bmdrc: Python package for quantifying phenotypes from chemical exposures with benchmark dose modeling

Though chemical exposures are known to potentially have negative impacts on health, including contributing to chronic diseases such as cancer, the quantitative contribution of risk is not fully understood for every chemical. A commonly used approach to quantify levels of risk is to measure the propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology Jg. 21; H. 7; S. e1013337
Hauptverfasser: Degnan, David J., Bramer, Lisa M., Truong, Lisa, Tanguay, Robyn L., Gosline, Sara M., Waters, Katrina M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science (PLoS) 28.07.2025
Public Library of Science
Schlagworte:
ISSN:1553-7358, 1553-734X, 1553-7358
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Though chemical exposures are known to potentially have negative impacts on health, including contributing to chronic diseases such as cancer, the quantitative contribution of risk is not fully understood for every chemical. A commonly used approach to quantify levels of risk is to measure the proportion of organisms (such as a total number of zebrafish on a plate or mice in a cage) with abnormal behavioral responses or morphology at increasing concentrations of chemical exposure. A particular challenge with processing the proportional data from these assays is the appropriate estimation of chemical concentration levels that result in malformations or acute toxicity, as these values typically vary between experimental measurements. The recommended approach by the Environmental Protection Agency (EPA) is to fit benchmark dose curves with specific filters and model fitting steps, which are crucial to properly processing the proportional data. Several tools exist for the fitting of benchmark dose response curves, but none are standalone Python libraries built to process both morphological and behavioral data as proportions with all the EPA recommended filters, filter parameters, models, and model parameters. Thus, here we present the benchmark dose response curve ( bmdrc ) Python library, which was built to closely follow these EPA guidelines with helpful visualizations of filters and fitted model curves, and reports for reproducibility purposes. bmdrc is open-source and has demonstrated utility as a support package to an existing web portal for information on chemicals ( https://srp.pnnl.gov ). Our package will support any toxicology analysis where the response is a proportional value at increasing levels of a concentration of a chemical or chemical mixture.
AbstractList Though chemical exposures are known to potentially have negative impacts on health, including contributing to chronic diseases such as cancer, the quantitative contribution of risk is not fully understood for every chemical. A commonly used approach to quantify levels of risk is to measure the proportion of organisms (such as a total number of zebrafish on a plate or mice in a cage) with abnormal behavioral responses or morphology at increasing concentrations of chemical exposure. A particular challenge with processing the proportional data from these assays is the appropriate estimation of chemical concentration levels that result in malformations or acute toxicity, as these values typically vary between experimental measurements. The recommended approach by the Environmental Protection Agency (EPA) is to fit benchmark dose curves with specific filters and model fitting steps, which are crucial to properly processing the proportional data. Several tools exist for the fitting of benchmark dose response curves, but none are standalone Python libraries built to process both morphological and behavioral data as proportions with all the EPA recommended filters, filter parameters, models, and model parameters. Thus, here we present the benchmark dose response curve (bmdrc) Python library, which was built to closely follow these EPA guidelines with helpful visualizations of filters and fitted model curves, and reports for reproducibility purposes. bmdrc is open-source and has demonstrated utility as a support package to an existing web portal for information on chemicals (https://srp.pnnl.gov). Our package will support any toxicology analysis where the response is a proportional value at increasing levels of a concentration of a chemical or chemical mixture.
Though chemical exposures are known to potentially have negative impacts on health, including contributing to chronic diseases such as cancer, the quantitative contribution of risk is not fully understood for every chemical. A commonly used approach to quantify levels of risk is to measure the proportion of organisms (such as a total number of zebrafish on a plate or mice in a cage) with abnormal behavioral responses or morphology at increasing concentrations of chemical exposure. A particular challenge with processing the proportional data from these assays is the appropriate estimation of chemical concentration levels that result in malformations or acute toxicity, as these values typically vary between experimental measurements. The recommended approach by the Environmental Protection Agency (EPA) is to fit benchmark dose curves with specific filters and model fitting steps, which are crucial to properly processing the proportional data. Several tools exist for the fitting of benchmark dose response curves, but none are standalone Python libraries built to process both morphological and behavioral with all the EPA recommended filters, filter parameters, models, and model parameters. Thus, here we present the benchmark dose response curve (bmdrc) Python library, which was built to closely follow these EPA guidelines with helpful visualizations of filters and fitted model curves, and reports for reproducibility purposes. bmdrc is open-source and has demonstrated utility as a support package to an existing web portal for information on chemicals (https://srp.pnnl.gov). Our package will support any toxicology analysis where the response is a proportional value at increasing levels of a concentration of a chemical or chemical mixture.Though chemical exposures are known to potentially have negative impacts on health, including contributing to chronic diseases such as cancer, the quantitative contribution of risk is not fully understood for every chemical. A commonly used approach to quantify levels of risk is to measure the proportion of organisms (such as a total number of zebrafish on a plate or mice in a cage) with abnormal behavioral responses or morphology at increasing concentrations of chemical exposure. A particular challenge with processing the proportional data from these assays is the appropriate estimation of chemical concentration levels that result in malformations or acute toxicity, as these values typically vary between experimental measurements. The recommended approach by the Environmental Protection Agency (EPA) is to fit benchmark dose curves with specific filters and model fitting steps, which are crucial to properly processing the proportional data. Several tools exist for the fitting of benchmark dose response curves, but none are standalone Python libraries built to process both morphological and behavioral with all the EPA recommended filters, filter parameters, models, and model parameters. Thus, here we present the benchmark dose response curve (bmdrc) Python library, which was built to closely follow these EPA guidelines with helpful visualizations of filters and fitted model curves, and reports for reproducibility purposes. bmdrc is open-source and has demonstrated utility as a support package to an existing web portal for information on chemicals (https://srp.pnnl.gov). Our package will support any toxicology analysis where the response is a proportional value at increasing levels of a concentration of a chemical or chemical mixture.
Author Waters, Katrina M.
Degnan, David J.
Gosline, Sara M.
Bramer, Lisa M.
Tanguay, Robyn L.
Truong, Lisa
AuthorAffiliation 1 Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
2 Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, United States of America
The University of Melbourne Faculty of Science, AUSTRALIA
AuthorAffiliation_xml – name: 2 Sinnhuber Aquatic Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, United States of America
– name: The University of Melbourne Faculty of Science, AUSTRALIA
– name: 1 Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
Author_xml – sequence: 1
  givenname: David J.
  orcidid: 0000-0001-5737-7173
  surname: Degnan
  fullname: Degnan, David J.
– sequence: 2
  givenname: Lisa M.
  surname: Bramer
  fullname: Bramer, Lisa M.
– sequence: 3
  givenname: Lisa
  surname: Truong
  fullname: Truong, Lisa
– sequence: 4
  givenname: Robyn L.
  surname: Tanguay
  fullname: Tanguay, Robyn L.
– sequence: 5
  givenname: Sara M.
  surname: Gosline
  fullname: Gosline, Sara M.
– sequence: 6
  givenname: Katrina M.
  orcidid: 0000-0003-4696-5396
  surname: Waters
  fullname: Waters, Katrina M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40720503$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2997827$$D View this record in Osti.gov
BookMark eNpVkk1v1DAQhiNURD_gHyBkceKyi51xkg0XVFV8VKoEBzhb9mS88TaxU9sB9t-TskvVnmY0fueZV_J7Xpz44KkoXgu-FtCI97swR6-H9YTGrQUXANA8K85EVcGqgWpz8qg_Lc5T2nG-tG39ojiVvCl5xeGsIDN2ET-w7_vcB88mjbd6S8yGyO5m7bOze-e3bOrJh7yfKDEbw8iwp9GhHhj9mUKa4zL_7XLPDHnsRx1vWRcSsTF0NCz7L4vnVg-JXh3rRfHz86cfV19XN9--XF9d3qxQVpBXdQnUGcIaqhpL7EStictOAIIxxpZcmM4YFLrWsq5QdGQMl9Y2KMkKjnBRXB-4XdA7NUW3WNmroJ36Nwhxq3TMDgdSKFpJnJpmU1qpoWyNaSWQrbGSWptyYX08sKbZjNQh-Rz18AT69MW7Xm3DLyVKEMCrzUJ4eyCElJ1K6DJhj8F7wqzKtl1ON4vo3fFMDHczpaxGl5CGQXsKc1JQggTeQA2L9M1jRw9W_v_mIpAHAcaQUiT7IBFc3YdGHUOj7kOjjqGBv1TQu7o
Cites_doi 10.1016/j.atmosenv.2007.12.010
10.1093/bioinformatics/bty878
10.1093/bioinformatics/btw680
10.1371/journal.pone.0146021
10.1111/risa.13537
10.1016/j.reprotox.2019.07.013
10.18637/jss.v026.i05
10.1021/es800511x
10.1016/j.comtox.2018.11.001
10.1038/s41597-023-02021-5
10.1021/acs.est.8b04752
10.7717/peerj.10557
10.1016/j.yrtph.2022.105261
10.1016/j.scitotenv.2019.133971
10.1289/EHP1289
10.1289/ehp.1307539
10.1073/pnas.1618475114
10.1021/es800453n
10.1021/acs.est.5b00800
10.1111/risa.17451
10.1016/j.taap.2010.10.016
10.1038/s41467-021-22249-2
10.22427/NTP-DATA-002-00062-0001-0000-1
10.1093/bioinformatics/btaa700
10.1080/10473289.1991.10466911
ContentType Journal Article
Copyright Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
Copyright_xml – notice: Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1371/journal.pcbi.1013337
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate bmdrc: Python package for benchmark dose modeling
EISSN 1553-7358
ExternalDocumentID oai_doaj_org_article_c194e0e7782f4a329bb943ef6c54aab2
PMC12313058
2997827
40720503
10_1371_journal_pcbi_1013337
Genre Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: P42 ES016465
– fundername: NIEHS NIH HHS
  grantid: R35 ES031709
– fundername: NIEHS NIH HHS
  grantid: P30 ES030287
– fundername: ;
  grantid: P42 ES016465
– fundername: ;
  grantid: R35 ES031709
– fundername: ;
  grantid: P30 ES030287
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ADRAZ
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
7X8
PUEGO
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c453t-623edbec6356c2cd16ae04d13c3bbbf201bdbbc1a6a465c1debb04ff7c4ef10c3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001537455700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Fri Oct 03 12:42:35 EDT 2025
Tue Nov 04 02:04:43 EST 2025
Mon Nov 03 02:24:45 EST 2025
Fri Sep 05 15:31:53 EDT 2025
Mon Aug 04 01:30:50 EDT 2025
Sat Nov 29 07:41:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-623edbec6356c2cd16ae04d13c3bbbf201bdbbc1a6a465c1debb04ff7c4ef10c3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
PNNL-SA--208712
AC05-76RL01830
National Institutes of Health (NIH)
The authors have declared that no competing interests exist.
ORCID 0000-0003-4696-5396
0000-0001-5737-7173
0000000157377173
0000000283841926
0000000346965396
OpenAccessLink https://doaj.org/article/c194e0e7782f4a329bb943ef6c54aab2
PMID 40720503
PQID 3234307363
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c194e0e7782f4a329bb943ef6c54aab2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12313058
osti_scitechconnect_2997827
proquest_miscellaneous_3234307363
pubmed_primary_40720503
crossref_primary_10_1371_journal_pcbi_1013337
PublicationCentury 2000
PublicationDate 20250728
PublicationDateYYYYMMDD 2025-07-28
PublicationDate_xml – month: 7
  year: 2025
  text: 20250728
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2025
Publisher Public Library of Science (PLoS)
Public Library of Science
Publisher_xml – name: Public Library of Science (PLoS)
– name: Public Library of Science
References JA Wignall (pcbi.1013337.ref017) 2014; 122
M Shrivastava (pcbi.1013337.ref005) 2017; 114
K Ravindra (pcbi.1013337.ref004) 2008; 42
MW Wheeler (pcbi.1013337.ref015) 2008; 26
J Reback (pcbi.1013337.ref031) 2020
M Varewyck (pcbi.1013337.ref019) 2017; 14
W Verlinden (pcbi.1013337.ref028) 2024; 21
W Wilcke (pcbi.1013337.ref002) 2000; 163
C Ritz (pcbi.1013337.ref029) 2015; 10
S Lafontaine (pcbi.1013337.ref006) 2015; 49
LL Pham (pcbi.1013337.ref024) 2019; 90
pcbi.1013337.ref010
DG Thomas (pcbi.1013337.ref012) 2019; 9
pcbi.1013337.ref013
JA Davis (pcbi.1013337.ref016) 2011; 254
SM Jensen (pcbi.1013337.ref025) 2020; 8
C Westmoreland (pcbi.1013337.ref033) 2022; 135
J Ewald (pcbi.1013337.ref026) 2021; 37
DJ Sarno (pcbi.1013337.ref009) 1991; 41
F Larras (pcbi.1013337.ref021) 2018; 52
C Lang (pcbi.1013337.ref007) 2008; 42
E-H Lu (pcbi.1013337.ref030) 2025; 45
MJ Piazza (pcbi.1013337.ref001) 2019; 23
T Primbs (pcbi.1013337.ref008) 2008; 42
SJC Gosline (pcbi.1013337.ref014) 2023; 10
pcbi.1013337.ref022
K Shao (pcbi.1013337.ref020) 2018; 126
TP Robitaille (pcbi.1013337.ref032) 2013; 558
A Kiaghadi (pcbi.1013337.ref011) 2021; 12
JR Phillips (pcbi.1013337.ref023) 2019; 35
MW Wheeler (pcbi.1013337.ref027) 2020; 40
A Mojiri (pcbi.1013337.ref003) 2019; 696
DL Filer (pcbi.1013337.ref018) 2017; 33
References_xml – volume: 42
  start-page: 2895
  issue: 13
  year: 2008
  ident: pcbi.1013337.ref004
  article-title: Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2007.12.010
– volume: 35
  start-page: 1780
  issue: 10
  year: 2019
  ident: pcbi.1013337.ref023
  article-title: BMDExpress 2: enhanced transcriptomic dose-response analysis workflow
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty878
– volume: 33
  start-page: 618
  issue: 4
  year: 2017
  ident: pcbi.1013337.ref018
  article-title: tcpl: the ToxCast pipeline for high-throughput screening data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw680
– volume: 10
  issue: 12
  year: 2015
  ident: pcbi.1013337.ref029
  article-title: Dose-Response Analysis Using R
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0146021
– volume: 40
  start-page: 1706
  issue: 9
  year: 2020
  ident: pcbi.1013337.ref027
  article-title: Quantitative Risk Assessment: Developing a Bayesian Approach to Dichotomous Dose-Response Uncertainty
  publication-title: Risk Anal
  doi: 10.1111/risa.13537
– volume: 90
  start-page: 102
  year: 2019
  ident: pcbi.1013337.ref024
  article-title: Python BMDS: A Python interface library and web application for the canonical EPA dose-response modeling software
  publication-title: Reprod Toxicol
  doi: 10.1016/j.reprotox.2019.07.013
– volume: 23
  start-page: 154
  issue: 2
  year: 2019
  ident: pcbi.1013337.ref001
  article-title: Environmental toxins and the impact of other endocrine disrupting chemicals in women’s reproductive health
  publication-title: JBRA Assist Reprod
– volume: 26
  start-page: 1
  year: 2008
  ident: pcbi.1013337.ref015
  article-title: Model averaging software for dichotomous dose response risk estimation
  publication-title: J Stat Softw
  doi: 10.18637/jss.v026.i05
– ident: pcbi.1013337.ref010
– volume: 42
  start-page: 6519
  issue: 17
  year: 2008
  ident: pcbi.1013337.ref008
  article-title: Influence of Asian and Western United States agricultural areas and fires on the atmospheric transport of pesticides in the Western United States
  publication-title: Environ Sci Technol
  doi: 10.1021/es800511x
– volume: 9
  start-page: 50
  year: 2019
  ident: pcbi.1013337.ref012
  article-title: Time-dependent behavioral data from zebrafish reveals novel signatures of chemical toxicity using point of departure analysis
  publication-title: Comput Toxicol
  doi: 10.1016/j.comtox.2018.11.001
– volume: 558
  year: 2013
  ident: pcbi.1013337.ref032
  article-title: Astropy: A community Python package for astronomy
  publication-title: A&A
– volume: 10
  start-page: 151
  issue: 1
  year: 2023
  ident: pcbi.1013337.ref014
  article-title: The Superfund Research Program Analytics Portal: linking environmental chemical exposure to biological phenotypes
  publication-title: Sci Data
  doi: 10.1038/s41597-023-02021-5
– volume: 52
  start-page: 14461
  issue: 24
  year: 2018
  ident: pcbi.1013337.ref021
  article-title: DRomics: A Turnkey Tool to Support the Use of the Dose-Response Framework for Omics Data in Ecological Risk Assessment
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b04752
– volume: 8
  year: 2020
  ident: pcbi.1013337.ref025
  article-title: bmd: an R package for benchmark dose estimation
  publication-title: PeerJ
  doi: 10.7717/peerj.10557
– volume-title: pandas-dev/pandas: Pandas 1.0. 5
  year: 2020
  ident: pcbi.1013337.ref031
– volume: 135
  start-page: 105261
  year: 2022
  ident: pcbi.1013337.ref033
  article-title: Use of New Approach Methodologies (NAMs) in regulatory decisions for chemical safety: Report from an EPAA Deep Dive Workshop
  publication-title: Regul Toxicol Pharmacol
  doi: 10.1016/j.yrtph.2022.105261
– volume: 163
  start-page: 229
  issue: 3
  year: 2000
  ident: pcbi.1013337.ref002
  article-title: Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil—a review
  publication-title: JPNSS
– volume: 696
  start-page: 133971
  year: 2019
  ident: pcbi.1013337.ref003
  article-title: Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.133971
– volume: 126
  start-page: 017002
  issue: 1
  year: 2018
  ident: pcbi.1013337.ref020
  article-title: A Web-Based System for Bayesian Benchmark Dose Estimation
  publication-title: Environ Health Perspect
  doi: 10.1289/EHP1289
– volume: 122
  start-page: 499
  issue: 5
  year: 2014
  ident: pcbi.1013337.ref017
  article-title: Standardizing benchmark dose calculations to improve science-based decisions in human health assessments
  publication-title: Environ Health Perspect
  doi: 10.1289/ehp.1307539
– volume: 114
  start-page: 1246
  issue: 6
  year: 2017
  ident: pcbi.1013337.ref005
  article-title: Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1618475114
– volume: 42
  start-page: 5196
  issue: 14
  year: 2008
  ident: pcbi.1013337.ref007
  article-title: Atmospheric transport and outflow of polycyclic aromatic hydrocarbons from China
  publication-title: Environ Sci Technol
  doi: 10.1021/es800453n
– volume: 49
  start-page: 13807
  issue: 23
  year: 2015
  ident: pcbi.1013337.ref006
  article-title: Relative Influence of Trans-Pacific and Regional Atmospheric Transport of PAHs in the Pacific Northwest, U.S
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b00800
– volume: 45
  start-page: 457
  issue: 2
  year: 2025
  ident: pcbi.1013337.ref030
  article-title: Reducing uncertainty in dose-response assessments by incorporating Bayesian benchmark dose modeling and in vitro data on population variability
  publication-title: Risk Anal
  doi: 10.1111/risa.17451
– ident: pcbi.1013337.ref013
– volume: 254
  start-page: 181
  issue: 2
  year: 2011
  ident: pcbi.1013337.ref016
  article-title: Introduction to benchmark dose methods and U.S. EPA’s benchmark dose software (BMDS) version 2.1.1
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2010.10.016
– volume: 12
  start-page: 1947
  issue: 1
  year: 2021
  ident: pcbi.1013337.ref011
  article-title: The presence of Superfund sites as a determinant of life expectancy in the United States
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-22249-2
– ident: pcbi.1013337.ref022
  doi: 10.22427/NTP-DATA-002-00062-0001-0000-1
– volume: 14
  issue: 2
  year: 2017
  ident: pcbi.1013337.ref019
  article-title: Software for benchmark dose modelling
  publication-title: EFSA Support Publ
– volume: 37
  start-page: 1035
  issue: 7
  year: 2021
  ident: pcbi.1013337.ref026
  article-title: FastBMD: an online tool for rapid benchmark dose-response analysis of transcriptomics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa700
– volume: 41
  start-page: 1172
  issue: 9
  year: 1991
  ident: pcbi.1013337.ref009
  article-title: Making cleanup decisions at hazardous waste sites: the clean sites approach
  publication-title: J Air Waste Manage Assoc
  doi: 10.1080/10473289.1991.10466911
– volume: 21
  issue: 1
  year: 2024
  ident: pcbi.1013337.ref028
  article-title: Web application for Bayesian Benchmark Dose Modelling
  publication-title: EFSA Support Publ
SSID ssj0035896
Score 2.466521
Snippet Though chemical exposures are known to potentially have negative impacts on health, including contributing to chronic diseases such as cancer, the quantitative...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1013337
SubjectTerms Animals
Benchmarking
Biology and Life Sciences
bmdrc python library
Computational Biology - methods
Computer and Information Sciences
Dose-Response Relationship, Drug
Environmental Exposure
Medicine and Health Sciences
Mice
Phenotype
Research and Analysis Methods
Social Sciences
Software
Superfund
United States Environmental Protection Agency
Zebrafish
Title bmdrc: Python package for quantifying phenotypes from chemical exposures with benchmark dose modeling
URI https://www.ncbi.nlm.nih.gov/pubmed/40720503
https://www.proquest.com/docview/3234307363
https://www.osti.gov/servlets/purl/2997827
https://pubmed.ncbi.nlm.nih.gov/PMC12313058
https://doaj.org/article/c194e0e7782f4a329bb943ef6c54aab2
Volume 21
WOSCitedRecordID wos001537455700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access资源_DOAJ
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest - Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BAhIXxJuyUBmJa9gkduKUG4u2AgFVhEAqXCzbmWir1SalaVe7_54ZJ121CIkLl4mUh-L48-MbZ_wNwGunXI1IzC1scVfaFlGRZFWEVmNSp2SsCskm9GxWzOeTcifVF8eE9fLAfcUdefKyMUZNM1mtrEwnzk2UxDr3mbLWhdGXWM_WmerHYJkVITMXJ8WJtFTzYdOc1MnRgNGbpXcL9l2l5BzoO5NS0O6nQ0t97G-888_wyZ35aHof7g1EUrzrP-AB3MDmIdzpU0tePQJ059XKvxXlFYsDCPKMz2jkEERRxa-N5Qgh3t8kOMKr5WXYTvBGE-EH_QCBl8uWFw87wSu1wlFjPj23qzNRtR2KkD-Hnn8M36cn395_iIaUCpFXmVxHRHawIthYlc6nvkpyi7GqEumlc64mNuAq53xic6vyzCcVOherutZeYZ3EXj6Bg6Zt8BkIjN2EumytCFLl4sxKaQlvS5QBtcrVCKJtnZplr5xhwu8zTR5HX0eGMTADBiM45oq_vpd1r8MJag1maA3mX61hBIcMmyH6wBq4noOF_NrQnEtP0CtebdE01Iv414htsN10RqZS8WiXyxE87dG9LghLyLFqzgiKPdz3Srp_pVmcBqVuogXEEbLi-f_4tkO4m3Ly4VhHafECDtarDb6E2_5ivehWY7ip5zrYYgy3jk9m5ddx6BNkp-Vnsp90NObQ1pJsmf2ku8qPX8ofvwG34xfJ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=bmdrc%3A+Python+package+for+quantifying+phenotypes+from+chemical+exposures+with+benchmark+dose+modeling&rft.jtitle=PLoS+computational+biology&rft.au=Degnan%2C+David+J.&rft.au=Bramer%2C+Lisa+M.&rft.au=Truong%2C+Lisa&rft.au=Tanguay%2C+Robyn+L.&rft.date=2025-07-28&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7358&rft.volume=21&rft.issue=7&rft_id=info:doi/10.1371%2Fjournal.pcbi.1013337&rft.externalDocID=2997827
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon