768 10.3390/electronics9040619 10.1016/j.watres.2018.06.017 10.1080/09593330.2016.1144798 10.1007/s11356-020-11125-z 10.1149/2.0392001JSS 10.1016/j.ces.2019.04.034 10.1016/j.seppur.2013.10.008 10.1016/j.desal.2011.10.006 10.1016/j.jwpe.2020.101819 10.1016/j.watres.2013.04.056 10.1364/OE.16.001808 10.1016/j.cej.2020.127058 10.1016/j.watres.2019.114875 10.1016/j.lwt.2020.109422 10.1016/j.chemphys.2021.111144 10.1061/(ASCE)EE.1943-7870.0001061 10.1016/j.cattod.2016.03.015 10.1117/1.JPE.9.043105 10.1021/acschembio.7b01097 10.1016/j.jhazmat.2012.02.021 10.1016/j.ultsonch.2016.10.028 10.1016/j.jphotobiol.2018.06.001 10.1016/j.seppur.2015.01.007 10.3390/microorganisms8071014 10.1364/AO.51.001654 10.1016/j.scitotenv.2018.12.344 10.1016/j.cattod.2018.11.015 10.1002/aws2.1148 10.1016/j.jphotobiol.2021.112129 10.1016/j.parint.2020.102108 10.1143/APEX.4.082101 10.1089/ees.2020.0092 10.1016/j.cej.2018.10.131 10.1016/j.apcatb.2019.04.004 10.1016/j.apcatb.2020.118853 10.1109/JLT.2008.923628 10.1016/j.jphotochem.2017.10.047 10.1016/j.watres.2017.09.030 10.1089/pho.2016.4179 10.1016/j.jphotochem.2019.03.030 10.1007/s11270-020-04742-4 10.1016/j.apcatb.2017.05.048 10.1016/j.foodres.2016.11.042 10.1016/j.apcatb.2017.09.032 10.1038/nphoton.2007.34 10.1016/j.lwt.2019.108458 10.1016/j.jphotochem.2017.09.042 10.1016/j.jwpe.2021.102089 10.1016/j.watres.2014.08.031 10.1016/j.watres.2010.12.005 10.1016/j.cej.2020.127119 10.1016/j.watres.2019.03.080 10.1016/j.chemosphere.2020.125957 10.1016/j.cej.2011.02.066 10.1016/j.scitotenv.2018.08.367 10.1039/C9EN01318K 10.1016/j.watres.2010.11.015 10.1016/j.cej.2018.03.020 10.1016/j.cej.2020.124183 10.1016/j.watres.2018.05.021 10.1364/OL.31.002193 10.1016/j.jphotochem.2018.08.045 10.1016/j.jphotochem.2015.12.002 10.1016/j.watres.2016.11.024 10.1016/j.watres.2019.115022 10.3390/catal10040450 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.scitotenv.2023.163963 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| ExternalDocumentID | 37149196 10_1016_j_scitotenv_2023_163963 S0048969723025846 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SEW SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G 9DU AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN WUQ XPP ZXP ZY4 ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c453t-7812ed253bc2d6c5de97898bf38a11b1d3db35058fa8fc85d680d0eb81cd049f3 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001004230400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Sun Sep 28 00:56:42 EDT 2025 Wed Oct 01 13:16:54 EDT 2025 Thu Apr 03 07:03:08 EDT 2025 Sat Nov 29 07:24:51 EST 2025 Tue Nov 18 22:03:30 EST 2025 Fri Feb 23 02:35:39 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Water treatment EE,O MP LP TRB Disinfection LED WPE ARB Photoreactivation HAdV2 Hg-FL ARG CPC IAVs ROS FCV TLS UV LED Photodisinfection HAdV5 |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c453t-7812ed253bc2d6c5de97898bf38a11b1d3db35058fa8fc85d680d0eb81cd049f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.scitotenv.2023.163963 |
| PMID | 37149196 |
| PQID | 2810921617 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3153156677 proquest_miscellaneous_2810921617 pubmed_primary_37149196 crossref_citationtrail_10_1016_j_scitotenv_2023_163963 crossref_primary_10_1016_j_scitotenv_2023_163963 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_163963 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-08-10 |
| PublicationDateYYYYMMDD | 2023-08-10 |
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | The Science of the total environment |
| PublicationTitleAlternate | Sci Total Environ |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cai, Deng, Zhu, Ye, Li, Zhou, Li, Li (bb0035) 2021; 404 Saravanan, Kumar, Jeevanantham, Karishma, Kiruthika (bb0330) 2021; 24 Yan, Zhou, Lan, Li, Zheng, Cao, Zhu, Liu (bb0445) 2018; 367 Shen, Griffith, Nyangaresi, Qin, Pang, Chen, Li, Lu, Zhang (bb0335) 2020; 386 Thatcher, Adams (bb0390) 2021; 230 Martino, Ochsner, Peters, Zitomer, Mayer (bb0210) 2020; 38 Ohl (bb0280) 1946 Zou, Lin, Xu, Cao, Tang, Pan, Gao, Gao (bb0480) 2019; 650 Aparici-Espert, Garcia-Lainez, Andreu, Miranda, Lhiaubet-Vallet (bb0005) 2018; 13 Zhang, Wang, Zhu, Liu, Li (bb0465) 2021; 556 Kim, Kang (bb0145) 2020; 130 Sun, Lee, Ma, Lee, Huang (bb0380) 2006; 31 Gillespie, Maclean, Given, Wilson, Judd, Timoshkin, MacGregor (bb0090) 2017; 35 Ray, Dhakal, Regmi, Yamaguchui, Lee (bb0300) 2018; 350 Jarvis, Autin, Goslan, Hassard (bb0120) 2019; 11 Elgohary, Mohamed, Nazer, Baaloudj, Alyami, Jery, Assadi, Amrane (bb0065) 2021; 11 Lee, Jang, Kim, Joo (bb0180) 2021 Wang, Wang, Li, Zhang (bb0405) 2012; 51 M. Kojima K. Mawatari T. Emoto R. Nishisaka-Nonaka T. Kim N. Bui T. Shimohata T. Uebanso M. Akutagawa Y. Kinouchi T. Wada M. Okamoto H. Ito K. Tojo T. Daidoji T. Nakaya A. Takahashi Microorganisms irradiation by a combination of different peak-wavelength ultraviolet-light emitting diodes enhances the inactivation of influenza s viruses, (n.d.). doi:10.3390/microorganisms8071014. Oguma, Rattanakul, Bolton (bb0270) 2016; 142 Chen, Loeb, Kim (bb0045) 2017; 3 Song, Mohseni, Taghipour (bb0375) 2019; 163 Nguyen, Suwan, Koottatep, Beck (bb0250) 2019; 153 Xiong, Lu, Tang, Huang, Ruan, Jiang, Chen, Liu, Kang, Liu (bb0440) 2020; 248 Simons, Gabbai, Moram (bb0355) 2014; 66 Baaloudj, Assadi, Nasrallah, El Jery, Khezami, Assadi (bb0010) 2021; 42 Rediker (bb0305) 1987; 23 Takahashi, Matsubayashi, Ohashi, Naohara, Urakami, Sasai, Kido, Kaneko, Teramoto (bb0385) 2020; 77 García-Gil, Casado, Pablos, Marugán (bb0080) 2019; 376 Keshavarzfathy, Taghipour (bb0125) 2019; 166 Hutchinson, Fuller, Mullins (bb0115) 1980 Bourget (bb0025) 2008; 43 Kheyrandish, Taghipour, Mohseni (bb0140) 2018; 352 Casado, García-Gil, van Grieken, Marugán (bb0040) 2019; 252 Levchuk, Rueda-Márquez, Suihkonen, Manzano, Sillanpää (bb0185) 2015; 143 Moreno-SanSegundo, Casado, Marugán (bb0240) 2020; 388 Yu Jeco, Larroder, Oguma (bb0455) 2019; 9 Zheludev (bb0470) 2007; 1 Lee, Jin, Hong (bb0175) 2018; 185 Liu, Pan, Lv, Sun (bb0200) 2014; 583 Grandusky, Gibb, Mendrick, Moe, Wraback, Schowalter (bb0095) 2011; 4 Pousty, Hofmann, Gerchman, Mamane (bb0290) 2021; 217 Round (bb0320) 1991 Sholtes, Lowe, Walters, Sobsey, Linden, Casanova (bb0345) 2016; 37 Sholtes, Linden (bb0340) 2019; 165 Martín-Sómer, Pablos, van Grieken, Marugán (bb0215) 2017; 215 Rattanakul, Oguma (bb0295) 2018; 130 Sommer, Haider, Cabaj, Pribil, Lhotsky (bb0360) 1998 Oppezzo, Pizarro (bb0285) 2001; 62 Xiao, Chu, He, Liu, Hu (bb0425) 2018; 141 Kim, Kim, Kang (bb0150) 2017; 91 Fujioka, Kodamatani, Yoshikawa, Inoue, Ikehata (bb0075) 2020; 20 Lawal, Cosman, Pagan (bb0165) 2018; 20 S.E. Beck, H. Ryu, L.A. Boczek, J.L. Cashdollar, K.M. Jeanis, J.S. Rosenblum, O.R. Lawal, K.G. Linden, Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy, Water Res. 109 (n.d.) 207–216. doi:10.1016/j.watres.2016.11.024. Hull, Linden (bb0105) 2018; 143 Wang, Liu, Dai, Dong, Zhang, Chen (bb0410) 2012; 215–216 Oguma, Rattanakul, Masaike (bb0275) 2019; 19 Natarajan, Thomas, Natarajan, Bajaj, Tayade (bb0245) 2011; 169 Würtele, Kolbe, Lipsz, Külberg, Weyers, Kneissl, Jekel (bb0420) 2011; 45 Keshavarzfathy, Hosoi, Oguma, Taghipour (bb0135) 2021; 407 Repo, Rengaraj, Pulkka, Castangnoli, Suihkonen, Sopanen, Sillanpää (bb0310) 2013; 120 Nyangaresi, Qin, Chen, Zhang, Lu, Shen (bb0255) 2018; 147 Chevremont, Farnet, Sergent, Coulomb, Boudenne (bb0050) 2012; 285 Gerchman, Mamane, Friedman, Mandelboim (bb0085) 2020; 212 Yin, Shang (bb0450) 2020; 185 Martín-Sómer, Benz, van Ommen, Marugán (bb0225) 2020; 10 Betzalel, Gerchman, Cohen-Yaniv, Mamane (bb0020) 2020; 207 Weisbuch (bb0415) 2020; 9 Lamar (bb0160) 2020; 9 Yu (bb0460) 2014 Moreno, Sun (bb0230) 2008; 16 Tokode, Prabhu, Lawton, Robertson (bb0395) 2016; 319–320 Martín-Sómer, Vega, Pablos, van Grieken, Marugán (bb0220) 2018; 221 Xiong, Hu (bb0430) 2013; 47 Feng-Tie, Huang (bb0070) 2011; 7 Keshavarzfathy, Taghipour (bb0130) 2019; 377 Deng, Li, Tang, Ouyang, Liao, Fang, Ding, Yang, Su, Gong (bb0055) 2020; 7 Rodríguez-González, Obregón, Patrón-Soberano, Terashima, Fujishima (bb0315) 2020; 270 Wang, Chang, Lin (bb0400) 2021; 40 Dupuis, Krames (bb0060) 2008; 26 Hull, Herold, Linden (bb0110) 2019; 1 Nyangaresi, Qin, Chen, Zhang, Lu, Shen (bb0260) 2019; 157 Kim, Shin, Kang, Kim, Kang (bb0155) 2020; 117 Moreno, Casado, Marugán (bb0235) 2019; 205 Nyangaresi, Qin, Chen, Zhang, Lu, Shen (bb0265) 2019; 335 Bertagna Silva, Buttiglieri, Babić (bb0015) 2021; 28 Silva, Leonel, Tonetti (bb0350) 2020; 231 Zhou, Li, Lan, Yan, Zhu (bb0475) 2017; 35 Li, Cai, Wang, Niu, Yang, Zhang (bb0195) 2019; 659 Le, Tran, Danh (bb0170) 2021; 545 Heathcote (bb0100) 2011 Song, Taghipour, Mohseni (bb0370) 2019; 665 Bowker, Sain, Shatalov, Ducoste (bb0030) 2011; 45 Li, Wang, Huo, Lu, Hu (bb0190) 2017; 126 Song, Taghipour, Mohseni (bb0365) 2018; 343 Xiong, Hu (bb0435) 2017; 282 Moreno (10.1016/j.scitotenv.2023.163963_bb0230) 2008; 16 Feng-Tie (10.1016/j.scitotenv.2023.163963_bb0070) 2011; 7 Fujioka (10.1016/j.scitotenv.2023.163963_bb0075) 2020; 20 Lawal (10.1016/j.scitotenv.2023.163963_bb0165) 2018; 20 Martino (10.1016/j.scitotenv.2023.163963_bb0210) 2020; 38 Zou (10.1016/j.scitotenv.2023.163963_bb0480) 2019; 650 Bowker (10.1016/j.scitotenv.2023.163963_bb0030) 2011; 45 Lee (10.1016/j.scitotenv.2023.163963_bb0175) 2018; 185 Nguyen (10.1016/j.scitotenv.2023.163963_bb0250) 2019; 153 Ohl (10.1016/j.scitotenv.2023.163963_bb0280) 1946 Tokode (10.1016/j.scitotenv.2023.163963_bb0395) 2016; 319–320 Nyangaresi (10.1016/j.scitotenv.2023.163963_bb0255) 2018; 147 Oguma (10.1016/j.scitotenv.2023.163963_bb0270) 2016; 142 Sholtes (10.1016/j.scitotenv.2023.163963_bb0345) 2016; 37 Keshavarzfathy (10.1016/j.scitotenv.2023.163963_bb0125) 2019; 166 Thatcher (10.1016/j.scitotenv.2023.163963_bb0390) 2021; 230 Elgohary (10.1016/j.scitotenv.2023.163963_bb0065) 2021; 11 Rattanakul (10.1016/j.scitotenv.2023.163963_bb0295) 2018; 130 Yin (10.1016/j.scitotenv.2023.163963_bb0450) 2020; 185 Shen (10.1016/j.scitotenv.2023.163963_bb0335) 2020; 386 Bourget (10.1016/j.scitotenv.2023.163963_bb0025) 2008; 43 Round (10.1016/j.scitotenv.2023.163963_bb0320) 1991 Xiong (10.1016/j.scitotenv.2023.163963_bb0430) 2013; 47 Würtele (10.1016/j.scitotenv.2023.163963_bb0420) 2011; 45 Zhang (10.1016/j.scitotenv.2023.163963_bb0465) 2021; 556 Li (10.1016/j.scitotenv.2023.163963_bb0195) 2019; 659 Wang (10.1016/j.scitotenv.2023.163963_bb0400) 2021; 40 Weisbuch (10.1016/j.scitotenv.2023.163963_bb0415) 2020; 9 Li (10.1016/j.scitotenv.2023.163963_bb0190) 2017; 126 Dupuis (10.1016/j.scitotenv.2023.163963_bb0060) 2008; 26 Jarvis (10.1016/j.scitotenv.2023.163963_bb0120) 2019; 11 Natarajan (10.1016/j.scitotenv.2023.163963_bb0245) 2011; 169 Casado (10.1016/j.scitotenv.2023.163963_bb0040) 2019; 252 Xiong (10.1016/j.scitotenv.2023.163963_bb0435) 2017; 282 Rediker (10.1016/j.scitotenv.2023.163963_bb0305) 1987; 23 Wang (10.1016/j.scitotenv.2023.163963_bb0405) 2012; 51 Kheyrandish (10.1016/j.scitotenv.2023.163963_bb0140) 2018; 352 Kim (10.1016/j.scitotenv.2023.163963_bb0150) 2017; 91 Pousty (10.1016/j.scitotenv.2023.163963_bb0290) 2021; 217 Silva (10.1016/j.scitotenv.2023.163963_bb0350) 2020; 231 Kim (10.1016/j.scitotenv.2023.163963_bb0145) 2020; 130 Le (10.1016/j.scitotenv.2023.163963_bb0170) 2021; 545 Chen (10.1016/j.scitotenv.2023.163963_bb0045) 2017; 3 Moreno-SanSegundo (10.1016/j.scitotenv.2023.163963_bb0240) 2020; 388 Nyangaresi (10.1016/j.scitotenv.2023.163963_bb0265) 2019; 335 Xiong (10.1016/j.scitotenv.2023.163963_bb0440) 2020; 248 Bertagna Silva (10.1016/j.scitotenv.2023.163963_bb0015) 2021; 28 Liu (10.1016/j.scitotenv.2023.163963_bb0200) 2014; 583 10.1016/j.scitotenv.2023.163963_bb0205 Repo (10.1016/j.scitotenv.2023.163963_bb0310) 2013; 120 Song (10.1016/j.scitotenv.2023.163963_bb0365) 2018; 343 Hull (10.1016/j.scitotenv.2023.163963_bb0105) 2018; 143 Ray (10.1016/j.scitotenv.2023.163963_bb0300) 2018; 350 Heathcote (10.1016/j.scitotenv.2023.163963_bb0100) 2011 Levchuk (10.1016/j.scitotenv.2023.163963_bb0185) 2015; 143 Rodríguez-González (10.1016/j.scitotenv.2023.163963_bb0315) 2020; 270 Sommer (10.1016/j.scitotenv.2023.163963_bb0360) 1998 Chevremont (10.1016/j.scitotenv.2023.163963_bb0050) 2012; 285 Keshavarzfathy (10.1016/j.scitotenv.2023.163963_bb0130) 2019; 377 Simons (10.1016/j.scitotenv.2023.163963_bb0355) 2014; 66 Martín-Sómer (10.1016/j.scitotenv.2023.163963_bb0225) 2020; 10 Sun (10.1016/j.scitotenv.2023.163963_bb0380) 2006; 31 Yu (10.1016/j.scitotenv.2023.163963_bb0460) 2014 Baaloudj (10.1016/j.scitotenv.2023.163963_bb0010) 2021; 42 Takahashi (10.1016/j.scitotenv.2023.163963_bb0385) 2020; 77 Betzalel (10.1016/j.scitotenv.2023.163963_bb0020) 2020; 207 Yan (10.1016/j.scitotenv.2023.163963_bb0445) 2018; 367 Martín-Sómer (10.1016/j.scitotenv.2023.163963_bb0220) 2018; 221 Song (10.1016/j.scitotenv.2023.163963_bb0370) 2019; 665 García-Gil (10.1016/j.scitotenv.2023.163963_bb0080) 2019; 376 Wang (10.1016/j.scitotenv.2023.163963_bb0410) 2012; 215–216 Oppezzo (10.1016/j.scitotenv.2023.163963_bb0285) 2001; 62 10.1016/j.scitotenv.2023.163963_bb0325 Deng (10.1016/j.scitotenv.2023.163963_bb0055) 2020; 7 Sholtes (10.1016/j.scitotenv.2023.163963_bb0340) 2019; 165 Zhou (10.1016/j.scitotenv.2023.163963_bb0475) 2017; 35 Cai (10.1016/j.scitotenv.2023.163963_bb0035) 2021; 404 Keshavarzfathy (10.1016/j.scitotenv.2023.163963_bb0135) 2021; 407 Song (10.1016/j.scitotenv.2023.163963_bb0375) 2019; 163 Nyangaresi (10.1016/j.scitotenv.2023.163963_bb0260) 2019; 157 Aparici-Espert (10.1016/j.scitotenv.2023.163963_bb0005) 2018; 13 Lamar (10.1016/j.scitotenv.2023.163963_bb0160) 2020; 9 Gerchman (10.1016/j.scitotenv.2023.163963_bb0085) 2020; 212 Hull (10.1016/j.scitotenv.2023.163963_bb0110) 2019; 1 Hutchinson (10.1016/j.scitotenv.2023.163963_bb0115) Yu Jeco (10.1016/j.scitotenv.2023.163963_bb0455) 2019; 9 Xiao (10.1016/j.scitotenv.2023.163963_bb0425) 2018; 141 Zheludev (10.1016/j.scitotenv.2023.163963_bb0470) 2007; 1 Gillespie (10.1016/j.scitotenv.2023.163963_bb0090) 2017; 35 Lee (10.1016/j.scitotenv.2023.163963_bb0180) 2021 Saravanan (10.1016/j.scitotenv.2023.163963_bb0330) 2021; 24 Oguma (10.1016/j.scitotenv.2023.163963_bb0275) 2019; 19 Grandusky (10.1016/j.scitotenv.2023.163963_bb0095) 2011; 4 Kim (10.1016/j.scitotenv.2023.163963_bb0155) 2020; 117 Moreno (10.1016/j.scitotenv.2023.163963_bb0235) 2019; 205 Martín-Sómer (10.1016/j.scitotenv.2023.163963_bb0215) 2017; 215 |
| References_xml | – volume: 45 start-page: 2011 year: 2011 end-page: 2019 ident: bb0030 article-title: Microbial UV fluence-response assessment using a novel UV-LED collimated beam system publication-title: Water Res. – volume: 659 start-page: 1415 year: 2019 end-page: 1427 ident: bb0195 article-title: Evaluation survey of microbial disinfection methods in UV-LED water treatment systems publication-title: Sci. Total Environ. – volume: 147 start-page: 331 year: 2018 end-page: 341 ident: bb0255 article-title: Effects of single and combined UV-LEDs on inactivation and subsequent reactivation of E. coli in water disinfection publication-title: Water Res. – volume: 77 year: 2020 ident: bb0385 article-title: Efficacy of ultraviolet light-emitting diodes (UV-LED) at four different peak wavelengths against Cryptosporidium parvum oocysts by inactivation assay using immunodeficient mice publication-title: Parasitol. Int. – volume: 185 year: 2020 ident: bb0450 article-title: Removal of micropollutants in drinking water using UV-LED/chlorine advanced oxidation process followed by activated carbon adsorption publication-title: Water Res. – volume: 285 start-page: 219 year: 2012 end-page: 225 ident: bb0050 article-title: Multivariate optimization of fecal bioindicator inactivation by coupling UV-A and UV-C LEDs publication-title: Desalination – volume: 130 year: 2020 ident: bb0145 article-title: Inactivation efficacy of a sixteen UVC LED module to control foodborne pathogens on selective media and sliced deli meat and spinach surfaces publication-title: LWT – volume: 3 start-page: 188 year: 2017 end-page: 202 ident: bb0045 article-title: LED revolution: fundamentals and prospects for UV disinfection applications publication-title: Environ. Sci. Water Res. Technol. – volume: 143 start-page: 1 year: 2015 end-page: 5 ident: bb0185 article-title: Application of UVA-LED based photocatalysis for plywood mill wastewater treatment publication-title: Sep. Purif. Technol. – volume: 350 start-page: 59 year: 2018 end-page: 68 ident: bb0300 article-title: Inactivation of Staphylococcus aureus in visible light by morphology tuned α-NiMoO4 publication-title: J. Photochem. Photobiol. A Chem. – volume: 556 year: 2021 ident: bb0465 article-title: 1T and 2H mixed phase MoS2 nanobelts coupled with Ti3+ self-doped TiO2 nanosheets for enhanced photocatalytic degradation of RhB under visible light publication-title: Appl. Surf. Sci. – volume: 31 start-page: 2193 year: 2006 ident: bb0380 article-title: Precise optical modeling for LED lighting verified by cross correlation in the midfield region publication-title: Opt. Lett. – volume: 7 start-page: 702 year: 2020 end-page: 723 ident: bb0055 article-title: What will happen when microorganisms “meet” photocatalysts and photocatalysis? publication-title: Environ. Sci.Nano – volume: 143 start-page: 292 year: 2018 end-page: 300 ident: bb0105 article-title: Synergy of MS2 disinfection by sequential exposure to tailored UV wavelengths publication-title: Water Res. – volume: 388 year: 2020 ident: bb0240 article-title: Enhanced numerical simulation of photocatalytic reactors with an improved solver for the radiative transfer equation publication-title: Chem. Eng. J. – year: 1998 ident: bb0360 article-title: Time Dose Reciprocity in UV Disinfection of Water – volume: 212 year: 2020 ident: bb0085 article-title: UV-LED disinfection of coronavirus: wavelength effect publication-title: J. Photochem. Photobiol. B Biol. – volume: 117 year: 2020 ident: bb0155 article-title: Application of the 222 nm krypton-chlorine excilamp and 280 nm UVC light-emitting diode for the inactivation of Listeria monocytogenes and Salmonella typhimurium in water with various turbidities publication-title: LWT – start-page: 879 year: 1991 ident: bb0320 article-title: A note on carborundum publication-title: Semicond. Devices Pioneer. Pap – volume: 343 start-page: 362 year: 2018 end-page: 370 ident: bb0365 article-title: Microorganisms inactivation by continuous and pulsed irradiation of ultraviolet light-emitting diodes (UV-LEDs) publication-title: Chem. Eng. J. – volume: 215–216 start-page: 25 year: 2012 end-page: 31 ident: bb0410 article-title: CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor publication-title: J. Hazard. Mater. – volume: 16 start-page: 1808 year: 2008 ident: bb0230 article-title: Modeling the radiation pattern of LEDs publication-title: Opt. Express – volume: 230 year: 2021 ident: bb0390 article-title: Impact of surface reflection on microbial inactivation in a UV LED treatment duct publication-title: Chem. Eng. Sci. – volume: 153 start-page: 53 year: 2019 end-page: 62 ident: bb0250 article-title: Application of a novel, continuous-feeding ultraviolet light emitting diode (UV-LED) system to disinfect domestic wastewater for discharge or agricultural reuse publication-title: Water Res. – volume: 221 start-page: 258 year: 2018 end-page: 265 ident: bb0220 article-title: Wavelength dependence of the efficiency of photocatalytic processes for water treatment publication-title: Appl. Catal. B Environ. – volume: 66 start-page: 338 year: 2014 end-page: 349 ident: bb0355 article-title: Optical fluence modelling for ultraviolet light emitting diode-based water treatment systems publication-title: Water Res. – year: 2021 ident: bb0180 article-title: Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions publication-title: J. Ind. Eng. Chem. – volume: 24 year: 2021 ident: bb0330 article-title: Photocatalytic disinfection of micro-organisms: mechanisms and applications publication-title: Environ. Technol. Innov. – volume: 13 start-page: 542 year: 2018 end-page: 547 ident: bb0005 article-title: Oxidatively generated lesions as internal photosensitizers for pyrimidine dimerization in DNA publication-title: ACS Chem. Biol. – volume: 319–320 start-page: 96 year: 2016 end-page: 106 ident: bb0395 article-title: Controlled periodic illumination in semiconductor photocatalysis publication-title: J. Photochem. Photobiol. A Chem. – volume: 231 start-page: 1 year: 2020 end-page: 10 ident: bb0350 article-title: UV-LED for safe effluent reuse in agriculture publication-title: Water Air Soil Pollut. – reference: M. Kojima K. Mawatari T. Emoto R. Nishisaka-Nonaka T. Kim N. Bui T. Shimohata T. Uebanso M. Akutagawa Y. Kinouchi T. Wada M. Okamoto H. Ito K. Tojo T. Daidoji T. Nakaya A. Takahashi Microorganisms irradiation by a combination of different peak-wavelength ultraviolet-light emitting diodes enhances the inactivation of influenza s viruses, (n.d.). doi:10.3390/microorganisms8071014. – volume: 47 start-page: 4547 year: 2013 end-page: 4555 ident: bb0430 article-title: Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system publication-title: Water Res. – volume: 248 year: 2020 ident: bb0440 article-title: UV-LED/chlorine degradation of propranolol in water: degradation pathway and product toxicity publication-title: Chemosphere – volume: 404 year: 2021 ident: bb0035 article-title: Enhanced oxidation of carbamazepine by UV-LED/persulfate and UV-LED/H2O2 processes in the presence of trace copper ions publication-title: Chem. Eng. J. – year: 1980 ident: bb0115 article-title: Biological effects of ultraviolet radiation walter harm frontmatter more information – volume: 282 start-page: 48 year: 2017 end-page: 56 ident: bb0435 article-title: Decomposition of acetaminophen (Ace) using TiO2/UVA/LED system publication-title: Catal. Today – volume: 217 year: 2021 ident: bb0290 article-title: Wavelength-dependent time–dose reciprocity and stress mechanism for UV-LED disinfection of Escherichia coli publication-title: J. Photochem. Photobiol. B Biol. – volume: 583 start-page: 390 year: 2014 end-page: 395 ident: bb0200 article-title: CdS sensitized TiO2 film for photocatalytic reduction of Cr(VI) by microwave-assisted chemical bath deposition method publication-title: J. Alloys Compd. – volume: 166 year: 2019 ident: bb0125 article-title: Computational modeling of ultraviolet light-emitting diode (UV-LED) reactor for water treatment publication-title: Water Res. – volume: 28 start-page: 103 year: 2021 end-page: 120 ident: bb0015 article-title: State-of-the-art and current challenges for TiO2/UV-LED photocatalytic degradation of emerging organic micropollutants publication-title: Environ. Sci. Pollut. Res. – volume: 20 start-page: 22 year: 2018 end-page: 28 ident: bb0165 publication-title: UV-C LED devices and systems: current and future state – volume: 157 start-page: 218 year: 2019 end-page: 227 ident: bb0260 article-title: Comparison of the performance of pulsed and continuous UVC-LED irradiation in the inactivation of bacteria publication-title: Water Res. – volume: 120 start-page: 206 year: 2013 end-page: 214 ident: bb0310 article-title: Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation publication-title: Sep. Purif. Technol. – volume: 650 start-page: 210 year: 2019 end-page: 215 ident: bb0480 article-title: Enhanced inactivation of E. coli by pulsed UV-LED irradiation during water disinfection publication-title: Sci. Total Environ. – volume: 19 start-page: 1507 year: 2019 end-page: 1514 ident: bb0275 article-title: Inactivation of health-related microorganisms in water using UV light-emitting diodes publication-title: Water Sci. Technol.Water Supply – year: 2011 ident: bb0100 article-title: UV-LED Overview Part 3- Diode Evolution and Manufacturing – volume: 207 year: 2020 ident: bb0020 article-title: Multiwell plates for obtaining a rapid microbial dose-response curve in UV-LED systems publication-title: J. Photochem. Photobiol. B Biol. – volume: 386 year: 2020 ident: bb0335 article-title: Efficacy of UVC-LED in water disinfection on Bacillus species with consideration of antibiotic resistance issue publication-title: J. Hazard. Mater. – volume: 11 start-page: 1498 year: 2021 ident: bb0065 article-title: A review of the use of semiconductors as catalysts in the photocatalytic inactivation of microorganisms publication-title: Catal. – volume: 215 start-page: 1 year: 2017 end-page: 7 ident: bb0215 article-title: Influence of light distribution on the performance of photocatalytic reactors: LED vs mercury lamps publication-title: Appl. Catal. B Environ. – volume: 545 year: 2021 ident: bb0170 article-title: Remarkable enhancement of visible light driven photocatalytic performance of TiO2 by simultaneously doping with C, N, and S publication-title: Chem. Phys. – volume: 205 start-page: 151 year: 2019 end-page: 164 ident: bb0235 article-title: Improved discrete ordinate method for accurate simulation radiation transport using solar and LED light sources publication-title: Chem. Eng. Sci. – volume: 35 start-page: 150 year: 2017 end-page: 156 ident: bb0090 article-title: Efficacy of pulsed 405-nm light-emitting diodes for antimicrobial photodynamic inactivation: effects of intensity, frequency, and duty cycle publication-title: Photomed. Laser Surg. – volume: 185 start-page: 136 year: 2018 end-page: 142 ident: bb0175 article-title: Understanding possible underlying mechanism in declining germicidal efficiency of UV-LED reactor publication-title: J. Photochem. Photobiol. B Biol. – volume: 169 start-page: 126 year: 2011 end-page: 134 ident: bb0245 article-title: Study on UV-LED/TiO2 process for degradation of Rhodamine B dye publication-title: Chem. Eng. J. – volume: 407 year: 2021 ident: bb0135 article-title: Experimental and computational evaluation of a flow-through UV-LED reactor for MS2 and adenovirus inactivation publication-title: Chem. Eng. J. – volume: 141 start-page: 279 year: 2018 end-page: 288 ident: bb0425 article-title: Impact of UVA pre-radiation on UVC disinfection performance: inactivation, repair and mechanism study publication-title: Water Res. – volume: 367 start-page: 355 year: 2018 end-page: 364 ident: bb0445 article-title: Efficient photocatalytic disinfection of Escherichia coli by N-doped TiO2 coated on coal fly ash cenospheres publication-title: J. Photochem. Photobiol. A Chem. – volume: 45 start-page: 1481 year: 2011 end-page: 1489 ident: bb0420 article-title: Application of GaN-based ultraviolet-C light emitting diodes - UV LEDs - for water disinfection publication-title: Water Res. – volume: 23 start-page: 692 year: 1987 end-page: 695 ident: bb0305 article-title: Research at Lincoln Laboratory leading up to the development of the injection laser in 1962 publication-title: IEEE J. Quantum Electron. – reference: S.E. Beck, H. Ryu, L.A. Boczek, J.L. Cashdollar, K.M. Jeanis, J.S. Rosenblum, O.R. Lawal, K.G. Linden, Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy, Water Res. 109 (n.d.) 207–216. doi:10.1016/j.watres.2016.11.024. – volume: 37 start-page: 2183 year: 2016 end-page: 2188 ident: bb0345 article-title: Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water publication-title: Environ. Technol. (UK) – volume: 11 year: 2019 ident: bb0120 article-title: Application of ultraviolet light-emitting diodes (UV-LED) to full-scale drinking-water disinfection publication-title: Water (Switzerland) – volume: 377 start-page: 58 year: 2019 end-page: 66 ident: bb0130 article-title: Radiation modeling of ultraviolet light-emitting diode (UV-LED) for water treatment publication-title: J. Photochem. Photobiol. A Chem. – volume: 252 start-page: 1 year: 2019 end-page: 9 ident: bb0040 article-title: Critical role of the light spectrum on the simulation of solar photocatalytic reactors publication-title: Appl. Catal. B Environ. – volume: 7 start-page: 1673 year: 2011 end-page: 1905 ident: bb0070 publication-title: A Precise Model of LED Lighting and Its Application in Uni-form Illumination System – volume: 26 year: 2008 ident: bb0060 article-title: History, development, and applications of high-brightness visible light-emitting diodes publication-title: J. Light. Technol. – volume: 10 start-page: 450 year: 2020 ident: bb0225 article-title: Multitarget evaluation of the photocatalytic activity of P25-SiO2 prepared by atomic layer deposition publication-title: Catalysts – volume: 352 start-page: 113 year: 2018 end-page: 121 ident: bb0140 article-title: UV-LED radiation modeling and its applications in UV dose determination for water treatment publication-title: J. Photochem. Photobiol. A Chem. – volume: 665 start-page: 1103 year: 2019 end-page: 1110 ident: bb0370 article-title: Microorganisms inactivation by wavelength combinations of ultraviolet light-emitting diodes (UV-LEDs) publication-title: Sci. Total Environ. – volume: 9 year: 2020 ident: bb0415 article-title: Review: on the search for efficient solid state light emitters: past, present, future publication-title: ECS J. Solid State Sci. Technol. – volume: 335 start-page: 200 year: 2019 end-page: 207 ident: bb0265 article-title: Comparison of UV-LED photolytic and UV-LED/TiO2 photocatalytic disinfection for Escherichia coli in water publication-title: Catal. Today – volume: 43 start-page: 1944 year: 2008 end-page: 1946 ident: bb0025 article-title: An introduction to light-emitting diodes publication-title: Hort. Sci. – volume: 62 start-page: 158 year: 2001 end-page: 165 ident: bb0285 article-title: Sublethal effects of ultraviolet a radiation on Enterobacter cloacae publication-title: J. Photochem. Photobiol. B Biol. – year: 1946 ident: bb0280 article-title: Alternating Current Rectifier – volume: 4 year: 2011 ident: bb0095 article-title: High output power from 260nm pseudomorphic ultraviolet light-emitting diodes with improved thermal performance publication-title: Appl. Phys. Express – volume: 42 year: 2021 ident: bb0010 article-title: Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: a review publication-title: J. Water Process Eng. – volume: 20 year: 2020 ident: bb0075 article-title: Assessment of 265-nm UV-LED for direct photolysis and advanced oxidation of N-nitrosamines and 1,4-dioxane publication-title: Environ. Technol. Innov. – volume: 91 start-page: 115 year: 2017 end-page: 123 ident: bb0150 article-title: Inactivation modeling of human enteric virus surrogates, MS2, Qβ, and ΦX174, in water using UVC-LEDs, a novel disinfecting system publication-title: Food Res. Int. – year: 2014 ident: bb0460 article-title: Light Emitting Diode Based Photochemical Treatment of Contaminants in Aqueous Phase – volume: 1 year: 2019 ident: bb0110 article-title: UV LED water disinfection: validation and small system demonstration study publication-title: AWWA Water Sci. – volume: 9 start-page: 619 year: 2020 ident: bb0160 article-title: Latest developments in LED drivers publication-title: Electronics – volume: 376 year: 2019 ident: bb0080 article-title: Novel procedure for the numerical simulation of solar water disinfection processes in flow reactors publication-title: Chem. Eng. J. – volume: 38 start-page: 458 year: 2020 end-page: 468 ident: bb0210 article-title: Virus and bacteria inactivation using ultraviolet light-emitting diodes publication-title: Environ. Eng. Sci. – volume: 163 year: 2019 ident: bb0375 article-title: Mechanisms investigation on bacterial inactivation through combinations of UV wavelengths publication-title: Water Res. – volume: 35 start-page: 471 year: 2017 end-page: 477 ident: bb0475 article-title: Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection publication-title: Ultrason. Sonochem. – volume: 40 year: 2021 ident: bb0400 article-title: Efficiency improvement of a flow-through water disinfection reactor using UV-C light emitting diodes publication-title: J. Water Process Eng. – volume: 9 start-page: 1 year: 2019 ident: bb0455 article-title: Technosocial feasibility analysis of solar-powered UV-LED water treatment system in a remote island of Guimaras, Philippines publication-title: J. Photonics Energy – volume: 1 start-page: 189 year: 2007 end-page: 192 ident: bb0470 article-title: The life and times of the LED - a 100-year history publication-title: Nat. Photonics – volume: 130 start-page: 31 year: 2018 end-page: 37 ident: bb0295 article-title: Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms publication-title: Water Res. – volume: 51 start-page: 1654 year: 2012 end-page: 1659 ident: bb0405 article-title: Collimating lens for light-emitting-diode light source based on non-imaging optics publication-title: Appl. Opt. – volume: 142 start-page: 04015082 year: 2016 ident: bb0270 article-title: Application of UV light–emitting diodes to adenovirus in water publication-title: J. Environ. Eng. – volume: 270 year: 2020 ident: bb0315 article-title: An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes publication-title: Appl. Catal. B Environ. – volume: 126 start-page: 134 year: 2017 end-page: 143 ident: bb0190 article-title: Comparison of UV-LED and low pressure UV for water disinfection: photoreactivation and dark repair of Escherichia coli publication-title: Water Res. – volume: 165 year: 2019 ident: bb0340 article-title: Pulsed and continuous light UV LED: microbial inactivation, electrical, and time efficiency publication-title: Water Res. – volume: 20 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0075 article-title: Assessment of 265-nm UV-LED for direct photolysis and advanced oxidation of N-nitrosamines and 1,4-dioxane publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2020.101147 – volume: 386 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0335 article-title: Efficacy of UVC-LED in water disinfection on Bacillus species with consideration of antibiotic resistance issue publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121968 – volume: 583 start-page: 390 year: 2014 ident: 10.1016/j.scitotenv.2023.163963_bb0200 article-title: CdS sensitized TiO2 film for photocatalytic reduction of Cr(VI) by microwave-assisted chemical bath deposition method publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.08.193 – volume: 23 start-page: 692 year: 1987 ident: 10.1016/j.scitotenv.2023.163963_bb0305 article-title: Research at Lincoln Laboratory leading up to the development of the injection laser in 1962 publication-title: IEEE J. Quantum Electron. doi: 10.1109/JQE.1987.1073430 – volume: 24 year: 2021 ident: 10.1016/j.scitotenv.2023.163963_bb0330 article-title: Photocatalytic disinfection of micro-organisms: mechanisms and applications publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2021.101909 – volume: 207 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0020 article-title: Multiwell plates for obtaining a rapid microbial dose-response curve in UV-LED systems publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2020.111865 – year: 2021 ident: 10.1016/j.scitotenv.2023.163963_bb0180 article-title: Cu-doped TiO2 hollow nanostructures for the enhanced photocatalysis under visible light conditions publication-title: J. Ind. Eng. Chem. – volume: 665 start-page: 1103 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0370 article-title: Microorganisms inactivation by wavelength combinations of ultraviolet light-emitting diodes (UV-LEDs) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.041 – volume: 212 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0085 article-title: UV-LED disinfection of coronavirus: wavelength effect publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2020.112044 – volume: 147 start-page: 331 year: 2018 ident: 10.1016/j.scitotenv.2023.163963_bb0255 article-title: Effects of single and combined UV-LEDs on inactivation and subsequent reactivation of E. coli in water disinfection publication-title: Water Res. doi: 10.1016/j.watres.2018.10.014 – volume: 19 start-page: 1507 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0275 article-title: Inactivation of health-related microorganisms in water using UV light-emitting diodes publication-title: Water Sci. Technol.Water Supply doi: 10.2166/ws.2019.022 – volume: 130 start-page: 31 year: 2018 ident: 10.1016/j.scitotenv.2023.163963_bb0295 article-title: Inactivation kinetics and efficiencies of UV-LEDs against Pseudomonas aeruginosa, Legionella pneumophila, and surrogate microorganisms publication-title: Water Res. doi: 10.1016/j.watres.2017.11.047 – volume: 230 year: 2021 ident: 10.1016/j.scitotenv.2023.163963_bb0390 article-title: Impact of surface reflection on microbial inactivation in a UV LED treatment duct publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.116204 – volume: 185 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0450 article-title: Removal of micropollutants in drinking water using UV-LED/chlorine advanced oxidation process followed by activated carbon adsorption publication-title: Water Res. doi: 10.1016/j.watres.2020.116297 – volume: 3 start-page: 188 year: 2017 ident: 10.1016/j.scitotenv.2023.163963_bb0045 article-title: LED revolution: fundamentals and prospects for UV disinfection applications publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C6EW00241B – volume: 165 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0340 article-title: Pulsed and continuous light UV LED: microbial inactivation, electrical, and time efficiency publication-title: Water Res. doi: 10.1016/j.watres.2019.114965 – volume: 62 start-page: 158 year: 2001 ident: 10.1016/j.scitotenv.2023.163963_bb0285 article-title: Sublethal effects of ultraviolet a radiation on Enterobacter cloacae publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/S1011-1344(01)00180-4 – volume: 153 start-page: 53 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0250 article-title: Application of a novel, continuous-feeding ultraviolet light emitting diode (UV-LED) system to disinfect domestic wastewater for discharge or agricultural reuse publication-title: Water Res. doi: 10.1016/j.watres.2019.01.006 – volume: 556 year: 2021 ident: 10.1016/j.scitotenv.2023.163963_bb0465 article-title: 1T and 2H mixed phase MoS2 nanobelts coupled with Ti3+ self-doped TiO2 nanosheets for enhanced photocatalytic degradation of RhB under visible light publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149768 – volume: 9 start-page: 619 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0160 article-title: Latest developments in LED drivers publication-title: Electronics doi: 10.3390/electronics9040619 – volume: 143 start-page: 292 year: 2018 ident: 10.1016/j.scitotenv.2023.163963_bb0105 article-title: Synergy of MS2 disinfection by sequential exposure to tailored UV wavelengths publication-title: Water Res. doi: 10.1016/j.watres.2018.06.017 – volume: 37 start-page: 2183 year: 2016 ident: 10.1016/j.scitotenv.2023.163963_bb0345 article-title: Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water publication-title: Environ. Technol. (UK) doi: 10.1080/09593330.2016.1144798 – volume: 28 start-page: 103 year: 2021 ident: 10.1016/j.scitotenv.2023.163963_bb0015 article-title: State-of-the-art and current challenges for TiO2/UV-LED photocatalytic degradation of emerging organic micropollutants publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-11125-z – volume: 9 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0415 article-title: Review: on the search for efficient solid state light emitters: past, present, future publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0392001JSS – volume: 205 start-page: 151 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0235 article-title: Improved discrete ordinate method for accurate simulation radiation transport using solar and LED light sources publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.04.034 – volume: 120 start-page: 206 year: 2013 ident: 10.1016/j.scitotenv.2023.163963_bb0310 article-title: Photocatalytic degradation of dyes by CdS microspheres under near UV and blue LED radiation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2013.10.008 – volume: 285 start-page: 219 year: 2012 ident: 10.1016/j.scitotenv.2023.163963_bb0050 article-title: Multivariate optimization of fecal bioindicator inactivation by coupling UV-A and UV-C LEDs publication-title: Desalination doi: 10.1016/j.desal.2011.10.006 – volume: 40 year: 2021 ident: 10.1016/j.scitotenv.2023.163963_bb0400 article-title: Efficiency improvement of a flow-through water disinfection reactor using UV-C light emitting diodes publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2020.101819 – volume: 47 start-page: 4547 year: 2013 ident: 10.1016/j.scitotenv.2023.163963_bb0430 article-title: Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system publication-title: Water Res. doi: 10.1016/j.watres.2013.04.056 – volume: 7 start-page: 1673 year: 2011 ident: 10.1016/j.scitotenv.2023.163963_bb0070 – volume: 16 start-page: 1808 year: 2008 ident: 10.1016/j.scitotenv.2023.163963_bb0230 article-title: Modeling the radiation pattern of LEDs publication-title: Opt. Express doi: 10.1364/OE.16.001808 – volume: 407 year: 2021 ident: 10.1016/j.scitotenv.2023.163963_bb0135 article-title: Experimental and computational evaluation of a flow-through UV-LED reactor for MS2 and adenovirus inactivation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127058 – volume: 163 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0375 article-title: Mechanisms investigation on bacterial inactivation through combinations of UV wavelengths publication-title: Water Res. doi: 10.1016/j.watres.2019.114875 – volume: 130 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0145 article-title: Inactivation efficacy of a sixteen UVC LED module to control foodborne pathogens on selective media and sliced deli meat and spinach surfaces publication-title: LWT doi: 10.1016/j.lwt.2020.109422 – volume: 545 year: 2021 ident: 10.1016/j.scitotenv.2023.163963_bb0170 article-title: Remarkable enhancement of visible light driven photocatalytic performance of TiO2 by simultaneously doping with C, N, and S publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2021.111144 – volume: 142 start-page: 04015082 year: 2016 ident: 10.1016/j.scitotenv.2023.163963_bb0270 article-title: Application of UV light–emitting diodes to adenovirus in water publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)EE.1943-7870.0001061 – volume: 282 start-page: 48 year: 2017 ident: 10.1016/j.scitotenv.2023.163963_bb0435 article-title: Decomposition of acetaminophen (Ace) using TiO2/UVA/LED system publication-title: Catal. Today doi: 10.1016/j.cattod.2016.03.015 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0455 article-title: Technosocial feasibility analysis of solar-powered UV-LED water treatment system in a remote island of Guimaras, Philippines publication-title: J. Photonics Energy doi: 10.1117/1.JPE.9.043105 – volume: 13 start-page: 542 issue: 3 year: 2018 ident: 10.1016/j.scitotenv.2023.163963_bb0005 article-title: Oxidatively generated lesions as internal photosensitizers for pyrimidine dimerization in DNA publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.7b01097 – volume: 215–216 start-page: 25 year: 2012 ident: 10.1016/j.scitotenv.2023.163963_bb0410 article-title: CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.02.021 – volume: 35 start-page: 471 year: 2017 ident: 10.1016/j.scitotenv.2023.163963_bb0475 article-title: Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.10.028 – volume: 43 start-page: 1944 year: 2008 ident: 10.1016/j.scitotenv.2023.163963_bb0025 article-title: An introduction to light-emitting diodes publication-title: Hort. Sci. – volume: 185 start-page: 136 year: 2018 ident: 10.1016/j.scitotenv.2023.163963_bb0175 article-title: Understanding possible underlying mechanism in declining germicidal efficiency of UV-LED reactor publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2018.06.001 – year: 2011 ident: 10.1016/j.scitotenv.2023.163963_bb0100 – volume: 143 start-page: 1 year: 2015 ident: 10.1016/j.scitotenv.2023.163963_bb0185 article-title: Application of UVA-LED based photocatalysis for plywood mill wastewater treatment publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.01.007 – ident: 10.1016/j.scitotenv.2023.163963_bb0205 doi: 10.3390/microorganisms8071014 – volume: 51 start-page: 1654 year: 2012 ident: 10.1016/j.scitotenv.2023.163963_bb0405 article-title: Collimating lens for light-emitting-diode light source based on non-imaging optics publication-title: Appl. Opt. doi: 10.1364/AO.51.001654 – volume: 659 start-page: 1415 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0195 article-title: Evaluation survey of microbial disinfection methods in UV-LED water treatment systems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.344 – volume: 335 start-page: 200 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0265 article-title: Comparison of UV-LED photolytic and UV-LED/TiO2 photocatalytic disinfection for Escherichia coli in water publication-title: Catal. Today doi: 10.1016/j.cattod.2018.11.015 – volume: 11 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0120 article-title: Application of ultraviolet light-emitting diodes (UV-LED) to full-scale drinking-water disinfection publication-title: Water (Switzerland) – volume: 1 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0110 article-title: UV LED water disinfection: validation and small system demonstration study publication-title: AWWA Water Sci. doi: 10.1002/aws2.1148 – start-page: 879 year: 1991 ident: 10.1016/j.scitotenv.2023.163963_bb0320 article-title: A note on carborundum – volume: 217 year: 2021 ident: 10.1016/j.scitotenv.2023.163963_bb0290 article-title: Wavelength-dependent time–dose reciprocity and stress mechanism for UV-LED disinfection of Escherichia coli publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2021.112129 – volume: 77 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0385 article-title: Efficacy of ultraviolet light-emitting diodes (UV-LED) at four different peak wavelengths against Cryptosporidium parvum oocysts by inactivation assay using immunodeficient mice publication-title: Parasitol. Int. doi: 10.1016/j.parint.2020.102108 – volume: 4 year: 2011 ident: 10.1016/j.scitotenv.2023.163963_bb0095 article-title: High output power from 260nm pseudomorphic ultraviolet light-emitting diodes with improved thermal performance publication-title: Appl. Phys. Express doi: 10.1143/APEX.4.082101 – volume: 38 start-page: 458 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0210 article-title: Virus and bacteria inactivation using ultraviolet light-emitting diodes publication-title: Environ. Eng. Sci. doi: 10.1089/ees.2020.0092 – volume: 376 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0080 article-title: Novel procedure for the numerical simulation of solar water disinfection processes in flow reactors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.10.131 – volume: 252 start-page: 1 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0040 article-title: Critical role of the light spectrum on the simulation of solar photocatalytic reactors publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.04.004 – volume: 270 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0315 article-title: An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2020.118853 – volume: 26 year: 2008 ident: 10.1016/j.scitotenv.2023.163963_bb0060 article-title: History, development, and applications of high-brightness visible light-emitting diodes publication-title: J. Light. Technol. doi: 10.1109/JLT.2008.923628 – volume: 352 start-page: 113 year: 2018 ident: 10.1016/j.scitotenv.2023.163963_bb0140 article-title: UV-LED radiation modeling and its applications in UV dose determination for water treatment publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2017.10.047 – volume: 126 start-page: 134 year: 2017 ident: 10.1016/j.scitotenv.2023.163963_bb0190 article-title: Comparison of UV-LED and low pressure UV for water disinfection: photoreactivation and dark repair of Escherichia coli publication-title: Water Res. doi: 10.1016/j.watres.2017.09.030 – volume: 35 start-page: 150 year: 2017 ident: 10.1016/j.scitotenv.2023.163963_bb0090 article-title: Efficacy of pulsed 405-nm light-emitting diodes for antimicrobial photodynamic inactivation: effects of intensity, frequency, and duty cycle publication-title: Photomed. Laser Surg. doi: 10.1089/pho.2016.4179 – volume: 377 start-page: 58 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0130 article-title: Radiation modeling of ultraviolet light-emitting diode (UV-LED) for water treatment publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2019.03.030 – volume: 231 start-page: 1 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0350 article-title: UV-LED for safe effluent reuse in agriculture publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-020-04742-4 – volume: 215 start-page: 1 year: 2017 ident: 10.1016/j.scitotenv.2023.163963_bb0215 article-title: Influence of light distribution on the performance of photocatalytic reactors: LED vs mercury lamps publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.05.048 – volume: 91 start-page: 115 year: 2017 ident: 10.1016/j.scitotenv.2023.163963_bb0150 article-title: Inactivation modeling of human enteric virus surrogates, MS2, Qβ, and ΦX174, in water using UVC-LEDs, a novel disinfecting system publication-title: Food Res. Int. doi: 10.1016/j.foodres.2016.11.042 – volume: 221 start-page: 258 year: 2018 ident: 10.1016/j.scitotenv.2023.163963_bb0220 article-title: Wavelength dependence of the efficiency of photocatalytic processes for water treatment publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.09.032 – volume: 11 start-page: 1498 year: 2021 ident: 10.1016/j.scitotenv.2023.163963_bb0065 article-title: A review of the use of semiconductors as catalysts in the photocatalytic inactivation of microorganisms publication-title: Catal. – volume: 1 start-page: 189 year: 2007 ident: 10.1016/j.scitotenv.2023.163963_bb0470 article-title: The life and times of the LED - a 100-year history publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.34 – volume: 117 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0155 article-title: Application of the 222 nm krypton-chlorine excilamp and 280 nm UVC light-emitting diode for the inactivation of Listeria monocytogenes and Salmonella typhimurium in water with various turbidities publication-title: LWT doi: 10.1016/j.lwt.2019.108458 – volume: 350 start-page: 59 year: 2018 ident: 10.1016/j.scitotenv.2023.163963_bb0300 article-title: Inactivation of Staphylococcus aureus in visible light by morphology tuned α-NiMoO4 publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2017.09.042 – volume: 42 year: 2021 ident: 10.1016/j.scitotenv.2023.163963_bb0010 article-title: Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: a review publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.102089 – volume: 66 start-page: 338 year: 2014 ident: 10.1016/j.scitotenv.2023.163963_bb0355 article-title: Optical fluence modelling for ultraviolet light emitting diode-based water treatment systems publication-title: Water Res. doi: 10.1016/j.watres.2014.08.031 – volume: 45 start-page: 2011 year: 2011 ident: 10.1016/j.scitotenv.2023.163963_bb0030 article-title: Microbial UV fluence-response assessment using a novel UV-LED collimated beam system publication-title: Water Res. doi: 10.1016/j.watres.2010.12.005 – volume: 404 year: 2021 ident: 10.1016/j.scitotenv.2023.163963_bb0035 article-title: Enhanced oxidation of carbamazepine by UV-LED/persulfate and UV-LED/H2O2 processes in the presence of trace copper ions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127119 – volume: 157 start-page: 218 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0260 article-title: Comparison of the performance of pulsed and continuous UVC-LED irradiation in the inactivation of bacteria publication-title: Water Res. doi: 10.1016/j.watres.2019.03.080 – volume: 248 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0440 article-title: UV-LED/chlorine degradation of propranolol in water: degradation pathway and product toxicity publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125957 – volume: 169 start-page: 126 year: 2011 ident: 10.1016/j.scitotenv.2023.163963_bb0245 article-title: Study on UV-LED/TiO2 process for degradation of Rhodamine B dye publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.02.066 – volume: 650 start-page: 210 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0480 article-title: Enhanced inactivation of E. coli by pulsed UV-LED irradiation during water disinfection publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.08.367 – year: 1946 ident: 10.1016/j.scitotenv.2023.163963_bb0280 – volume: 7 start-page: 702 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0055 article-title: What will happen when microorganisms “meet” photocatalysts and photocatalysis? publication-title: Environ. Sci.Nano doi: 10.1039/C9EN01318K – volume: 45 start-page: 1481 year: 2011 ident: 10.1016/j.scitotenv.2023.163963_bb0420 article-title: Application of GaN-based ultraviolet-C light emitting diodes - UV LEDs - for water disinfection publication-title: Water Res. doi: 10.1016/j.watres.2010.11.015 – volume: 343 start-page: 362 year: 2018 ident: 10.1016/j.scitotenv.2023.163963_bb0365 article-title: Microorganisms inactivation by continuous and pulsed irradiation of ultraviolet light-emitting diodes (UV-LEDs) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.020 – volume: 388 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0240 article-title: Enhanced numerical simulation of photocatalytic reactors with an improved solver for the radiative transfer equation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124183 – volume: 141 start-page: 279 year: 2018 ident: 10.1016/j.scitotenv.2023.163963_bb0425 article-title: Impact of UVA pre-radiation on UVC disinfection performance: inactivation, repair and mechanism study publication-title: Water Res. doi: 10.1016/j.watres.2018.05.021 – year: 2014 ident: 10.1016/j.scitotenv.2023.163963_bb0460 – volume: 31 start-page: 2193 year: 2006 ident: 10.1016/j.scitotenv.2023.163963_bb0380 article-title: Precise optical modeling for LED lighting verified by cross correlation in the midfield region publication-title: Opt. Lett. doi: 10.1364/OL.31.002193 – volume: 367 start-page: 355 year: 2018 ident: 10.1016/j.scitotenv.2023.163963_bb0445 article-title: Efficient photocatalytic disinfection of Escherichia coli by N-doped TiO2 coated on coal fly ash cenospheres publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2018.08.045 – volume: 319–320 start-page: 96 year: 2016 ident: 10.1016/j.scitotenv.2023.163963_bb0395 article-title: Controlled periodic illumination in semiconductor photocatalysis publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/j.jphotochem.2015.12.002 – ident: 10.1016/j.scitotenv.2023.163963_bb0325 doi: 10.1016/j.watres.2016.11.024 – volume: 20 start-page: 22 year: 2018 ident: 10.1016/j.scitotenv.2023.163963_bb0165 – volume: 166 year: 2019 ident: 10.1016/j.scitotenv.2023.163963_bb0125 article-title: Computational modeling of ultraviolet light-emitting diode (UV-LED) reactor for water treatment publication-title: Water Res. doi: 10.1016/j.watres.2019.115022 – ident: 10.1016/j.scitotenv.2023.163963_bb0115 – volume: 10 start-page: 450 year: 2020 ident: 10.1016/j.scitotenv.2023.163963_bb0225 article-title: Multitarget evaluation of the photocatalytic activity of P25-SiO2 prepared by atomic layer deposition publication-title: Catalysts doi: 10.3390/catal10040450 – year: 1998 ident: 10.1016/j.scitotenv.2023.163963_bb0360 |
| SSID | ssj0000781 |
| Score | 2.593351 |
| SecondaryResourceType | review_article |
| Snippet | The increase in efficiency achieved by UV LED devices has led to a compelling increase in research reports on UV LED water treatment for consumption in the... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 163963 |
| SubjectTerms | Disinfection Disinfection - methods DNA energy environment industry markets Photodisinfection Photoreactivation Ultraviolet Rays UV LED Water Purification - methods Water treatment wavelengths |
| Title | A review on LED technology in water photodisinfection |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2023.163963 https://www.ncbi.nlm.nih.gov/pubmed/37149196 https://www.proquest.com/docview/2810921617 https://www.proquest.com/docview/3153156677 |
| Volume | 885 |
| WOSCitedRecordID | wos001004230400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYBhISQlAYjI8pSIiXKlM-mtjhrWwZHyplgg71zYpjZ-s2OaFJx_jvOcdOUkSrjQdeosj1Janv_PPd-c6H0OuQAywmYWZ73EnAQBGRnSQss5nLiTquLBC1T_f7CI_HZDqNjoxDv6zLCWApydVVVPxXVkMbMFulzv4Du9uHQgPcA9PhCmyH640YP2zTUWR_FB_0q9Z5rnwbPxN1KmJxmlc5n5VNKJZc1lGV5DRT3kQQVLnKmVxKiusc2fOq3ms_kPY3dfPON-VYPs9OFqIN3zhK2IUO6NuvUUW2q8GQ1_SuXPWjSq56D8b8uQbHr0nWhPgbR4Xn2_XBscvgOwBsDXU4bgO-hAT9Yg-UQgACeyWka-_CGRj7AHFgR1zuqYcbkm4Va3bux1_o4fFoRCfxdPKm-GGr-mJqH94UW9lAWx4OIsC_reHHePqpW7Ux0dUVzUf-EQu48t3rNJl1lkqtsUweoPvG1LCGWkQeoltC9tAdXXz0Vw9txx07oZvheNlD97Qr19IZao9QMLS0RFm5tECirE6irJm0aomy_pKox-j4MJ7sf7BNtQ07HQR-ZcP_9wT3Ap-lHg_TgIsIk4iwzCeJ68Lc9TnzQV8mWUKylAQ8JA53BCNuysHMzPxttClzKZ4iS3CRYgyNqcgGmDEShEwwzAkLMyflwQ4Km5GjqTmKXlVEuaBNzOEZbYecqiGnesh3kNMSFvo0lutJ3jasoUap1MoiBQG7nvhVw0wKsKv20hIp8kVJPeI6kaecA-v7-KBNKPcIhj5PtCS0X60Oyoxg9Xt2A-rn6G43n16gzWq-EC_R7fSympXzXbSBp2TXiPNvGYi6BA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+LED+technology+in+water+photodisinfection&rft.jtitle=The+Science+of+the+total+environment&rft.au=Mart%C3%ADn-S%C3%B3mer%2C+Miguel&rft.au=Pablos%2C+Cristina&rft.au=Ad%C3%A1n%2C+Cristina&rft.au=van+Grieken%2C+Rafael&rft.date=2023-08-10&rft.issn=0048-9697&rft.volume=885+p.163963-&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.163963&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |