The effect of duct size, sample size, and fuel composition on concurrent flame spread over large cellulose samples in microgravity
Concurrent flame spread data for thermally-thin charring solid fuels are presented from Saffire and BASS experiments performed in habitable spacecraft for three duct sizes, five sample sizes, two materials, and two atmospheres. The flame spread rates and flame lengths were strongly affected by duct...
Uloženo v:
| Vydáno v: | Combustion and Flame Ročník 248; s. 112559 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina japonština |
| Vydáno: |
Elsevier Inc
01.02.2023
Elsevier BV Elsevier |
| Témata: | |
| ISSN: | 0010-2180, 1556-2921 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Concurrent flame spread data for thermally-thin charring solid fuels are presented from Saffire and BASS experiments performed in habitable spacecraft for three duct sizes, five sample sizes, two materials, and two atmospheres. The flame spread rates and flame lengths were strongly affected by duct size even for the relatively large ducts (> 30 cm tall). A transient excess pyrolysis length (i.e., flame length overshoot) was observed for the cotton fabric that burned away, which indicates that the transient excess pyrolysis length phenomenon is caused by more than just the flame moving into the developing boundary layer thickness as was the case with the SIBAL sample. A burnout time, defined as the pyrolysis length divided by the flame spread rate, normalized the pyrolysis length histories into a single curve with a steady burnout time of 22 s for the SIBAL fabric. The transient excess pyrolysis length is hypothesized to be a post-ignition flame growth transient for the essentially two-dimensional flames where the burnout time becomes very long until the preheat and pyrolysis lengths develop. The three-dimensional flames over narrow samples have lateral thermal expansion and lateral oxygen diffusion which allows them to transition to a steady state length without the transient excess pyrolysis length. Surface temperature profiles, nondimensionalized by the pyrolysis length, indicate that the temperature profiles exhibit the same shape across the pyrolysis zone. A surface energy balance calculation in the preheat region revealed that the heat flux increased rapidly at the pyrolysis front to near the critical heat flux for ignition. An estimate of the acceleration of the inviscid core flow in the duct due to thermal expansion and developing boundary layers on the duct walls and the SIBAL sample surface seems to explain the observed spread rate trends across three duct sizes and multiple sample sizes. |
|---|---|
| AbstractList | Concurrent flame spread data for thermally-thin charring solid fuels are presented from Saffire and BASS experiments performed in habitable spacecraft for three duct sizes, five sample sizes, two materials, and two atmospheres. The flame spread rates and flame lengths were strongly affected by duct size even for the relatively large ducts (> 30 cm tall). A transient excess pyrolysis length (i.e., flame length overshoot) was observed for the cotton fabric that burned away, which indicates that the transient excess pyrolysis length phenomenon is caused by more than just the flame moving into the developing boundary layer thickness as was the case with the SIBAL sample. A burnout time, defined as the pyrolysis length divided by the flame spread rate, normalized the pyrolysis length histories into a single curve with a steady burnout time of 22 s for the SIBAL fabric. The transient excess pyrolysis length is hypothesized to be a post-ignition flame growth transient for the essentially two-dimensional flames where the burnout time becomes very long until the preheat and pyrolysis lengths develop. The three-dimensional flames over narrow samples have lateral thermal expansion and lateral oxygen diffusion which allows them to transition to a steady state length without the transient excess pyrolysis length. Surface temperature profiles, nondimensionalized by the pyrolysis length, indicate that the temperature profiles exhibit the same shape across the pyrolysis zone. A surface energy balance calculation in the preheat region revealed that the heat flux increased rapidly at the pyrolysis front to near the critical heat flux for ignition. An estimate of the acceleration of the inviscid core flow in the duct due to thermal expansion and developing boundary layers on the duct walls and the SIBAL sample surface seems to explain the observed spread rate trends across three duct sizes and multiple sample sizes. Concurrent flame spread data for thermally-thin charring solid fuels are presented from Saffire and BASS experiments performed in habitable spacecraft for three duct sizes, five sample sizes, two materials, and two atmospheres. The flame spread rates and flame lengths were strongly affected by duct size even for the relatively large ducts (> 30 cm tall). A transient excess pyrolysis length (i.e., flame length overshoot) was observed for the cotton fabric that burned away, which indicates that the transient excess pyrolysis length phenomenon is caused by more than just the flame moving into the developing boundary layer thickness as was the case with the SIBAL sample. A burnout time, defined as the pyrolysis length divided by the flame spread rate, normalized the pyrolysis length histories into a single curve with a steady burnout time of 22 s for the SIBAL fabric. The transient excess pyrolysis length is hypothesized to be a post-ignition flame growth transient for the essentially two-dimensional flames where the burnout time becomes very long until the preheat and pyrolysis lengths develop. The three-dimensional flames over narrow samples have lateral thermal expansion and lateral oxygen diffusion which allows them to transition to a steady state length without the transient excess pyrolysis length. Surface temperature profiles, nondimensionalized by the pyrolysis length, indicate that the temperature profiles exhibit the same shape across the pyrolysis zone. A surface energy balance calculation in the preheat region revealed that the heat flux increased rapidly at the pyrolysis front to near the critical heat flux for ignition. An estimate of the acceleration of the inviscid core flow in the duct due to thermal expansion and developing boundary layers on the duct walls and the SIBAL sample surface seems to explain the observed spread rate trends across three duct sizes and multiple sample sizes. |
| ArticleNumber | 112559 |
| Author | Owens, Jay C. Ruff, Gary A. Liao, Ya-Ting T'ien, James S. Smirnov, Nikolay Jomaas, Grunde Easton, John Ferkul, Paul V. Guibaud, Augustin Fujita, Osamu Urban, David L. Legros, Guillaume Olson, Sandra L. Fernandez-Pello, Carlos Toth, Balazs |
| Author_xml | – sequence: 1 givenname: Sandra L. orcidid: 0000-0001-8670-5623 surname: Olson fullname: Olson, Sandra L. email: Sandra.olson@nasa.gov organization: NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, United States – sequence: 2 givenname: Gary A. surname: Ruff fullname: Ruff, Gary A. organization: NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, United States – sequence: 3 givenname: Paul V. orcidid: 0000-0001-7655-2125 surname: Ferkul fullname: Ferkul, Paul V. organization: NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, United States – sequence: 4 givenname: Jay C. surname: Owens fullname: Owens, Jay C. organization: NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, United States – sequence: 5 givenname: John surname: Easton fullname: Easton, John organization: NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, United States – sequence: 6 givenname: Ya-Ting orcidid: 0000-0001-5759-5971 surname: Liao fullname: Liao, Ya-Ting organization: Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States – sequence: 7 givenname: James S. orcidid: 0000-0003-4469-1133 surname: T'ien fullname: T'ien, James S. organization: Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States – sequence: 8 givenname: Balazs surname: Toth fullname: Toth, Balazs organization: ESA/ESTEC, Keplerlaan 1, Postbus 299, Noordwijk, AG 2200, the Netherlands – sequence: 9 givenname: Grunde surname: Jomaas fullname: Jomaas, Grunde organization: Slovenian National Building and Civil Engineering Institute (ZAG) Dimičeva Ulica 12, FRISSBE, Ljubljana 1000, Slovenia – sequence: 10 givenname: Carlos surname: Fernandez-Pello fullname: Fernandez-Pello, Carlos organization: University of California, Berkeley, CA 94720-1740, United States – sequence: 11 givenname: Guillaume surname: Legros fullname: Legros, Guillaume organization: CNRS-ICARE / Univ. Orléans, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France – sequence: 12 givenname: Augustin orcidid: 0000-0001-5168-9547 surname: Guibaud fullname: Guibaud, Augustin organization: University College London, Gower Street, London WC1E 6BT, United Kingdom – sequence: 13 givenname: Osamu surname: Fujita fullname: Fujita, Osamu organization: Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0808, Japan – sequence: 14 givenname: Nikolay surname: Smirnov fullname: Smirnov, Nikolay organization: Moscow M.V. Lomonosov State University, Leninskie Gory, 1, Moscow 119992, Russian Federation – sequence: 15 givenname: David L. orcidid: 0000-0003-0427-1871 surname: Urban fullname: Urban, David L. organization: NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, United States |
| BackLink | https://cir.nii.ac.jp/crid/1873962440698012288$$DView record in CiNii https://cnrs.hal.science/hal-04458901$$DView record in HAL |
| BookMark | eNqNkU9r3DAQxUVJoZuk30GUXgr1diT5j9xTQ9I2gYVe0rOQ5VGiRbYWyV5Ij_3kkeullJ4CQsOI994MP52TszGMSMg7BlsGrP6035owdHOarNcDbjlwvmWMV1X7imxYVdUFbzk7IxsABgVnEt6Q85T2ANCUQmzI7_tHpGgtmokGS_s51-R-4Uea9HDweGr02FM7o6d53CEkN7kw0nxMGM0cI44T_bMBTYeIuqfhiJF6HR-QGvR-9iHhKTFRN9LBmRgeoj666emSvLbaJ3x7qhfk57ev99e3xe7H97vrq11hykpMBbcSZcOk4dDxkhuQAhvoylp3om64lq2VVpqy06Al0xVy2QshpO070VWaiwvyYc191F4doht0fFJBO3V7tVPLG5RlJVtgR5a1n1dtXjOliPavgYFayKu9-pe8WsirlXw2f_nPbNykF2RT1M6_LOL9GjE6l93LzWQj2pqXJdStBMa5lFl2s8owczs6jCoZh6PB3sX8o6oP7iXTngGPLbc9 |
| CitedBy_id | crossref_primary_10_1016_j_combustflame_2024_113880 crossref_primary_10_1016_j_proci_2024_105495 crossref_primary_10_1007_s10694_023_01369_9 crossref_primary_10_1016_j_actaastro_2025_07_010 crossref_primary_10_1016_j_combustflame_2024_113299 crossref_primary_10_1080_00102202_2025_2465808 crossref_primary_10_2478_gsr_2024_0007 crossref_primary_10_1016_j_icheatmasstransfer_2024_108142 |
| Cites_doi | 10.1016/j.actaastro.2014.11.025 10.1016/S0082-0784(73)80098-0 10.1115/1.4047645 10.1016/0379-7112(96)00010-0 10.1016/S0082-0784(00)80701-8 10.1016/j.combustflame.2018.10.012 10.1016/j.combustflame.2014.12.003 10.1016/j.combustflame.2008.05.023 10.1016/j.combustflame.2021.111714 10.1016/j.proci.2020.05.011 10.1007/s10694-020-00987-x 10.1080/13647830902807314 10.1016/j.proci.2018.05.004 10.1177/0734904108092547 10.1016/j.proci.2014.05.069 10.1016/j.proci.2008.05.081 10.1115/1.4001645 10.1080/00102209408935440 10.1016/0009-2509(77)80249-2 10.1080/00102202.2018.1489380 10.1016/j.firesaf.2017.05.007 10.1016/j.combustflame.2020.12.042 10.1016/j.proci.2016.06.028 10.1016/j.proci.2018.05.168 |
| ContentType | Journal Article |
| Contributor | Department of Civil, Environmental and Geomatic Engineering [UCL London] ; University College of London [London] (UCL) Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE) ; Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut des Sciences de l'Ingénierie et des Systèmes - CNRS Ingénierie (INSIS - CNRS) NASA Glenn Research Center ; NASA School of Engineering [Edinburgh] ; University of Edinburgh (Edin.) Lawrence Berkeley National Laboratory [Berkeley] (LBNL) GDR 2799 Micropesanteur Fondamentale & Appliquée Case Western Reserve University [Cleveland] Hokkaido University [Sapporo, Japan] European Space Research and Technology Centre (ESTEC) ; Agence Spatiale Européenne = European Space Agency (ESA) |
| Contributor_xml | – sequence: 1 fullname: NASA Glenn Research Center ; NASA – sequence: 2 fullname: Case Western Reserve University [Cleveland] – sequence: 3 fullname: European Space Research and Technology Centre (ESTEC) ; Agence Spatiale Européenne = European Space Agency (ESA) – sequence: 4 fullname: School of Engineering [Edinburgh] ; University of Edinburgh (Edin.) – sequence: 5 fullname: Lawrence Berkeley National Laboratory [Berkeley] (LBNL) – sequence: 6 fullname: Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE) ; Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut des Sciences de l'Ingénierie et des Systèmes - CNRS Ingénierie (INSIS - CNRS) – sequence: 7 fullname: Department of Civil, Environmental and Geomatic Engineering [UCL London] ; University College of London [London] (UCL) – sequence: 8 fullname: Hokkaido University [Sapporo, Japan] – sequence: 9 fullname: GDR 2799 Micropesanteur Fondamentale & Appliquée |
| Copyright | 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | RYH AAYXX CITATION 1XC |
| DOI | 10.1016/j.combustflame.2022.112559 |
| DatabaseName | CiNii Complete CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry |
| EISSN | 1556-2921 |
| ExternalDocumentID | oai:HAL:hal-04458901v1 10_1016_j_combustflame_2022_112559 S0010218022005673 |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDEX ABDMP ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP EFKBS RYH ~HD 9DU AAYXX ABWVN ACRPL ADNMO AGQPQ CITATION 1XC |
| ID | FETCH-LOGICAL-c453t-2f8e8718c20b242c083e70b46ab3672a89f8f8c4ba0a81a5e28d3338fdb3b5a23 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000915431800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0010-2180 |
| IngestDate | Tue Oct 14 20:43:36 EDT 2025 Sat Nov 29 07:32:33 EST 2025 Tue Nov 18 22:12:42 EST 2025 Mon Nov 10 09:10:56 EST 2025 Fri Feb 23 02:35:53 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Concurrent flame spread Sample size Duct size Microgravity Cellulose fabrics Combustion |
| Language | English Japanese |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c453t-2f8e8718c20b242c083e70b46ab3672a89f8f8c4ba0a81a5e28d3338fdb3b5a23 |
| ORCID | 0000-0001-7655-2125 0000-0003-4469-1133 0000-0001-8670-5623 0000-0001-5168-9547 0000-0003-0427-1871 0000-0001-5759-5971 0000-0003-4245-8258 |
| OpenAccessLink | https://cir.nii.ac.jp/crid/1873962440698012288 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04458901v1 crossref_primary_10_1016_j_combustflame_2022_112559 crossref_citationtrail_10_1016_j_combustflame_2022_112559 nii_cinii_1873962440698012288 elsevier_sciencedirect_doi_10_1016_j_combustflame_2022_112559 |
| PublicationCentury | 2000 |
| PublicationDate | February 2023 2023-02-01 2023-02-00 2023-02 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Combustion and Flame |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV – name: Elsevier |
| References | Zhao, Fang, Tao, Wang, Zhang (bib0029) 2021; 57 Urban, Ferkul, Olson, Ruff, Easton, T'ien, Liao, Li, Fernandez-Pello, Torero, Legros, Eigenbrod, Smirnov, Fujita, Rouvreau, Toth, Jomaas (bib0003) 2019; 199 Shih, Wu (bib0015) 2008; 26 L. Chu, C.H. Chen, J.S. T'ien, Upward spreading flames over paper samples, ASME 81-WA/HT-42 (1981) 1–8. Li, Liao, Ferkul, Johnston, Bunnell (bib0020) 2020 Vleggaar (bib0033) 1977; 32 Di Blasi (bib0011) 1995; 25 Olson, Gokoglu, Urban, Ruff, Ferkul (bib0027) 2015; 35 Shih (bib0014) 2009; 13 Thomsen, Fernandez-Pello, Urban, Ruff, Olson (bib0028) 2018 Li, Liao, T'ien, Urban, Ferkul, Olson, Ruff, Easton (bib0017) 2019; 37 Li, Liao (bib0031) 2018; 190 Grayson, Sacksteder, Ferkul, T'ien (bib0007) 1994; 7 White, Dietenberger (bib0032) 2001 Zhao, T'ien (bib0012) 2015; 162 Olson, Miller (bib0008) 2009; 32 Markstein, de Ris (bib0005) 1973; 14 Zhao, Liao, Johnston, T'ien, Ferkul, Olson (bib0030) 2017; 36 Ferkul, Olson, Urban, Ruff, Easton, T'ien, Liao, Fernandez-Pello, Torero, Eigenbrod, Legros (bib0002) 2017 Shih, T'ien (bib0013) 1997 Li, Liao (bib0018) 2021; 38 Li, Liao, Ferkul (bib0019) 2020; 142 Ferkul, T'ien (bib0009) 1994; 99 Jomaas, Torero, Eigenbrod, Niehaus, Olson, Ferkul, Legros, Fernandez-Pello, Cowlard, Rouvreau, Smirnov, Fujita, T'ien, Ruff, Urban (bib0001) 2015; 109 Thomsen, Fernandez-Pello, Urban, Ruff, Olson (bib0024) 2019; 37 Tseng, T'ien (bib0016) 2010; 132 Li, Liao, Ferkul, Johnston, Bunnell (bib0021) 2021; 227 Urban, Ruff, Ferkul, Easton, Owens, Olson, Meyer, Fortenberry, Brooker, Graf, Casteel, Toth, Meyer C. Eigenbrod, T'ien, Liao, Fernandez-Pello, Legros, Guibaud, Smirnov, Fujita, Jomaas (bib0004) 2021 Kleinhenz, Feier, Hsu, T'ien, Ferkul, Sacksteder (bib0025) 2008; 154 Li, Liao (bib0022) 2022; 235 Jiang, T'ien (bib0010) 1994 Honda, Ronney (bib0023) 2000; 28 Gollner, Miller, Tang, Singh (bib0026) 2017; 91 Thomsen (10.1016/j.combustflame.2022.112559_bib0024) 2019; 37 Olson (10.1016/j.combustflame.2022.112559_bib0027) 2015; 35 Grayson (10.1016/j.combustflame.2022.112559_bib0007) 1994; 7 Li (10.1016/j.combustflame.2022.112559_bib0020) 2020 Zhao (10.1016/j.combustflame.2022.112559_bib0012) 2015; 162 Shih (10.1016/j.combustflame.2022.112559_bib0013) 1997 Li (10.1016/j.combustflame.2022.112559_bib0017) 2019; 37 Ferkul (10.1016/j.combustflame.2022.112559_bib0009) 1994; 99 Tseng (10.1016/j.combustflame.2022.112559_bib0016) 2010; 132 Urban (10.1016/j.combustflame.2022.112559_bib0003) 2019; 199 Li (10.1016/j.combustflame.2022.112559_bib0019) 2020; 142 Urban (10.1016/j.combustflame.2022.112559_bib0004) 2021 Olson (10.1016/j.combustflame.2022.112559_bib0008) 2009; 32 Li (10.1016/j.combustflame.2022.112559_bib0018) 2021; 38 Zhao (10.1016/j.combustflame.2022.112559_bib0030) 2017; 36 Shih (10.1016/j.combustflame.2022.112559_bib0014) 2009; 13 Shih (10.1016/j.combustflame.2022.112559_bib0015) 2008; 26 10.1016/j.combustflame.2022.112559_bib0006 Jiang (10.1016/j.combustflame.2022.112559_bib0010) 1994 Zhao (10.1016/j.combustflame.2022.112559_bib0029) 2021; 57 Thomsen (10.1016/j.combustflame.2022.112559_bib0028) 2018 Jomaas (10.1016/j.combustflame.2022.112559_bib0001) 2015; 109 Li (10.1016/j.combustflame.2022.112559_bib0021) 2021; 227 Gollner (10.1016/j.combustflame.2022.112559_bib0026) 2017; 91 Di Blasi (10.1016/j.combustflame.2022.112559_bib0011) 1995; 25 Ferkul (10.1016/j.combustflame.2022.112559_bib0002) 2017 Honda (10.1016/j.combustflame.2022.112559_bib0023) 2000; 28 White (10.1016/j.combustflame.2022.112559_bib0032) 2001 Markstein (10.1016/j.combustflame.2022.112559_bib0005) 1973; 14 Li (10.1016/j.combustflame.2022.112559_bib0031) 2018; 190 Kleinhenz (10.1016/j.combustflame.2022.112559_bib0025) 2008; 154 Vleggaar (10.1016/j.combustflame.2022.112559_bib0033) 1977; 32 Li (10.1016/j.combustflame.2022.112559_bib0022) 2022; 235 |
| References_xml | – volume: 28 start-page: 2793 year: 2000 end-page: 2801 ident: bib0023 article-title: Mechanisms of concurrent-flow flame spread over solid fuel beds publication-title: Proc. Combust. Inst. – volume: 37 start-page: 3793 year: 2019 end-page: 3800 ident: bib0024 article-title: On simulating concurrent flame spread in reduced gravity by reducing ambient pressure publication-title: Proc. Combust. Inst. – volume: 37 start-page: 4163 year: 2019 end-page: 4171 ident: bib0017 article-title: Transient flame growth and spread processes over a large solid fabric in concurrent low-speed flows in microgravity –model versus experiment publication-title: Proc. Combust. Inst. – volume: 142 year: 2020 ident: bib0019 article-title: Numerical study of the effects of confinement on concurrent-flow flame spread in microgravity publication-title: ASME J. Heat Transf. – volume: 235 year: 2022 ident: bib0022 article-title: Numerical study of flame spread in a narrow flow duct in microgravity–effects of flow confinement and radiation reflection publication-title: Combust. Flame – volume: 36 start-page: 2971 year: 2017 end-page: 2978 ident: bib0030 article-title: Concurrent flame growth, spread, and quenching over composite fabric samples in low speed purely forced flow in microgravity publication-title: Proc. Combust. Inst. – volume: 7 start-page: 187 year: 1994 end-page: 195 ident: bib0007 article-title: Flame spreading over a thin solid in low-speed concurrent flow-drop tower experimental results and comparison with theory publication-title: Microgravity Sci. Technol. – volume: 154 start-page: 637 year: 2008 end-page: 643 ident: bib0025 article-title: Pressure modeling of upward flame spread and burning rates over solids in partial gravity publication-title: Combust. Flame – volume: 227 start-page: 39 year: 2021 end-page: 51 ident: bib0021 article-title: Experimental study of concurrent-flow flame spread over thin solids in confined space in microgravity publication-title: Combust. Flame – volume: 26 start-page: 435 year: 2008 end-page: 453 ident: bib0015 article-title: An experimental study of upward flame spread and interactions over multiple solid fuels publication-title: J. Fire Sci. – start-page: 1 year: 1994 end-page: 2 ident: bib0010 article-title: Numerical computation of flame spread over a thin solid in forced concurrent flow with gas-phase radiation publication-title: Fall Tech. Meet. Easter States Sect. Combust. Inst. – volume: 109 start-page: 208 year: 2015 end-page: 216 ident: bib0001 article-title: Fire safety in space–beyond flammability testing of small samples publication-title: Acta Astronaut. – reference: L. Chu, C.H. Chen, J.S. T'ien, Upward spreading flames over paper samples, ASME 81-WA/HT-42 (1981) 1–8. – start-page: 9712 year: 2001 end-page: 9716 ident: bib0032 article-title: Wood products: Thermal Degradation and Fire – volume: 190 start-page: 2082 year: 2018 end-page: 2096 ident: bib0031 article-title: Numerical investigation of flame splitting phenomenon in upward flame spread over solids with a two-stage pyrolysis model publication-title: Combust. Sci. Technol. – year: 2021 ident: bib0004 article-title: Fire Safety Implications of Preliminary results from Saffire IV and V experiments on large scale spacecraft fires publication-title: Proceedings of the 50th International Conference on Environmental Systems – volume: 35 start-page: 2623 year: 2015 end-page: 2630 ident: bib0027 article-title: Upward flame spread in large enclosures: flame growth and pressure rise publication-title: Proc. Combust. Inst. – volume: 38 start-page: 4775 year: 2021 end-page: 4784 ident: bib0018 article-title: Effects of ambient conditions on concurrent-flow flame spread over a wide thin solid in microgravity publication-title: Proc. Combust. Inst. – volume: 57 start-page: 145 year: 2021 end-page: 161 ident: bib0029 article-title: Effects of ambient parameters and sample width on upward flame spread over thermally thin solids publication-title: Fire Technol. – volume: 25 start-page: 287 year: 1995 end-page: 304 ident: bib0011 article-title: Influences of sample thickness on the early transient stages of concurrent flame spread and solid burning publication-title: Fire Saf. J. – volume: 32 start-page: 2445 year: 2009 end-page: 2452 ident: bib0008 article-title: Experimental comparison of opposed and concurrent flame spread in a forced convective microgravity environment publication-title: Proc. Combust. Inst. – volume: 32 start-page: 1517 year: 1977 end-page: 1525 ident: bib0033 article-title: Laminar boundary-layer behaviour on continuous, accelerating surfaces publication-title: Chem. Eng. Sci. – year: 2017 ident: bib0002 article-title: Results of large-scale spacecraft flammability tests publication-title: Proceedings of the47th International Conference on Environmental Systems – volume: 132 year: 2010 ident: bib0016 article-title: Limiting length, steady spread and non-growing flames in concurrent flow over solids publication-title: J. Heat Transf. – volume: 91 start-page: 68 year: 2017 end-page: 78 ident: bib0026 article-title: The effect of flow and geometry on concurrent flame spread publication-title: Fire Saf. J – volume: 162 start-page: 1829 year: 2015 end-page: 1839 ident: bib0012 article-title: A three-dimensional transient model for flame growth and extinction in concurrent flows publication-title: Combust. Flame – year: 2018 ident: bib0028 article-title: Upward flame spread over a thin composite fabric: the effect of pressure and microgravity publication-title: Proceedings of the 48th International Conference on Environmental Systems – volume: 14 start-page: 1085 year: 1973 end-page: 1097 ident: bib0005 article-title: Upward fire spread over textiles publication-title: Symp. (Int.) Combust. – volume: 99 start-page: 345 year: 1994 end-page: 370 ident: bib0009 article-title: A model of low-speed concurrent flow flame spread over a thin fuel publication-title: Combust. Sci. Technol. – year: 1997 ident: bib0013 article-title: Modeling wall influence on solid-fuel flame spread in a flow tunnel publication-title: Proceedings of the AIAA 35th Aerospace Sciences Meeting and Exhibit – year: 2020 ident: bib0020 article-title: Effects of Confinement on Flame Spread in Microgravity publication-title: Proceedings of the 49th International Conference on Environmental Systems – volume: 199 start-page: 168 year: 2019 end-page: 182 ident: bib0003 article-title: Flame spread: effects of microgravity and scale publication-title: Combust. Flame – volume: 13 start-page: 443 year: 2009 end-page: 459 ident: bib0014 article-title: Flame spread and interactions in an array of thin solids in low-speed concurrent flows publication-title: Combust. Theor. Model. – volume: 109 start-page: 208 year: 2015 ident: 10.1016/j.combustflame.2022.112559_bib0001 article-title: Fire safety in space–beyond flammability testing of small samples publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2014.11.025 – volume: 14 start-page: 1085 year: 1973 ident: 10.1016/j.combustflame.2022.112559_bib0005 article-title: Upward fire spread over textiles publication-title: Symp. (Int.) Combust. doi: 10.1016/S0082-0784(73)80098-0 – volume: 142 year: 2020 ident: 10.1016/j.combustflame.2022.112559_bib0019 article-title: Numerical study of the effects of confinement on concurrent-flow flame spread in microgravity publication-title: ASME J. Heat Transf. doi: 10.1115/1.4047645 – year: 2021 ident: 10.1016/j.combustflame.2022.112559_bib0004 article-title: Fire Safety Implications of Preliminary results from Saffire IV and V experiments on large scale spacecraft fires – volume: 25 start-page: 287 year: 1995 ident: 10.1016/j.combustflame.2022.112559_bib0011 article-title: Influences of sample thickness on the early transient stages of concurrent flame spread and solid burning publication-title: Fire Saf. J. doi: 10.1016/0379-7112(96)00010-0 – volume: 28 start-page: 2793 year: 2000 ident: 10.1016/j.combustflame.2022.112559_bib0023 article-title: Mechanisms of concurrent-flow flame spread over solid fuel beds publication-title: Proc. Combust. Inst. doi: 10.1016/S0082-0784(00)80701-8 – volume: 199 start-page: 168 year: 2019 ident: 10.1016/j.combustflame.2022.112559_bib0003 article-title: Flame spread: effects of microgravity and scale publication-title: Combust. Flame doi: 10.1016/j.combustflame.2018.10.012 – year: 2020 ident: 10.1016/j.combustflame.2022.112559_bib0020 article-title: Effects of Confinement on Flame Spread in Microgravity – volume: 162 start-page: 1829 year: 2015 ident: 10.1016/j.combustflame.2022.112559_bib0012 article-title: A three-dimensional transient model for flame growth and extinction in concurrent flows publication-title: Combust. Flame doi: 10.1016/j.combustflame.2014.12.003 – volume: 7 start-page: 187 year: 1994 ident: 10.1016/j.combustflame.2022.112559_bib0007 article-title: Flame spreading over a thin solid in low-speed concurrent flow-drop tower experimental results and comparison with theory publication-title: Microgravity Sci. Technol. – volume: 154 start-page: 637 issue: 4 year: 2008 ident: 10.1016/j.combustflame.2022.112559_bib0025 article-title: Pressure modeling of upward flame spread and burning rates over solids in partial gravity publication-title: Combust. Flame doi: 10.1016/j.combustflame.2008.05.023 – volume: 235 year: 2022 ident: 10.1016/j.combustflame.2022.112559_bib0022 article-title: Numerical study of flame spread in a narrow flow duct in microgravity–effects of flow confinement and radiation reflection publication-title: Combust. Flame doi: 10.1016/j.combustflame.2021.111714 – ident: 10.1016/j.combustflame.2022.112559_bib0006 – volume: 38 start-page: 4775 year: 2021 ident: 10.1016/j.combustflame.2022.112559_bib0018 article-title: Effects of ambient conditions on concurrent-flow flame spread over a wide thin solid in microgravity publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.05.011 – volume: 57 start-page: 145 year: 2021 ident: 10.1016/j.combustflame.2022.112559_bib0029 article-title: Effects of ambient parameters and sample width on upward flame spread over thermally thin solids publication-title: Fire Technol. doi: 10.1007/s10694-020-00987-x – volume: 13 start-page: 443 year: 2009 ident: 10.1016/j.combustflame.2022.112559_bib0014 article-title: Flame spread and interactions in an array of thin solids in low-speed concurrent flows publication-title: Combust. Theor. Model. doi: 10.1080/13647830902807314 – volume: 37 start-page: 3793 year: 2019 ident: 10.1016/j.combustflame.2022.112559_bib0024 article-title: On simulating concurrent flame spread in reduced gravity by reducing ambient pressure publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.05.004 – volume: 26 start-page: 435 year: 2008 ident: 10.1016/j.combustflame.2022.112559_bib0015 article-title: An experimental study of upward flame spread and interactions over multiple solid fuels publication-title: J. Fire Sci. doi: 10.1177/0734904108092547 – volume: 35 start-page: 2623 year: 2015 ident: 10.1016/j.combustflame.2022.112559_bib0027 article-title: Upward flame spread in large enclosures: flame growth and pressure rise publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.05.069 – year: 2018 ident: 10.1016/j.combustflame.2022.112559_bib0028 article-title: Upward flame spread over a thin composite fabric: the effect of pressure and microgravity – volume: 32 start-page: 2445 year: 2009 ident: 10.1016/j.combustflame.2022.112559_bib0008 article-title: Experimental comparison of opposed and concurrent flame spread in a forced convective microgravity environment publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2008.05.081 – start-page: 1 year: 1994 ident: 10.1016/j.combustflame.2022.112559_bib0010 article-title: Numerical computation of flame spread over a thin solid in forced concurrent flow with gas-phase radiation publication-title: Fall Tech. Meet. Easter States Sect. Combust. Inst. – volume: 132 year: 2010 ident: 10.1016/j.combustflame.2022.112559_bib0016 article-title: Limiting length, steady spread and non-growing flames in concurrent flow over solids publication-title: J. Heat Transf. doi: 10.1115/1.4001645 – volume: 99 start-page: 345 year: 1994 ident: 10.1016/j.combustflame.2022.112559_bib0009 article-title: A model of low-speed concurrent flow flame spread over a thin fuel publication-title: Combust. Sci. Technol. doi: 10.1080/00102209408935440 – volume: 32 start-page: 1517 year: 1977 ident: 10.1016/j.combustflame.2022.112559_bib0033 article-title: Laminar boundary-layer behaviour on continuous, accelerating surfaces publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(77)80249-2 – year: 2017 ident: 10.1016/j.combustflame.2022.112559_bib0002 article-title: Results of large-scale spacecraft flammability tests – volume: 190 start-page: 2082 year: 2018 ident: 10.1016/j.combustflame.2022.112559_bib0031 article-title: Numerical investigation of flame splitting phenomenon in upward flame spread over solids with a two-stage pyrolysis model publication-title: Combust. Sci. Technol. doi: 10.1080/00102202.2018.1489380 – start-page: 9712 year: 2001 ident: 10.1016/j.combustflame.2022.112559_bib0032 – volume: 91 start-page: 68 year: 2017 ident: 10.1016/j.combustflame.2022.112559_bib0026 article-title: The effect of flow and geometry on concurrent flame spread publication-title: Fire Saf. J doi: 10.1016/j.firesaf.2017.05.007 – year: 1997 ident: 10.1016/j.combustflame.2022.112559_bib0013 article-title: Modeling wall influence on solid-fuel flame spread in a flow tunnel – volume: 227 start-page: 39 year: 2021 ident: 10.1016/j.combustflame.2022.112559_bib0021 article-title: Experimental study of concurrent-flow flame spread over thin solids in confined space in microgravity publication-title: Combust. Flame doi: 10.1016/j.combustflame.2020.12.042 – volume: 36 start-page: 2971 year: 2017 ident: 10.1016/j.combustflame.2022.112559_bib0030 article-title: Concurrent flame growth, spread, and quenching over composite fabric samples in low speed purely forced flow in microgravity publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2016.06.028 – volume: 37 start-page: 4163 year: 2019 ident: 10.1016/j.combustflame.2022.112559_bib0017 article-title: Transient flame growth and spread processes over a large solid fabric in concurrent low-speed flows in microgravity –model versus experiment publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.05.168 |
| SSID | ssj0007433 ssib006541818 ssib017383942 |
| Score | 2.4425187 |
| Snippet | Concurrent flame spread data for thermally-thin charring solid fuels are presented from Saffire and BASS experiments performed in habitable spacecraft for... |
| SourceID | hal crossref nii elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 112559 |
| SubjectTerms | [SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment Cellulose fabrics celulozne tkanine Combustion Concurrent flame spread Duct size Engineering Sciences info:eu-repo/classification/udc/62 Microgravity mikrogravitacija Reactive fluid environment Sample size sočasno širjenje plamena velikost kanalov velikost vzorca |
| Title | The effect of duct size, sample size, and fuel composition on concurrent flame spread over large cellulose samples in microgravity |
| URI | https://dx.doi.org/10.1016/j.combustflame.2022.112559 https://cir.nii.ac.jp/crid/1873962440698012288 https://cnrs.hal.science/hal-04458901 |
| Volume | 248 |
| WOSCitedRecordID | wos000915431800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1556-2921 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007433 issn: 0010-2180 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXaDgl4QDBAFBiyEG8lVWLnw3ngoZo2xlQNJMbUt8hxHS0jZFW_mHjkL_EHuTd20gw0UZCQKqtx5Js498Q5dk7uJeQV91IV-1nmTLOIOX4Wh44Mp74TCqXjOAUMVHELzsbRyYmYTOIPnc6P-luYdRGVpbi6imf_1dVQB87GT2f_wt2NUaiA_-B0KMHtUG7teKPSQCKI4VwHi_ybSZ8oMRZws4lr5tlKF5Wu3Iq38OUBTJFVHbYJAAMNZkAtpwNUew4KlI4PcL1_VaDW3disVLVfUNyH-Yzy5bWXxTDmpJg0zAqfK5ubxV37yddH2DWXg_GweQW0MgEj36Kub9RUH-r551VRixoHZ82O91-1mRMcSxjmhu3lDMZrBfRmiIYHA_AOtz1EMxON0w6yQBEDE0b8t_HfLEVcoPuwY1WHhnAYNtw0uh50-5eHYSNRrNVvF0nbVoK2EmOrS3ZYFMSiR3ZG7w4mxw0BAFJmhA22J3Ws20pWeNOZ3cSLuuco0O2Wed7iPaf3yT07YaEjA7QHpKPLXXJ7v84TuEvutkJaPiTfAX7UwI9eZhThRxFvr6kBit0AZ1OEHm1Bj8JvAz1anTs10KMIPVpBjzbQsxYXNC9pG3qPyKfDg9P9I8fm-XCUH_ClwzKhYd4uFHNTYIwKZgU6clM_lCkPIyZFnIlMKD-VrhSeDDQTU865yKYpTwPJ-GPSKy9L_YRQTMsoOV5RxXzteinTkkUpU6nOPOVGfRLXVzlRNgg-5mIpkj_7u09403ZmQsFs1epN7czEklpDVhPA7FbtXwICmgNiNPij0TjBOtf3AwF8fu31yR4ABHqEpSciHodA290wRv7JhHj6T6f-jNzZ3KHPSW85X-k9ckutl_li_sKi_ic9uOFu |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+duct+size%2C+sample+size%2C+and+fuel+composition+on+concurrent+flame+spread+over+large+cellulose+samples+in+microgravity&rft.jtitle=Combustion+and+flame&rft.au=Olson%2C+Sandra+L.&rft.au=Ruff%2C+Gary+A.&rft.au=Ferkul%2C+Paul+V.&rft.au=Owens%2C+Jay+C.&rft.date=2023-02-01&rft.issn=0010-2180&rft.volume=248&rft.spage=112559&rft_id=info:doi/10.1016%2Fj.combustflame.2022.112559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_combustflame_2022_112559 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon |