Genetic programming for predictions of effectiveness of rolling dynamic compaction with dynamic cone penetrometer test results

Rolling dynamic compaction (RDC), which employs non-circular module towed behind a tractor, is an innovative soil compaction method that has proven to be successful in many ground improvement applications. RDC involves repeatedly delivering high-energy impact blows onto the ground surface, which imp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Rock Mechanics and Geotechnical Engineering Ročník 11; číslo 4; s. 815 - 823
Hlavní autoři: Ranasinghe, R.A.T.M., Jaksa, M.B., Pooya Nejad, F., Kuo, Y.L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2019
School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, 5005, Australia
Elsevier
Témata:
ISSN:1674-7755
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Rolling dynamic compaction (RDC), which employs non-circular module towed behind a tractor, is an innovative soil compaction method that has proven to be successful in many ground improvement applications. RDC involves repeatedly delivering high-energy impact blows onto the ground surface, which improves soil density and thus soil strength and stiffness. However, there exists a lack of methods to predict the effectiveness of RDC in different ground conditions, which has become a major obstacle to its adoption. For this, in this context, a prediction model is developed based on linear genetic programming (LGP), which is one of the common approaches in application of artificial intelligence for nonlinear forecasting. The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided, 8-t impact roller (BH-1300). It is shown that the model is accurate and reliable over a range of soil types. Furthermore, a series of parametric studies confirms its robustness in generalizing data. In addition, the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors.
AbstractList Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves repeatedly delivering high-energy impact blows onto the ground surface,which improves soil density and thus soil strength and stiffness.However,there exists a lack of methods to predict the effectiveness of RDC in different ground conditions,which has become a major obstacle to its adoption.For this,in this context,a prediction model is developed based on linear genetic programming (LGP),which is one of the common approaches in application of artificial intelligence for nonlinear forecasting.The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided,8-t impact roller (BH-1300).It is shown that the model is accurate and reliable over a range of soil types.Furthermore,a series of parametric studies confirms its robustness in generalizing data.In addition,the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors.
Rolling dynamic compaction (RDC), which employs non-circular module towed behind a tractor, is an innovative soil compaction method that has proven to be successful in many ground improvement applications. RDC involves repeatedly delivering high-energy impact blows onto the ground surface, which improves soil density and thus soil strength and stiffness. However, there exists a lack of methods to predict the effectiveness of RDC in different ground conditions, which has become a major obstacle to its adoption. For this, in this context, a prediction model is developed based on linear genetic programming (LGP), which is one of the common approaches in application of artificial intelligence for nonlinear forecasting. The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided, 8-t impact roller (BH-1300). It is shown that the model is accurate and reliable over a range of soil types. Furthermore, a series of parametric studies confirms its robustness in generalizing data. In addition, the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors. Keywords: Ground improvement, Rolling dynamic compaction (RDC), Linear genetic programming (LGP), Dynamic cone penetrometer (DCP) test
Author Ranasinghe, R.A.T.M.
Jaksa, M.B.
Pooya Nejad, F.
Kuo, Y.L.
AuthorAffiliation School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, 5005, Australia
AuthorAffiliation_xml – name: School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, 5005, Australia
Author_xml – sequence: 1
  givenname: R.A.T.M.
  orcidid: 0000-0002-1785-9917
  surname: Ranasinghe
  fullname: Ranasinghe, R.A.T.M.
  email: tara.ranasinghe@gmail.com
– sequence: 2
  givenname: M.B.
  orcidid: 0000-0003-3756-2915
  surname: Jaksa
  fullname: Jaksa, M.B.
– sequence: 3
  givenname: F.
  orcidid: 0000-0002-5026-1669
  surname: Pooya Nejad
  fullname: Pooya Nejad, F.
– sequence: 4
  givenname: Y.L.
  surname: Kuo
  fullname: Kuo, Y.L.
BookMark eNqFkc1u1TAQhb0oEqX0CdjkBW6w4yR2FixQBaVSJTawtsbOODhK7Cvb_cmGZ8e5t0KIBaysOZrveGbOG3Lhg0dC3jFaM8r693M9x3XCuqFMFqWmVFyQS9aL9iBE170m1yk5TZloRS94f0l-3qLH7Ex1jGGKsK7OT5UNsdQ4OpNd8KkKtkJrsVSPpTudhBiWZe8dNw9r4U1Yj3Dqr55c_vGH7rE67p_EsGLGWGVMuYqYHpac3pJXFpaE1y_vFfn--dO3my-H-6-3dzcf7w-m7Xg-NNb2nErUHJmBTrfdoAWXHKXVIx9RdqiB9nQExBGgGWAQlO6s6cHogV-Ru7PvGGBWx-hWiJsK4NRJCHFSEMsZFlQgCyjRWC3H1jAJhrPGQgttb5tiX7zqs9cTeAt-UnN4iL5Mr7a0PG9bnsyzVlgiGGhLGS0APwMmhpQi2t8DMKr22NSsTrGpPbZdLLEVaviLMi7DfuAcwS3_YT-cWSw3fXQYVTIOvSmRxhJjWdr9k_8Fnxi-1g
CitedBy_id crossref_primary_10_1111_exsy_70007
crossref_primary_10_1007_s41204_021_00123_2
crossref_primary_10_1007_s10706_020_01536_7
crossref_primary_10_3390_app14156454
crossref_primary_10_1007_s12517_022_10468_w
crossref_primary_10_1007_s41062_020_00382_z
crossref_primary_10_1093_ijlct_ctad081
Cites_doi 10.1617/s11527-009-9559-y
10.1016/j.gsf.2014.12.005
10.1109/4235.910462
10.1080/19386362.2016.1272751
10.1680/jgrim.17.00009
10.1016/S1093-3263(01)00123-1
10.1016/j.gsf.2011.12.008
10.1016/j.jrmge.2016.11.011
10.1016/j.asoc.2014.02.007
10.1016/j.autcon.2013.08.016
10.1016/j.jhydrol.2010.11.009
10.1016/j.engappai.2011.11.008
10.1016/j.patcog.2008.04.010
10.1016/j.ins.2003.05.006
10.1016/j.enggeo.2011.09.005
10.1139/T07-063
10.1002/qsar.200710043
ContentType Journal Article
Copyright 2019 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2019 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOA
DOI 10.1016/j.jrmge.2018.10.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EndPage 823
ExternalDocumentID oai_doaj_org_article_a80c48ecfb8d4c18ac312fa4a46f2eed
yslxyytgcxb_e201904010
10_1016_j_jrmge_2018_10_007
S1674775518302671
GrantInformation_xml – fundername: This research was supported under Australian Research Council's Discovery Projects funding scheme (project No.DP120101761).The authors wish to acknowledge Mr.Stuart Bowes from Broons Hire Pty.Ltd.for his kind assistance and continuing support,especially in providing access to the in situ test results upon which the numerical models are based.The authors are also grateful to Mr.Brendan Scott for his contribution to this work
  funderid: (SA) Pty.Ltd.for his kind assistance and continuing support,especially in providing access to the in situ test results upon which the numerical models are based.The authors are also grateful to Mr.Brendan Scott for his contribution to this work
GroupedDBID 6I.
AAFTH
ALMA_UNASSIGNED_HOLDINGS
CDYEO
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
GROUPED_DOAJ
ID FETCH-LOGICAL-c453t-2ff6308eb3e1ca5b459b7383e8fbd3de85eba060daeedaa29a9700c453c6acb93
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478574300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1674-7755
IngestDate Fri Oct 03 12:29:19 EDT 2025
Thu May 29 03:58:34 EDT 2025
Wed Oct 29 21:48:04 EDT 2025
Tue Nov 18 21:55:40 EST 2025
Thu Jul 20 19:56:51 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Ground improvement
Rolling dynamic compaction (RDC)
Dynamic cone penetrometer (DCP) test
Linear genetic programming (LGP)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c453t-2ff6308eb3e1ca5b459b7383e8fbd3de85eba060daeedaa29a9700c453c6acb93
ORCID 0000-0002-5026-1669
0000-0002-1785-9917
0000-0003-3756-2915
OpenAccessLink https://doaj.org/article/a80c48ecfb8d4c18ac312fa4a46f2eed
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_a80c48ecfb8d4c18ac312fa4a46f2eed
wanfang_journals_yslxyytgcxb_e201904010
crossref_primary_10_1016_j_jrmge_2018_10_007
crossref_citationtrail_10_1016_j_jrmge_2018_10_007
elsevier_sciencedirect_doi_10_1016_j_jrmge_2018_10_007
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of Rock Mechanics and Geotechnical Engineering
PublicationTitle_FL Journal of Rock Mechanics and Geotechnical Engineering
PublicationYear 2019
Publisher Elsevier B.V
School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, 5005, Australia
Elsevier
Publisher_xml – name: Elsevier B.V
– name: School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, 5005, Australia
– name: Elsevier
References Rashed, Bazaz, Alavi (bib30) 2012; 25
Koza (bib21) 1992
Rezania, Javadi (bib31) 2007; 44
Jaksa, Scott, Mentha, Symons, Pointon, Wrightson, Syamsuddin (bib20) 2012
Gandomi, Mohammadzadeh, Pérez-Ordóñez, Alavi (bib17) 2014; 19
Roy, Roy (bib32) 2008; 27
Alavi, Gandomi (bib2) 2012; 3
Alavi, Gandomi, Mollahasani, Bazaz, Talatahari (bib1) 2013
Avalle (bib6) 2006
Mousavi, Alavi, Mollahasani, Gandomi (bib23) 2011; 123
Poli, Langdon, Mcphee, Koza (bib26) 2007
Scott, Jaksa (bib33) 2012
Brameier, Banzhaf (bib10) 2001; 5
Mousavi, Gabr, Borden (bib22) 2018; 12
Ranasinghe, Jaksa, Pooya Nejad, Kuo (bib29) 2019; 38
Babanajad, Gandomi, Mohammadzadeh, Alavi (bib8) 2013; 36
Brameier, Banzhaf (bib11) 2007
Banzhaf, Nordin, Keller, Francone (bib9) 1998
Smith (bib35) 1986
Holland (bib19) 1975
Alavi, Sadrossadat (bib3) 2016; 7
Nordin (bib24) 1994; 1
Torres, Falcão, Gonçalves, Papa, Zhang, Fan, Fox (bib36) 2009; 42
Francone, Deschaine (bib14) 2004; 161
Clegg, Berrangé (bib12) 1971; 13
Gandomi, Alavi, Sahab (bib16) 2010; 43
Ranasinghe, Jaksa, Pooya Nejad, Kuo (bib28) 2017; 170
Selle, Muttil (bib34) 2011; 397
Clifford (bib13) 1976
ASTM D6951-03 (bib4) 2003
Golbraikh, Tropsha (bib18) 2002; 20
Pinard (bib25) 1999
Ranasinghe, Jaksa, Kuo, Pooya Nejad (bib27) 2017; 9
Avalle, Carter (bib5) 2005
Avalle (bib7) 2004
Francone (bib15) 2010
Avalle (10.1016/j.jrmge.2018.10.007_bib5) 2005
Gandomi (10.1016/j.jrmge.2018.10.007_bib16) 2010; 43
Smith (10.1016/j.jrmge.2018.10.007_bib35) 1986
Alavi (10.1016/j.jrmge.2018.10.007_bib2) 2012; 3
Torres (10.1016/j.jrmge.2018.10.007_bib36) 2009; 42
Holland (10.1016/j.jrmge.2018.10.007_bib19) 1975
Ranasinghe (10.1016/j.jrmge.2018.10.007_bib27) 2017; 9
Koza (10.1016/j.jrmge.2018.10.007_bib21) 1992
Francone (10.1016/j.jrmge.2018.10.007_bib15) 2010
Selle (10.1016/j.jrmge.2018.10.007_bib34) 2011; 397
Ranasinghe (10.1016/j.jrmge.2018.10.007_bib28) 2017; 170
Brameier (10.1016/j.jrmge.2018.10.007_bib10) 2001; 5
Avalle (10.1016/j.jrmge.2018.10.007_bib7) 2004
ASTM D6951-03 (10.1016/j.jrmge.2018.10.007_bib4) 2003
Pinard (10.1016/j.jrmge.2018.10.007_bib25) 1999
Mousavi (10.1016/j.jrmge.2018.10.007_bib23) 2011; 123
Brameier (10.1016/j.jrmge.2018.10.007_bib11) 2007
Nordin (10.1016/j.jrmge.2018.10.007_bib24) 1994; 1
Mousavi (10.1016/j.jrmge.2018.10.007_bib22) 2018; 12
Clegg (10.1016/j.jrmge.2018.10.007_bib12) 1971; 13
Avalle (10.1016/j.jrmge.2018.10.007_bib6) 2006
Jaksa (10.1016/j.jrmge.2018.10.007_bib20) 2012
Babanajad (10.1016/j.jrmge.2018.10.007_bib8) 2013; 36
Alavi (10.1016/j.jrmge.2018.10.007_bib3) 2016; 7
Clifford (10.1016/j.jrmge.2018.10.007_bib13) 1976
Roy (10.1016/j.jrmge.2018.10.007_bib32) 2008; 27
Francone (10.1016/j.jrmge.2018.10.007_bib14) 2004; 161
Gandomi (10.1016/j.jrmge.2018.10.007_bib17) 2014; 19
Rezania (10.1016/j.jrmge.2018.10.007_bib31) 2007; 44
Scott (10.1016/j.jrmge.2018.10.007_bib33) 2012
Alavi (10.1016/j.jrmge.2018.10.007_bib1) 2013
Banzhaf (10.1016/j.jrmge.2018.10.007_bib9) 1998
Rashed (10.1016/j.jrmge.2018.10.007_bib30) 2012; 25
Golbraikh (10.1016/j.jrmge.2018.10.007_bib18) 2002; 20
Poli (10.1016/j.jrmge.2018.10.007_bib26) 2007
Ranasinghe (10.1016/j.jrmge.2018.10.007_bib29) 2019; 38
References_xml – year: 2010
  ident: bib15
  article-title: Discipulus TM with Notitia and solution analytics owner's manual
– volume: 36
  start-page: 136
  year: 2013
  end-page: 144
  ident: bib8
  article-title: Numerical modeling of concrete strength under multiaxial confinement pressures using linear genetic programming
  publication-title: Automation in Construction
– volume: 42
  start-page: 283
  year: 2009
  end-page: 292
  ident: bib36
  article-title: A genetic programming framework for content-based image retrieval
  publication-title: Pattern Recognition
– volume: 170
  start-page: 193
  year: 2017
  end-page: 207
  ident: bib28
  article-title: Predicting the effectiveness of rolling dynamic compaction using genetic programming
  publication-title: Proceedings of the Institution of Civil Engineers Ground Improvement
– year: 2007
  ident: bib11
  article-title: Linear genetic programming
– start-page: 775
  year: 1999
  end-page: 781
  ident: bib25
  article-title: Innovative developments in compaction technology using high energy impact compactors
  publication-title: Proceedings of the 8th Australia New Zealand conference on Geomechanics: consolidating knowledge
– year: 2006
  ident: bib6
  article-title: Reducing haul road maintenance costs and improving tyre wear through the use of impact rollers
  publication-title: Mining for tyres conference. Perth Australia
– year: 1975
  ident: bib19
  article-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence
– volume: 123
  start-page: 324
  year: 2011
  end-page: 332
  ident: bib23
  article-title: A hybrid computational approach to formulate soil deformation moduli obtained from PLT
  publication-title: Engineering Geology
– volume: 25
  start-page: 1437
  year: 2012
  end-page: 1449
  ident: bib30
  article-title: Nonlinear modeling of soil deformation modulus through LGP-based interpretation of pressuremeter test results
  publication-title: Engineering Applications of Artificial Intelligence
– year: 1998
  ident: bib9
  article-title: Genetic programming: an introduction on the automatic evolution of computer programs and its application
– volume: 13
  start-page: 65
  year: 1971
  end-page: 73
  ident: bib12
  article-title: The development and testing of an impact roller
  publication-title: The Civil Engineer in South Africa
– volume: 19
  start-page: 112
  year: 2014
  end-page: 120
  ident: bib17
  article-title: Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups
  publication-title: Applied Soft Computing
– year: 1992
  ident: bib21
  article-title: Genetic programming: on the programming of computers by means of natural selection
– volume: 397
  start-page: 1
  year: 2011
  end-page: 9
  ident: bib34
  article-title: Testing the structure of a hydrological model using genetic programming
  publication-title: Journal of Hydrology
– volume: 1
  start-page: 311
  year: 1994
  end-page: 331
  ident: bib24
  article-title: A compiling genetic programming system that directly manipulates the machine code
  publication-title: Advances in Genetic Programming
– volume: 20
  start-page: 269
  year: 2002
  end-page: 276
  ident: bib18
  article-title: Beware of q2!
  publication-title: Journal of Molecular Graphics and Modelling
– volume: 43
  start-page: 963
  year: 2010
  end-page: 983
  ident: bib16
  article-title: New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming
  publication-title: Materials and Structures
– volume: 38
  start-page: 153
  year: 2019
  end-page: 170
  ident: bib29
  article-title: Prediction of the effectiveness of rolling dynamic compaction using artificial neural networks and cone penetration test data
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– year: 1986
  ident: bib35
  article-title: Probability and statistics in civil engineering
– year: 2003
  ident: bib4
  article-title: Standard test method for use of dynamic cone penetrometer in shallow pavement applications
– volume: 12
  start-page: 284
  year: 2018
  end-page: 292
  ident: bib22
  article-title: Correlation of dynamic cone penetrometer index to proof roller test to assess subgrade soils stabilization criterion
  publication-title: International Journal of Geotechnical Engineering
– volume: 9
  start-page: 340
  year: 2017
  end-page: 349
  ident: bib27
  article-title: Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
– volume: 161
  start-page: 99
  year: 2004
  end-page: 120
  ident: bib14
  article-title: Extending the boundaries of design optimization by integrating fast optimization techniques with machine-code-based, linear genetic programming
  publication-title: Information Sciences
– volume: 7
  start-page: 91
  year: 2016
  end-page: 99
  ident: bib3
  article-title: New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses
  publication-title: Geoscience Frontiers
– volume: 44
  start-page: 1462
  year: 2007
  end-page: 1473
  ident: bib31
  article-title: A new genetic programming model for predicting settlement of shallow foundations
  publication-title: Canadian Geotechnical Journal
– year: 2013
  ident: bib1
  article-title: Linear and tree-based genetic programming for solving geotechnical engineering problems
  publication-title: Metaheuristics in water, geotechnical and transport engineering
– start-page: 41
  year: 2012
  end-page: 52
  ident: bib20
  article-title: Quantifying the zone of influence of the impact roller
  publication-title: ISSMGE-TC 211 international symposium on ground improvement
– start-page: 961
  year: 2012
  end-page: 966
  ident: bib33
  article-title: Mining applications and case studies of rolling dynamic compaction
  publication-title: Proceedings of the Australia-New Zealand (ANZ) conference on Geomechanics. Melbourne, Australia
– start-page: 513
  year: 2004
  end-page: 518
  ident: bib7
  article-title: Use of the impact roller to reduce agricultural water loss
  publication-title: Proceedings of the 9th ANZ conference on Geomechanics. Auckland Australia
– start-page: 21
  year: 1976
  end-page: 29
  ident: bib13
  article-title: Impact rolling and construction techniques
  publication-title: Australian road research board conference
– volume: 27
  start-page: 302
  year: 2008
  end-page: 313
  ident: bib32
  article-title: On some aspects of variable selection for partial least squares regression models
  publication-title: QSAR Combinatorial Science
– volume: 5
  start-page: 17
  year: 2001
  end-page: 26
  ident: bib10
  article-title: A comparison of linear genetic programming and neural networks in medical data mining
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 3
  start-page: 541
  year: 2012
  end-page: 555
  ident: bib2
  article-title: Energy-based numerical models for assessment of soil liquefaction
  publication-title: Geoscience Frontiers
– year: 2007
  ident: bib26
  article-title: Genetic programming: an introductory tutorial and a survey of techniques and applications
– year: 2005
  ident: bib5
  article-title: Evaluating the improvement from impact rolling on sand
  publication-title: Proceedings of the 6th international conference on ground improvement techniques. Coimbra, Portugal
– year: 2007
  ident: 10.1016/j.jrmge.2018.10.007_bib11
– volume: 38
  start-page: 153
  issue: 1
  year: 2019
  ident: 10.1016/j.jrmge.2018.10.007_bib29
  article-title: Prediction of the effectiveness of rolling dynamic compaction using artificial neural networks and cone penetration test data
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– year: 1986
  ident: 10.1016/j.jrmge.2018.10.007_bib35
– volume: 43
  start-page: 963
  issue: 7
  year: 2010
  ident: 10.1016/j.jrmge.2018.10.007_bib16
  article-title: New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming
  publication-title: Materials and Structures
  doi: 10.1617/s11527-009-9559-y
– volume: 7
  start-page: 91
  issue: 1
  year: 2016
  ident: 10.1016/j.jrmge.2018.10.007_bib3
  article-title: New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2014.12.005
– year: 2007
  ident: 10.1016/j.jrmge.2018.10.007_bib26
– start-page: 513
  year: 2004
  ident: 10.1016/j.jrmge.2018.10.007_bib7
  article-title: Use of the impact roller to reduce agricultural water loss
– year: 2010
  ident: 10.1016/j.jrmge.2018.10.007_bib15
– year: 1975
  ident: 10.1016/j.jrmge.2018.10.007_bib19
– year: 2013
  ident: 10.1016/j.jrmge.2018.10.007_bib1
  article-title: Linear and tree-based genetic programming for solving geotechnical engineering problems
– year: 1998
  ident: 10.1016/j.jrmge.2018.10.007_bib9
– start-page: 961
  year: 2012
  ident: 10.1016/j.jrmge.2018.10.007_bib33
  article-title: Mining applications and case studies of rolling dynamic compaction
– volume: 5
  start-page: 17
  issue: 1
  year: 2001
  ident: 10.1016/j.jrmge.2018.10.007_bib10
  article-title: A comparison of linear genetic programming and neural networks in medical data mining
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.910462
– start-page: 21
  year: 1976
  ident: 10.1016/j.jrmge.2018.10.007_bib13
  article-title: Impact rolling and construction techniques
– volume: 12
  start-page: 284
  issue: 3
  year: 2018
  ident: 10.1016/j.jrmge.2018.10.007_bib22
  article-title: Correlation of dynamic cone penetrometer index to proof roller test to assess subgrade soils stabilization criterion
  publication-title: International Journal of Geotechnical Engineering
  doi: 10.1080/19386362.2016.1272751
– volume: 170
  start-page: 193
  issue: 4
  year: 2017
  ident: 10.1016/j.jrmge.2018.10.007_bib28
  article-title: Predicting the effectiveness of rolling dynamic compaction using genetic programming
  publication-title: Proceedings of the Institution of Civil Engineers Ground Improvement
  doi: 10.1680/jgrim.17.00009
– volume: 20
  start-page: 269
  issue: 4
  year: 2002
  ident: 10.1016/j.jrmge.2018.10.007_bib18
  article-title: Beware of q2!
  publication-title: Journal of Molecular Graphics and Modelling
  doi: 10.1016/S1093-3263(01)00123-1
– volume: 3
  start-page: 541
  issue: 4
  year: 2012
  ident: 10.1016/j.jrmge.2018.10.007_bib2
  article-title: Energy-based numerical models for assessment of soil liquefaction
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2011.12.008
– year: 2006
  ident: 10.1016/j.jrmge.2018.10.007_bib6
  article-title: Reducing haul road maintenance costs and improving tyre wear through the use of impact rollers
– volume: 13
  start-page: 65
  year: 1971
  ident: 10.1016/j.jrmge.2018.10.007_bib12
  article-title: The development and testing of an impact roller
  publication-title: The Civil Engineer in South Africa
– volume: 9
  start-page: 340
  issue: 2
  year: 2017
  ident: 10.1016/j.jrmge.2018.10.007_bib27
  article-title: Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
  doi: 10.1016/j.jrmge.2016.11.011
– year: 2005
  ident: 10.1016/j.jrmge.2018.10.007_bib5
  article-title: Evaluating the improvement from impact rolling on sand
– volume: 19
  start-page: 112
  year: 2014
  ident: 10.1016/j.jrmge.2018.10.007_bib17
  article-title: Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.02.007
– start-page: 41
  year: 2012
  ident: 10.1016/j.jrmge.2018.10.007_bib20
  article-title: Quantifying the zone of influence of the impact roller
– start-page: 775
  year: 1999
  ident: 10.1016/j.jrmge.2018.10.007_bib25
  article-title: Innovative developments in compaction technology using high energy impact compactors
– year: 1992
  ident: 10.1016/j.jrmge.2018.10.007_bib21
– volume: 36
  start-page: 136
  year: 2013
  ident: 10.1016/j.jrmge.2018.10.007_bib8
  article-title: Numerical modeling of concrete strength under multiaxial confinement pressures using linear genetic programming
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2013.08.016
– volume: 397
  start-page: 1
  issue: 1–2
  year: 2011
  ident: 10.1016/j.jrmge.2018.10.007_bib34
  article-title: Testing the structure of a hydrological model using genetic programming
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2010.11.009
– volume: 25
  start-page: 1437
  issue: 7
  year: 2012
  ident: 10.1016/j.jrmge.2018.10.007_bib30
  article-title: Nonlinear modeling of soil deformation modulus through LGP-based interpretation of pressuremeter test results
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2011.11.008
– volume: 42
  start-page: 283
  issue: 2
  year: 2009
  ident: 10.1016/j.jrmge.2018.10.007_bib36
  article-title: A genetic programming framework for content-based image retrieval
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2008.04.010
– year: 2003
  ident: 10.1016/j.jrmge.2018.10.007_bib4
– volume: 161
  start-page: 99
  issue: 3–4
  year: 2004
  ident: 10.1016/j.jrmge.2018.10.007_bib14
  article-title: Extending the boundaries of design optimization by integrating fast optimization techniques with machine-code-based, linear genetic programming
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2003.05.006
– volume: 123
  start-page: 324
  issue: 4
  year: 2011
  ident: 10.1016/j.jrmge.2018.10.007_bib23
  article-title: A hybrid computational approach to formulate soil deformation moduli obtained from PLT
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2011.09.005
– volume: 44
  start-page: 1462
  issue: 12
  year: 2007
  ident: 10.1016/j.jrmge.2018.10.007_bib31
  article-title: A new genetic programming model for predicting settlement of shallow foundations
  publication-title: Canadian Geotechnical Journal
  doi: 10.1139/T07-063
– volume: 27
  start-page: 302
  issue: 3
  year: 2008
  ident: 10.1016/j.jrmge.2018.10.007_bib32
  article-title: On some aspects of variable selection for partial least squares regression models
  publication-title: QSAR Combinatorial Science
  doi: 10.1002/qsar.200710043
– volume: 1
  start-page: 311
  year: 1994
  ident: 10.1016/j.jrmge.2018.10.007_bib24
  article-title: A compiling genetic programming system that directly manipulates the machine code
  publication-title: Advances in Genetic Programming
SSID ssib017476736
ssib022315938
ssib007891447
ssib051367711
ssib011451244
ssib044745613
ssib038074921
Score 2.1709747
Snippet Rolling dynamic compaction (RDC), which employs non-circular module towed behind a tractor, is an innovative soil compaction method that has proven to be...
Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be...
SourceID doaj
wanfang
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 815
SubjectTerms Dynamic cone penetrometer (DCP) test
Ground improvement
Linear genetic programming (LGP)
Rolling dynamic compaction (RDC)
Title Genetic programming for predictions of effectiveness of rolling dynamic compaction with dynamic cone penetrometer test results
URI https://dx.doi.org/10.1016/j.jrmge.2018.10.007
https://d.wanfangdata.com.cn/periodical/yslxyytgcxb-e201904010
https://doaj.org/article/a80c48ecfb8d4c18ac312fa4a46f2eed
Volume 11
WOSCitedRecordID wos000478574300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1674-7755
  databaseCode: M~E
  dateStart: 20090101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssib044745613
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBejbLBL6dhG065Dh8Eu8yrLsi0du9Gwy8IOG_QmJFkKLalXErdrLv3b-56kZO6lvZSAIQ99OH7P78P5-fcI-SS9K71XoZCNawohFYdbyjaFCm0VmDQWPrHZRDubybMz9WvU6gsxYYkeOF24YyOZE7BisLITrpTGVSUPRhjRBA4OHr0vZD2jYgotqZUKKoVtYC2xH-0okEFMhDD-3_KQdV2MiMFgKiYWW8utkdisjc18EbUPKWldbyiMIljsYnk5R9LNUn6NWLH2QZiL3QAeRLtX_0wfTD8fxbLpHtnNSSg9ST_-DXnh-7fkDhmoQUAzZOsSghqFlBa-45850T7p30ATAiQ7SRQsE6837VJzexph7XE8xae8I3nv6RVughQJoE8Kae5Aod6_Xgyrd-TP9PT39x9F7s5QOFFXQ8FDaComoRj3pTO1FbWyLdS7XgbbVZ2XtbeGNawzoCVjuDKqZQznusY4q6r3ZKeHjfcJtcF3illwDcinxkvDfSWMVV6BPFTdhPDNxdQuU5djB42F3mDULnTUgEYNoBA0MCFftpOuEnPH48O_oZa2Q5F2OwrAGHU2Rv2UMU5Is9GxzhlMykxgqfPHd_-cLUJnH7LS69Xidr0e5u7Was_xnX-ohdnBc5znIXmNCyYg4weyMyyv_RF56W6G89XyY7yV4Pjz7vQe6JIi0g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+programming+for+predictions+of+effectiveness+of+rolling+dynamic+compaction+with+dynamic+cone+penetrometer+test+results&rft.jtitle=Journal+of+Rock+Mechanics+and+Geotechnical+Engineering&rft.au=Ranasinghe%2C+R.A.T.M.&rft.au=Jaksa%2C+M.B.&rft.au=Pooya+Nejad%2C+F.&rft.au=Kuo%2C+Y.L.&rft.date=2019-08-01&rft.issn=1674-7755&rft.volume=11&rft.issue=4&rft.spage=815&rft.epage=823&rft_id=info:doi/10.1016%2Fj.jrmge.2018.10.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jrmge_2018_10_007
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyslxyytgcxb-e%2Fyslxyytgcxb-e.jpg