Genetic programming for predictions of effectiveness of rolling dynamic compaction with dynamic cone penetrometer test results
Rolling dynamic compaction (RDC), which employs non-circular module towed behind a tractor, is an innovative soil compaction method that has proven to be successful in many ground improvement applications. RDC involves repeatedly delivering high-energy impact blows onto the ground surface, which imp...
Uloženo v:
| Vydáno v: | Journal of Rock Mechanics and Geotechnical Engineering Ročník 11; číslo 4; s. 815 - 823 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.08.2019
School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, 5005, Australia Elsevier |
| Témata: | |
| ISSN: | 1674-7755 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Rolling dynamic compaction (RDC), which employs non-circular module towed behind a tractor, is an innovative soil compaction method that has proven to be successful in many ground improvement applications. RDC involves repeatedly delivering high-energy impact blows onto the ground surface, which improves soil density and thus soil strength and stiffness. However, there exists a lack of methods to predict the effectiveness of RDC in different ground conditions, which has become a major obstacle to its adoption. For this, in this context, a prediction model is developed based on linear genetic programming (LGP), which is one of the common approaches in application of artificial intelligence for nonlinear forecasting. The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided, 8-t impact roller (BH-1300). It is shown that the model is accurate and reliable over a range of soil types. Furthermore, a series of parametric studies confirms its robustness in generalizing data. In addition, the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors. |
|---|---|
| AbstractList | Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be successful in many ground improvement applications.RDC involves repeatedly delivering high-energy impact blows onto the ground surface,which improves soil density and thus soil strength and stiffness.However,there exists a lack of methods to predict the effectiveness of RDC in different ground conditions,which has become a major obstacle to its adoption.For this,in this context,a prediction model is developed based on linear genetic programming (LGP),which is one of the common approaches in application of artificial intelligence for nonlinear forecasting.The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided,8-t impact roller (BH-1300).It is shown that the model is accurate and reliable over a range of soil types.Furthermore,a series of parametric studies confirms its robustness in generalizing data.In addition,the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors. Rolling dynamic compaction (RDC), which employs non-circular module towed behind a tractor, is an innovative soil compaction method that has proven to be successful in many ground improvement applications. RDC involves repeatedly delivering high-energy impact blows onto the ground surface, which improves soil density and thus soil strength and stiffness. However, there exists a lack of methods to predict the effectiveness of RDC in different ground conditions, which has become a major obstacle to its adoption. For this, in this context, a prediction model is developed based on linear genetic programming (LGP), which is one of the common approaches in application of artificial intelligence for nonlinear forecasting. The model is based on in situ density-related data in terms of dynamic cone penetrometer (DCP) results obtained from several projects that have employed the 4-sided, 8-t impact roller (BH-1300). It is shown that the model is accurate and reliable over a range of soil types. Furthermore, a series of parametric studies confirms its robustness in generalizing data. In addition, the results of the comparative study indicate that the optimal LGP model has a better predictive performance than the existing artificial neural network (ANN) model developed earlier by the authors. Keywords: Ground improvement, Rolling dynamic compaction (RDC), Linear genetic programming (LGP), Dynamic cone penetrometer (DCP) test |
| Author | Ranasinghe, R.A.T.M. Jaksa, M.B. Pooya Nejad, F. Kuo, Y.L. |
| AuthorAffiliation | School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, 5005, Australia |
| AuthorAffiliation_xml | – name: School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, 5005, Australia |
| Author_xml | – sequence: 1 givenname: R.A.T.M. orcidid: 0000-0002-1785-9917 surname: Ranasinghe fullname: Ranasinghe, R.A.T.M. email: tara.ranasinghe@gmail.com – sequence: 2 givenname: M.B. orcidid: 0000-0003-3756-2915 surname: Jaksa fullname: Jaksa, M.B. – sequence: 3 givenname: F. orcidid: 0000-0002-5026-1669 surname: Pooya Nejad fullname: Pooya Nejad, F. – sequence: 4 givenname: Y.L. surname: Kuo fullname: Kuo, Y.L. |
| BookMark | eNqFkc1u1TAQhb0oEqX0CdjkBW6w4yR2FixQBaVSJTawtsbOODhK7Cvb_cmGZ8e5t0KIBaysOZrveGbOG3Lhg0dC3jFaM8r693M9x3XCuqFMFqWmVFyQS9aL9iBE170m1yk5TZloRS94f0l-3qLH7Ex1jGGKsK7OT5UNsdQ4OpNd8KkKtkJrsVSPpTudhBiWZe8dNw9r4U1Yj3Dqr55c_vGH7rE67p_EsGLGWGVMuYqYHpac3pJXFpaE1y_vFfn--dO3my-H-6-3dzcf7w-m7Xg-NNb2nErUHJmBTrfdoAWXHKXVIx9RdqiB9nQExBGgGWAQlO6s6cHogV-Ru7PvGGBWx-hWiJsK4NRJCHFSEMsZFlQgCyjRWC3H1jAJhrPGQgttb5tiX7zqs9cTeAt-UnN4iL5Mr7a0PG9bnsyzVlgiGGhLGS0APwMmhpQi2t8DMKr22NSsTrGpPbZdLLEVaviLMi7DfuAcwS3_YT-cWSw3fXQYVTIOvSmRxhJjWdr9k_8Fnxi-1g |
| CitedBy_id | crossref_primary_10_1111_exsy_70007 crossref_primary_10_1007_s41204_021_00123_2 crossref_primary_10_1007_s10706_020_01536_7 crossref_primary_10_3390_app14156454 crossref_primary_10_1007_s12517_022_10468_w crossref_primary_10_1007_s41062_020_00382_z crossref_primary_10_1093_ijlct_ctad081 |
| Cites_doi | 10.1617/s11527-009-9559-y 10.1016/j.gsf.2014.12.005 10.1109/4235.910462 10.1080/19386362.2016.1272751 10.1680/jgrim.17.00009 10.1016/S1093-3263(01)00123-1 10.1016/j.gsf.2011.12.008 10.1016/j.jrmge.2016.11.011 10.1016/j.asoc.2014.02.007 10.1016/j.autcon.2013.08.016 10.1016/j.jhydrol.2010.11.009 10.1016/j.engappai.2011.11.008 10.1016/j.patcog.2008.04.010 10.1016/j.ins.2003.05.006 10.1016/j.enggeo.2011.09.005 10.1139/T07-063 10.1002/qsar.200710043 |
| ContentType | Journal Article |
| Copyright | 2019 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: 2019 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 6I. AAFTH AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ DOA |
| DOI | 10.1016/j.jrmge.2018.10.007 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 823 |
| ExternalDocumentID | oai_doaj_org_article_a80c48ecfb8d4c18ac312fa4a46f2eed yslxyytgcxb_e201904010 10_1016_j_jrmge_2018_10_007 S1674775518302671 |
| GrantInformation_xml | – fundername: This research was supported under Australian Research Council's Discovery Projects funding scheme (project No.DP120101761).The authors wish to acknowledge Mr.Stuart Bowes from Broons Hire Pty.Ltd.for his kind assistance and continuing support,especially in providing access to the in situ test results upon which the numerical models are based.The authors are also grateful to Mr.Brendan Scott for his contribution to this work funderid: (SA) Pty.Ltd.for his kind assistance and continuing support,especially in providing access to the in situ test results upon which the numerical models are based.The authors are also grateful to Mr.Brendan Scott for his contribution to this work |
| GroupedDBID | 6I. AAFTH ALMA_UNASSIGNED_HOLDINGS CDYEO AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c453t-2ff6308eb3e1ca5b459b7383e8fbd3de85eba060daeedaa29a9700c453c6acb93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478574300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1674-7755 |
| IngestDate | Fri Oct 03 12:29:19 EDT 2025 Thu May 29 03:58:34 EDT 2025 Wed Oct 29 21:48:04 EDT 2025 Tue Nov 18 21:55:40 EST 2025 Thu Jul 20 19:56:51 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Ground improvement Rolling dynamic compaction (RDC) Dynamic cone penetrometer (DCP) test Linear genetic programming (LGP) |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c453t-2ff6308eb3e1ca5b459b7383e8fbd3de85eba060daeedaa29a9700c453c6acb93 |
| ORCID | 0000-0002-5026-1669 0000-0002-1785-9917 0000-0003-3756-2915 |
| OpenAccessLink | https://doaj.org/article/a80c48ecfb8d4c18ac312fa4a46f2eed |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a80c48ecfb8d4c18ac312fa4a46f2eed wanfang_journals_yslxyytgcxb_e201904010 crossref_primary_10_1016_j_jrmge_2018_10_007 crossref_citationtrail_10_1016_j_jrmge_2018_10_007 elsevier_sciencedirect_doi_10_1016_j_jrmge_2018_10_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-01 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of Rock Mechanics and Geotechnical Engineering |
| PublicationTitle_FL | Journal of Rock Mechanics and Geotechnical Engineering |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, 5005, Australia Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, 5005, Australia – name: Elsevier |
| References | Rashed, Bazaz, Alavi (bib30) 2012; 25 Koza (bib21) 1992 Rezania, Javadi (bib31) 2007; 44 Jaksa, Scott, Mentha, Symons, Pointon, Wrightson, Syamsuddin (bib20) 2012 Gandomi, Mohammadzadeh, Pérez-Ordóñez, Alavi (bib17) 2014; 19 Roy, Roy (bib32) 2008; 27 Alavi, Gandomi (bib2) 2012; 3 Alavi, Gandomi, Mollahasani, Bazaz, Talatahari (bib1) 2013 Avalle (bib6) 2006 Mousavi, Alavi, Mollahasani, Gandomi (bib23) 2011; 123 Poli, Langdon, Mcphee, Koza (bib26) 2007 Scott, Jaksa (bib33) 2012 Brameier, Banzhaf (bib10) 2001; 5 Mousavi, Gabr, Borden (bib22) 2018; 12 Ranasinghe, Jaksa, Pooya Nejad, Kuo (bib29) 2019; 38 Babanajad, Gandomi, Mohammadzadeh, Alavi (bib8) 2013; 36 Brameier, Banzhaf (bib11) 2007 Banzhaf, Nordin, Keller, Francone (bib9) 1998 Smith (bib35) 1986 Holland (bib19) 1975 Alavi, Sadrossadat (bib3) 2016; 7 Nordin (bib24) 1994; 1 Torres, Falcão, Gonçalves, Papa, Zhang, Fan, Fox (bib36) 2009; 42 Francone, Deschaine (bib14) 2004; 161 Clegg, Berrangé (bib12) 1971; 13 Gandomi, Alavi, Sahab (bib16) 2010; 43 Ranasinghe, Jaksa, Pooya Nejad, Kuo (bib28) 2017; 170 Selle, Muttil (bib34) 2011; 397 Clifford (bib13) 1976 ASTM D6951-03 (bib4) 2003 Golbraikh, Tropsha (bib18) 2002; 20 Pinard (bib25) 1999 Ranasinghe, Jaksa, Kuo, Pooya Nejad (bib27) 2017; 9 Avalle, Carter (bib5) 2005 Avalle (bib7) 2004 Francone (bib15) 2010 Avalle (10.1016/j.jrmge.2018.10.007_bib5) 2005 Gandomi (10.1016/j.jrmge.2018.10.007_bib16) 2010; 43 Smith (10.1016/j.jrmge.2018.10.007_bib35) 1986 Alavi (10.1016/j.jrmge.2018.10.007_bib2) 2012; 3 Torres (10.1016/j.jrmge.2018.10.007_bib36) 2009; 42 Holland (10.1016/j.jrmge.2018.10.007_bib19) 1975 Ranasinghe (10.1016/j.jrmge.2018.10.007_bib27) 2017; 9 Koza (10.1016/j.jrmge.2018.10.007_bib21) 1992 Francone (10.1016/j.jrmge.2018.10.007_bib15) 2010 Selle (10.1016/j.jrmge.2018.10.007_bib34) 2011; 397 Ranasinghe (10.1016/j.jrmge.2018.10.007_bib28) 2017; 170 Brameier (10.1016/j.jrmge.2018.10.007_bib10) 2001; 5 Avalle (10.1016/j.jrmge.2018.10.007_bib7) 2004 ASTM D6951-03 (10.1016/j.jrmge.2018.10.007_bib4) 2003 Pinard (10.1016/j.jrmge.2018.10.007_bib25) 1999 Mousavi (10.1016/j.jrmge.2018.10.007_bib23) 2011; 123 Brameier (10.1016/j.jrmge.2018.10.007_bib11) 2007 Nordin (10.1016/j.jrmge.2018.10.007_bib24) 1994; 1 Mousavi (10.1016/j.jrmge.2018.10.007_bib22) 2018; 12 Clegg (10.1016/j.jrmge.2018.10.007_bib12) 1971; 13 Avalle (10.1016/j.jrmge.2018.10.007_bib6) 2006 Jaksa (10.1016/j.jrmge.2018.10.007_bib20) 2012 Babanajad (10.1016/j.jrmge.2018.10.007_bib8) 2013; 36 Alavi (10.1016/j.jrmge.2018.10.007_bib3) 2016; 7 Clifford (10.1016/j.jrmge.2018.10.007_bib13) 1976 Roy (10.1016/j.jrmge.2018.10.007_bib32) 2008; 27 Francone (10.1016/j.jrmge.2018.10.007_bib14) 2004; 161 Gandomi (10.1016/j.jrmge.2018.10.007_bib17) 2014; 19 Rezania (10.1016/j.jrmge.2018.10.007_bib31) 2007; 44 Scott (10.1016/j.jrmge.2018.10.007_bib33) 2012 Alavi (10.1016/j.jrmge.2018.10.007_bib1) 2013 Banzhaf (10.1016/j.jrmge.2018.10.007_bib9) 1998 Rashed (10.1016/j.jrmge.2018.10.007_bib30) 2012; 25 Golbraikh (10.1016/j.jrmge.2018.10.007_bib18) 2002; 20 Poli (10.1016/j.jrmge.2018.10.007_bib26) 2007 Ranasinghe (10.1016/j.jrmge.2018.10.007_bib29) 2019; 38 |
| References_xml | – year: 2010 ident: bib15 article-title: Discipulus TM with Notitia and solution analytics owner's manual – volume: 36 start-page: 136 year: 2013 end-page: 144 ident: bib8 article-title: Numerical modeling of concrete strength under multiaxial confinement pressures using linear genetic programming publication-title: Automation in Construction – volume: 42 start-page: 283 year: 2009 end-page: 292 ident: bib36 article-title: A genetic programming framework for content-based image retrieval publication-title: Pattern Recognition – volume: 170 start-page: 193 year: 2017 end-page: 207 ident: bib28 article-title: Predicting the effectiveness of rolling dynamic compaction using genetic programming publication-title: Proceedings of the Institution of Civil Engineers Ground Improvement – year: 2007 ident: bib11 article-title: Linear genetic programming – start-page: 775 year: 1999 end-page: 781 ident: bib25 article-title: Innovative developments in compaction technology using high energy impact compactors publication-title: Proceedings of the 8th Australia New Zealand conference on Geomechanics: consolidating knowledge – year: 2006 ident: bib6 article-title: Reducing haul road maintenance costs and improving tyre wear through the use of impact rollers publication-title: Mining for tyres conference. Perth Australia – year: 1975 ident: bib19 article-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence – volume: 123 start-page: 324 year: 2011 end-page: 332 ident: bib23 article-title: A hybrid computational approach to formulate soil deformation moduli obtained from PLT publication-title: Engineering Geology – volume: 25 start-page: 1437 year: 2012 end-page: 1449 ident: bib30 article-title: Nonlinear modeling of soil deformation modulus through LGP-based interpretation of pressuremeter test results publication-title: Engineering Applications of Artificial Intelligence – year: 1998 ident: bib9 article-title: Genetic programming: an introduction on the automatic evolution of computer programs and its application – volume: 13 start-page: 65 year: 1971 end-page: 73 ident: bib12 article-title: The development and testing of an impact roller publication-title: The Civil Engineer in South Africa – volume: 19 start-page: 112 year: 2014 end-page: 120 ident: bib17 article-title: Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups publication-title: Applied Soft Computing – year: 1992 ident: bib21 article-title: Genetic programming: on the programming of computers by means of natural selection – volume: 397 start-page: 1 year: 2011 end-page: 9 ident: bib34 article-title: Testing the structure of a hydrological model using genetic programming publication-title: Journal of Hydrology – volume: 1 start-page: 311 year: 1994 end-page: 331 ident: bib24 article-title: A compiling genetic programming system that directly manipulates the machine code publication-title: Advances in Genetic Programming – volume: 20 start-page: 269 year: 2002 end-page: 276 ident: bib18 article-title: Beware of q2! publication-title: Journal of Molecular Graphics and Modelling – volume: 43 start-page: 963 year: 2010 end-page: 983 ident: bib16 article-title: New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming publication-title: Materials and Structures – volume: 38 start-page: 153 year: 2019 end-page: 170 ident: bib29 article-title: Prediction of the effectiveness of rolling dynamic compaction using artificial neural networks and cone penetration test data publication-title: Chinese Journal of Rock Mechanics and Engineering – year: 1986 ident: bib35 article-title: Probability and statistics in civil engineering – year: 2003 ident: bib4 article-title: Standard test method for use of dynamic cone penetrometer in shallow pavement applications – volume: 12 start-page: 284 year: 2018 end-page: 292 ident: bib22 article-title: Correlation of dynamic cone penetrometer index to proof roller test to assess subgrade soils stabilization criterion publication-title: International Journal of Geotechnical Engineering – volume: 9 start-page: 340 year: 2017 end-page: 349 ident: bib27 article-title: Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results publication-title: Journal of Rock Mechanics and Geotechnical Engineering – volume: 161 start-page: 99 year: 2004 end-page: 120 ident: bib14 article-title: Extending the boundaries of design optimization by integrating fast optimization techniques with machine-code-based, linear genetic programming publication-title: Information Sciences – volume: 7 start-page: 91 year: 2016 end-page: 99 ident: bib3 article-title: New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses publication-title: Geoscience Frontiers – volume: 44 start-page: 1462 year: 2007 end-page: 1473 ident: bib31 article-title: A new genetic programming model for predicting settlement of shallow foundations publication-title: Canadian Geotechnical Journal – year: 2013 ident: bib1 article-title: Linear and tree-based genetic programming for solving geotechnical engineering problems publication-title: Metaheuristics in water, geotechnical and transport engineering – start-page: 41 year: 2012 end-page: 52 ident: bib20 article-title: Quantifying the zone of influence of the impact roller publication-title: ISSMGE-TC 211 international symposium on ground improvement – start-page: 961 year: 2012 end-page: 966 ident: bib33 article-title: Mining applications and case studies of rolling dynamic compaction publication-title: Proceedings of the Australia-New Zealand (ANZ) conference on Geomechanics. Melbourne, Australia – start-page: 513 year: 2004 end-page: 518 ident: bib7 article-title: Use of the impact roller to reduce agricultural water loss publication-title: Proceedings of the 9th ANZ conference on Geomechanics. Auckland Australia – start-page: 21 year: 1976 end-page: 29 ident: bib13 article-title: Impact rolling and construction techniques publication-title: Australian road research board conference – volume: 27 start-page: 302 year: 2008 end-page: 313 ident: bib32 article-title: On some aspects of variable selection for partial least squares regression models publication-title: QSAR Combinatorial Science – volume: 5 start-page: 17 year: 2001 end-page: 26 ident: bib10 article-title: A comparison of linear genetic programming and neural networks in medical data mining publication-title: IEEE Transactions on Evolutionary Computation – volume: 3 start-page: 541 year: 2012 end-page: 555 ident: bib2 article-title: Energy-based numerical models for assessment of soil liquefaction publication-title: Geoscience Frontiers – year: 2007 ident: bib26 article-title: Genetic programming: an introductory tutorial and a survey of techniques and applications – year: 2005 ident: bib5 article-title: Evaluating the improvement from impact rolling on sand publication-title: Proceedings of the 6th international conference on ground improvement techniques. Coimbra, Portugal – year: 2007 ident: 10.1016/j.jrmge.2018.10.007_bib11 – volume: 38 start-page: 153 issue: 1 year: 2019 ident: 10.1016/j.jrmge.2018.10.007_bib29 article-title: Prediction of the effectiveness of rolling dynamic compaction using artificial neural networks and cone penetration test data publication-title: Chinese Journal of Rock Mechanics and Engineering – year: 1986 ident: 10.1016/j.jrmge.2018.10.007_bib35 – volume: 43 start-page: 963 issue: 7 year: 2010 ident: 10.1016/j.jrmge.2018.10.007_bib16 article-title: New formulation for compressive strength of CFRP confined concrete cylinders using linear genetic programming publication-title: Materials and Structures doi: 10.1617/s11527-009-9559-y – volume: 7 start-page: 91 issue: 1 year: 2016 ident: 10.1016/j.jrmge.2018.10.007_bib3 article-title: New design equations for estimation of ultimate bearing capacity of shallow foundations resting on rock masses publication-title: Geoscience Frontiers doi: 10.1016/j.gsf.2014.12.005 – year: 2007 ident: 10.1016/j.jrmge.2018.10.007_bib26 – start-page: 513 year: 2004 ident: 10.1016/j.jrmge.2018.10.007_bib7 article-title: Use of the impact roller to reduce agricultural water loss – year: 2010 ident: 10.1016/j.jrmge.2018.10.007_bib15 – year: 1975 ident: 10.1016/j.jrmge.2018.10.007_bib19 – year: 2013 ident: 10.1016/j.jrmge.2018.10.007_bib1 article-title: Linear and tree-based genetic programming for solving geotechnical engineering problems – year: 1998 ident: 10.1016/j.jrmge.2018.10.007_bib9 – start-page: 961 year: 2012 ident: 10.1016/j.jrmge.2018.10.007_bib33 article-title: Mining applications and case studies of rolling dynamic compaction – volume: 5 start-page: 17 issue: 1 year: 2001 ident: 10.1016/j.jrmge.2018.10.007_bib10 article-title: A comparison of linear genetic programming and neural networks in medical data mining publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.910462 – start-page: 21 year: 1976 ident: 10.1016/j.jrmge.2018.10.007_bib13 article-title: Impact rolling and construction techniques – volume: 12 start-page: 284 issue: 3 year: 2018 ident: 10.1016/j.jrmge.2018.10.007_bib22 article-title: Correlation of dynamic cone penetrometer index to proof roller test to assess subgrade soils stabilization criterion publication-title: International Journal of Geotechnical Engineering doi: 10.1080/19386362.2016.1272751 – volume: 170 start-page: 193 issue: 4 year: 2017 ident: 10.1016/j.jrmge.2018.10.007_bib28 article-title: Predicting the effectiveness of rolling dynamic compaction using genetic programming publication-title: Proceedings of the Institution of Civil Engineers Ground Improvement doi: 10.1680/jgrim.17.00009 – volume: 20 start-page: 269 issue: 4 year: 2002 ident: 10.1016/j.jrmge.2018.10.007_bib18 article-title: Beware of q2! publication-title: Journal of Molecular Graphics and Modelling doi: 10.1016/S1093-3263(01)00123-1 – volume: 3 start-page: 541 issue: 4 year: 2012 ident: 10.1016/j.jrmge.2018.10.007_bib2 article-title: Energy-based numerical models for assessment of soil liquefaction publication-title: Geoscience Frontiers doi: 10.1016/j.gsf.2011.12.008 – year: 2006 ident: 10.1016/j.jrmge.2018.10.007_bib6 article-title: Reducing haul road maintenance costs and improving tyre wear through the use of impact rollers – volume: 13 start-page: 65 year: 1971 ident: 10.1016/j.jrmge.2018.10.007_bib12 article-title: The development and testing of an impact roller publication-title: The Civil Engineer in South Africa – volume: 9 start-page: 340 issue: 2 year: 2017 ident: 10.1016/j.jrmge.2018.10.007_bib27 article-title: Application of artificial neural networks for predicting the impact of rolling dynamic compaction using dynamic cone penetrometer test results publication-title: Journal of Rock Mechanics and Geotechnical Engineering doi: 10.1016/j.jrmge.2016.11.011 – year: 2005 ident: 10.1016/j.jrmge.2018.10.007_bib5 article-title: Evaluating the improvement from impact rolling on sand – volume: 19 start-page: 112 year: 2014 ident: 10.1016/j.jrmge.2018.10.007_bib17 article-title: Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.02.007 – start-page: 41 year: 2012 ident: 10.1016/j.jrmge.2018.10.007_bib20 article-title: Quantifying the zone of influence of the impact roller – start-page: 775 year: 1999 ident: 10.1016/j.jrmge.2018.10.007_bib25 article-title: Innovative developments in compaction technology using high energy impact compactors – year: 1992 ident: 10.1016/j.jrmge.2018.10.007_bib21 – volume: 36 start-page: 136 year: 2013 ident: 10.1016/j.jrmge.2018.10.007_bib8 article-title: Numerical modeling of concrete strength under multiaxial confinement pressures using linear genetic programming publication-title: Automation in Construction doi: 10.1016/j.autcon.2013.08.016 – volume: 397 start-page: 1 issue: 1–2 year: 2011 ident: 10.1016/j.jrmge.2018.10.007_bib34 article-title: Testing the structure of a hydrological model using genetic programming publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2010.11.009 – volume: 25 start-page: 1437 issue: 7 year: 2012 ident: 10.1016/j.jrmge.2018.10.007_bib30 article-title: Nonlinear modeling of soil deformation modulus through LGP-based interpretation of pressuremeter test results publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2011.11.008 – volume: 42 start-page: 283 issue: 2 year: 2009 ident: 10.1016/j.jrmge.2018.10.007_bib36 article-title: A genetic programming framework for content-based image retrieval publication-title: Pattern Recognition doi: 10.1016/j.patcog.2008.04.010 – year: 2003 ident: 10.1016/j.jrmge.2018.10.007_bib4 – volume: 161 start-page: 99 issue: 3–4 year: 2004 ident: 10.1016/j.jrmge.2018.10.007_bib14 article-title: Extending the boundaries of design optimization by integrating fast optimization techniques with machine-code-based, linear genetic programming publication-title: Information Sciences doi: 10.1016/j.ins.2003.05.006 – volume: 123 start-page: 324 issue: 4 year: 2011 ident: 10.1016/j.jrmge.2018.10.007_bib23 article-title: A hybrid computational approach to formulate soil deformation moduli obtained from PLT publication-title: Engineering Geology doi: 10.1016/j.enggeo.2011.09.005 – volume: 44 start-page: 1462 issue: 12 year: 2007 ident: 10.1016/j.jrmge.2018.10.007_bib31 article-title: A new genetic programming model for predicting settlement of shallow foundations publication-title: Canadian Geotechnical Journal doi: 10.1139/T07-063 – volume: 27 start-page: 302 issue: 3 year: 2008 ident: 10.1016/j.jrmge.2018.10.007_bib32 article-title: On some aspects of variable selection for partial least squares regression models publication-title: QSAR Combinatorial Science doi: 10.1002/qsar.200710043 – volume: 1 start-page: 311 year: 1994 ident: 10.1016/j.jrmge.2018.10.007_bib24 article-title: A compiling genetic programming system that directly manipulates the machine code publication-title: Advances in Genetic Programming |
| SSID | ssib017476736 ssib022315938 ssib007891447 ssib051367711 ssib011451244 ssib044745613 ssib038074921 |
| Score | 2.1709747 |
| Snippet | Rolling dynamic compaction (RDC), which employs non-circular module towed behind a tractor, is an innovative soil compaction method that has proven to be... Rolling dynamic compaction (RDC),which employs non-circular module towed behind a tractor,is an innovative soil compaction method that has proven to be... |
| SourceID | doaj wanfang crossref elsevier |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 815 |
| SubjectTerms | Dynamic cone penetrometer (DCP) test Ground improvement Linear genetic programming (LGP) Rolling dynamic compaction (RDC) |
| Title | Genetic programming for predictions of effectiveness of rolling dynamic compaction with dynamic cone penetrometer test results |
| URI | https://dx.doi.org/10.1016/j.jrmge.2018.10.007 https://d.wanfangdata.com.cn/periodical/yslxyytgcxb-e201904010 https://doaj.org/article/a80c48ecfb8d4c18ac312fa4a46f2eed |
| Volume | 11 |
| WOSCitedRecordID | wos000478574300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 1674-7755 databaseCode: M~E dateStart: 20090101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: false ssIdentifier: ssib044745613 providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBejbLBL6dhG065Dh8Eu8yrLsi0du9Gwy8IOG_QmJFkKLalXErdrLv3b-56kZO6lvZSAIQ99OH7P78P5-fcI-SS9K71XoZCNawohFYdbyjaFCm0VmDQWPrHZRDubybMz9WvU6gsxYYkeOF24YyOZE7BisLITrpTGVSUPRhjRBA4OHr0vZD2jYgotqZUKKoVtYC2xH-0okEFMhDD-3_KQdV2MiMFgKiYWW8utkdisjc18EbUPKWldbyiMIljsYnk5R9LNUn6NWLH2QZiL3QAeRLtX_0wfTD8fxbLpHtnNSSg9ST_-DXnh-7fkDhmoQUAzZOsSghqFlBa-45850T7p30ATAiQ7SRQsE6837VJzexph7XE8xae8I3nv6RVughQJoE8Kae5Aod6_Xgyrd-TP9PT39x9F7s5QOFFXQ8FDaComoRj3pTO1FbWyLdS7XgbbVZ2XtbeGNawzoCVjuDKqZQznusY4q6r3ZKeHjfcJtcF3illwDcinxkvDfSWMVV6BPFTdhPDNxdQuU5djB42F3mDULnTUgEYNoBA0MCFftpOuEnPH48O_oZa2Q5F2OwrAGHU2Rv2UMU5Is9GxzhlMykxgqfPHd_-cLUJnH7LS69Xidr0e5u7Was_xnX-ohdnBc5znIXmNCyYg4weyMyyv_RF56W6G89XyY7yV4Pjz7vQe6JIi0g |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+programming+for+predictions+of+effectiveness+of+rolling+dynamic+compaction+with+dynamic+cone+penetrometer+test+results&rft.jtitle=Journal+of+Rock+Mechanics+and+Geotechnical+Engineering&rft.au=Ranasinghe%2C+R.A.T.M.&rft.au=Jaksa%2C+M.B.&rft.au=Pooya+Nejad%2C+F.&rft.au=Kuo%2C+Y.L.&rft.date=2019-08-01&rft.issn=1674-7755&rft.volume=11&rft.issue=4&rft.spage=815&rft.epage=823&rft_id=info:doi/10.1016%2Fj.jrmge.2018.10.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jrmge_2018_10_007 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyslxyytgcxb-e%2Fyslxyytgcxb-e.jpg |