The effect of duct size, sample size, and fuel composition on concurrent flame spread over large cellulose samples in microgravity

Concurrent flame spread data for thermally-thin charring solid fuels are presented from Saffire and BASS experiments performed in habitable spacecraft for three duct sizes, five sample sizes, two materials, and two atmospheres. The flame spread rates and flame lengths were strongly affected by duct...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Combustion and Flame Ročník 248; s. 112559
Hlavní autoři: Olson, Sandra L., Ruff, Gary A., Ferkul, Paul V., Owens, Jay C., Easton, John, Liao, Ya-Ting, T'ien, James S., Toth, Balazs, Jomaas, Grunde, Fernandez-Pello, Carlos, Legros, Guillaume, Guibaud, Augustin, Fujita, Osamu, Smirnov, Nikolay, Urban, David L.
Médium: Journal Article
Jazyk:angličtina
japonština
Vydáno: Elsevier Inc 01.02.2023
Elsevier BV
Elsevier
Témata:
ISSN:0010-2180, 1556-2921
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Concurrent flame spread data for thermally-thin charring solid fuels are presented from Saffire and BASS experiments performed in habitable spacecraft for three duct sizes, five sample sizes, two materials, and two atmospheres. The flame spread rates and flame lengths were strongly affected by duct size even for the relatively large ducts (> 30 cm tall). A transient excess pyrolysis length (i.e., flame length overshoot) was observed for the cotton fabric that burned away, which indicates that the transient excess pyrolysis length phenomenon is caused by more than just the flame moving into the developing boundary layer thickness as was the case with the SIBAL sample. A burnout time, defined as the pyrolysis length divided by the flame spread rate, normalized the pyrolysis length histories into a single curve with a steady burnout time of 22 s for the SIBAL fabric. The transient excess pyrolysis length is hypothesized to be a post-ignition flame growth transient for the essentially two-dimensional flames where the burnout time becomes very long until the preheat and pyrolysis lengths develop. The three-dimensional flames over narrow samples have lateral thermal expansion and lateral oxygen diffusion which allows them to transition to a steady state length without the transient excess pyrolysis length. Surface temperature profiles, nondimensionalized by the pyrolysis length, indicate that the temperature profiles exhibit the same shape across the pyrolysis zone. A surface energy balance calculation in the preheat region revealed that the heat flux increased rapidly at the pyrolysis front to near the critical heat flux for ignition. An estimate of the acceleration of the inviscid core flow in the duct due to thermal expansion and developing boundary layers on the duct walls and the SIBAL sample surface seems to explain the observed spread rate trends across three duct sizes and multiple sample sizes.
AbstractList Concurrent flame spread data for thermally-thin charring solid fuels are presented from Saffire and BASS experiments performed in habitable spacecraft for three duct sizes, five sample sizes, two materials, and two atmospheres. The flame spread rates and flame lengths were strongly affected by duct size even for the relatively large ducts (> 30 cm tall). A transient excess pyrolysis length (i.e., flame length overshoot) was observed for the cotton fabric that burned away, which indicates that the transient excess pyrolysis length phenomenon is caused by more than just the flame moving into the developing boundary layer thickness as was the case with the SIBAL sample. A burnout time, defined as the pyrolysis length divided by the flame spread rate, normalized the pyrolysis length histories into a single curve with a steady burnout time of 22 s for the SIBAL fabric. The transient excess pyrolysis length is hypothesized to be a post-ignition flame growth transient for the essentially two-dimensional flames where the burnout time becomes very long until the preheat and pyrolysis lengths develop. The three-dimensional flames over narrow samples have lateral thermal expansion and lateral oxygen diffusion which allows them to transition to a steady state length without the transient excess pyrolysis length. Surface temperature profiles, nondimensionalized by the pyrolysis length, indicate that the temperature profiles exhibit the same shape across the pyrolysis zone. A surface energy balance calculation in the preheat region revealed that the heat flux increased rapidly at the pyrolysis front to near the critical heat flux for ignition. An estimate of the acceleration of the inviscid core flow in the duct due to thermal expansion and developing boundary layers on the duct walls and the SIBAL sample surface seems to explain the observed spread rate trends across three duct sizes and multiple sample sizes.
Concurrent flame spread data for thermally-thin charring solid fuels are presented from Saffire and BASS experiments performed in habitable spacecraft for three duct sizes, five sample sizes, two materials, and two atmospheres. The flame spread rates and flame lengths were strongly affected by duct size even for the relatively large ducts (> 30 cm tall). A transient excess pyrolysis length (i.e., flame length overshoot) was observed for the cotton fabric that burned away, which indicates that the transient excess pyrolysis length phenomenon is caused by more than just the flame moving into the developing boundary layer thickness as was the case with the SIBAL sample. A burnout time, defined as the pyrolysis length divided by the flame spread rate, normalized the pyrolysis length histories into a single curve with a steady burnout time of 22 s for the SIBAL fabric. The transient excess pyrolysis length is hypothesized to be a post-ignition flame growth transient for the essentially two-dimensional flames where the burnout time becomes very long until the preheat and pyrolysis lengths develop. The three-dimensional flames over narrow samples have lateral thermal expansion and lateral oxygen diffusion which allows them to transition to a steady state length without the transient excess pyrolysis length. Surface temperature profiles, nondimensionalized by the pyrolysis length, indicate that the temperature profiles exhibit the same shape across the pyrolysis zone. A surface energy balance calculation in the preheat region revealed that the heat flux increased rapidly at the pyrolysis front to near the critical heat flux for ignition. An estimate of the acceleration of the inviscid core flow in the duct due to thermal expansion and developing boundary layers on the duct walls and the SIBAL sample surface seems to explain the observed spread rate trends across three duct sizes and multiple sample sizes.
ArticleNumber 112559
Author Owens, Jay C.
Ruff, Gary A.
Liao, Ya-Ting
T'ien, James S.
Smirnov, Nikolay
Jomaas, Grunde
Easton, John
Ferkul, Paul V.
Guibaud, Augustin
Fujita, Osamu
Urban, David L.
Legros, Guillaume
Olson, Sandra L.
Fernandez-Pello, Carlos
Toth, Balazs
Author_xml – sequence: 1
  givenname: Sandra L.
  orcidid: 0000-0001-8670-5623
  surname: Olson
  fullname: Olson, Sandra L.
  email: Sandra.olson@nasa.gov
  organization: NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, United States
– sequence: 2
  givenname: Gary A.
  surname: Ruff
  fullname: Ruff, Gary A.
  organization: NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, United States
– sequence: 3
  givenname: Paul V.
  orcidid: 0000-0001-7655-2125
  surname: Ferkul
  fullname: Ferkul, Paul V.
  organization: NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, United States
– sequence: 4
  givenname: Jay C.
  surname: Owens
  fullname: Owens, Jay C.
  organization: NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, United States
– sequence: 5
  givenname: John
  surname: Easton
  fullname: Easton, John
  organization: NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, United States
– sequence: 6
  givenname: Ya-Ting
  orcidid: 0000-0001-5759-5971
  surname: Liao
  fullname: Liao, Ya-Ting
  organization: Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States
– sequence: 7
  givenname: James S.
  orcidid: 0000-0003-4469-1133
  surname: T'ien
  fullname: T'ien, James S.
  organization: Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, United States
– sequence: 8
  givenname: Balazs
  surname: Toth
  fullname: Toth, Balazs
  organization: ESA/ESTEC, Keplerlaan 1, Postbus 299, Noordwijk, AG 2200, the Netherlands
– sequence: 9
  givenname: Grunde
  surname: Jomaas
  fullname: Jomaas, Grunde
  organization: Slovenian National Building and Civil Engineering Institute (ZAG) Dimičeva Ulica 12, FRISSBE, Ljubljana 1000, Slovenia
– sequence: 10
  givenname: Carlos
  surname: Fernandez-Pello
  fullname: Fernandez-Pello, Carlos
  organization: University of California, Berkeley, CA 94720-1740, United States
– sequence: 11
  givenname: Guillaume
  surname: Legros
  fullname: Legros, Guillaume
  organization: CNRS-ICARE / Univ. Orléans, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France
– sequence: 12
  givenname: Augustin
  orcidid: 0000-0001-5168-9547
  surname: Guibaud
  fullname: Guibaud, Augustin
  organization: University College London, Gower Street, London WC1E 6BT, United Kingdom
– sequence: 13
  givenname: Osamu
  surname: Fujita
  fullname: Fujita, Osamu
  organization: Hokkaido University, Kita 8, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-0808, Japan
– sequence: 14
  givenname: Nikolay
  surname: Smirnov
  fullname: Smirnov, Nikolay
  organization: Moscow M.V. Lomonosov State University, Leninskie Gory, 1, Moscow 119992, Russian Federation
– sequence: 15
  givenname: David L.
  orcidid: 0000-0003-0427-1871
  surname: Urban
  fullname: Urban, David L.
  organization: NASA Glenn Research Center, 21000 Brookpark Rd., Cleveland, OH 44135, United States
BackLink https://cir.nii.ac.jp/crid/1873962440698012288$$DView record in CiNii
https://cnrs.hal.science/hal-04458901$$DView record in HAL
BookMark eNqNkU9r3DAQxUVJoZuk30GUXgr1diT5j9xTQ9I2gYVe0rOQ5VGiRbYWyV5Ij_3kkeullJ4CQsOI994MP52TszGMSMg7BlsGrP6035owdHOarNcDbjlwvmWMV1X7imxYVdUFbzk7IxsABgVnEt6Q85T2ANCUQmzI7_tHpGgtmokGS_s51-R-4Uea9HDweGr02FM7o6d53CEkN7kw0nxMGM0cI44T_bMBTYeIuqfhiJF6HR-QGvR-9iHhKTFRN9LBmRgeoj666emSvLbaJ3x7qhfk57ev99e3xe7H97vrq11hykpMBbcSZcOk4dDxkhuQAhvoylp3om64lq2VVpqy06Al0xVy2QshpO070VWaiwvyYc191F4doht0fFJBO3V7tVPLG5RlJVtgR5a1n1dtXjOliPavgYFayKu9-pe8WsirlXw2f_nPbNykF2RT1M6_LOL9GjE6l93LzWQj2pqXJdStBMa5lFl2s8owczs6jCoZh6PB3sX8o6oP7iXTngGPLbc9
CitedBy_id crossref_primary_10_1016_j_combustflame_2024_113880
crossref_primary_10_1016_j_proci_2024_105495
crossref_primary_10_1007_s10694_023_01369_9
crossref_primary_10_1016_j_actaastro_2025_07_010
crossref_primary_10_1016_j_combustflame_2024_113299
crossref_primary_10_1080_00102202_2025_2465808
crossref_primary_10_2478_gsr_2024_0007
crossref_primary_10_1016_j_icheatmasstransfer_2024_108142
Cites_doi 10.1016/j.actaastro.2014.11.025
10.1016/S0082-0784(73)80098-0
10.1115/1.4047645
10.1016/0379-7112(96)00010-0
10.1016/S0082-0784(00)80701-8
10.1016/j.combustflame.2018.10.012
10.1016/j.combustflame.2014.12.003
10.1016/j.combustflame.2008.05.023
10.1016/j.combustflame.2021.111714
10.1016/j.proci.2020.05.011
10.1007/s10694-020-00987-x
10.1080/13647830902807314
10.1016/j.proci.2018.05.004
10.1177/0734904108092547
10.1016/j.proci.2014.05.069
10.1016/j.proci.2008.05.081
10.1115/1.4001645
10.1080/00102209408935440
10.1016/0009-2509(77)80249-2
10.1080/00102202.2018.1489380
10.1016/j.firesaf.2017.05.007
10.1016/j.combustflame.2020.12.042
10.1016/j.proci.2016.06.028
10.1016/j.proci.2018.05.168
ContentType Journal Article
Contributor Department of Civil, Environmental and Geomatic Engineering [UCL London] ; University College of London [London] (UCL)
Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE) ; Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut des Sciences de l'Ingénierie et des Systèmes - CNRS Ingénierie (INSIS - CNRS)
NASA Glenn Research Center ; NASA
School of Engineering [Edinburgh] ; University of Edinburgh (Edin.)
Lawrence Berkeley National Laboratory [Berkeley] (LBNL)
GDR 2799 Micropesanteur Fondamentale & Appliquée
Case Western Reserve University [Cleveland]
Hokkaido University [Sapporo, Japan]
European Space Research and Technology Centre (ESTEC) ; Agence Spatiale Européenne = European Space Agency (ESA)
Contributor_xml – sequence: 1
  fullname: NASA Glenn Research Center ; NASA
– sequence: 2
  fullname: Case Western Reserve University [Cleveland]
– sequence: 3
  fullname: European Space Research and Technology Centre (ESTEC) ; Agence Spatiale Européenne = European Space Agency (ESA)
– sequence: 4
  fullname: School of Engineering [Edinburgh] ; University of Edinburgh (Edin.)
– sequence: 5
  fullname: Lawrence Berkeley National Laboratory [Berkeley] (LBNL)
– sequence: 6
  fullname: Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE) ; Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut des Sciences de l'Ingénierie et des Systèmes - CNRS Ingénierie (INSIS - CNRS)
– sequence: 7
  fullname: Department of Civil, Environmental and Geomatic Engineering [UCL London] ; University College of London [London] (UCL)
– sequence: 8
  fullname: Hokkaido University [Sapporo, Japan]
– sequence: 9
  fullname: GDR 2799 Micropesanteur Fondamentale & Appliquée
Copyright 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID RYH
AAYXX
CITATION
1XC
DOI 10.1016/j.combustflame.2022.112559
DatabaseName CiNii Complete
CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1556-2921
ExternalDocumentID oai:HAL:hal-04458901v1
10_1016_j_combustflame_2022_112559
S0010218022005673
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29F
4.4
41~
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDEX
ABDMP
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
EFKBS
RYH
~HD
9DU
AAYXX
ABWVN
ACRPL
ADNMO
AGQPQ
CITATION
1XC
ID FETCH-LOGICAL-c453t-2f8e8718c20b242c083e70b46ab3672a89f8f8c4ba0a81a5e28d3338fdb3b5a23
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000915431800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-2180
IngestDate Tue Oct 14 20:43:36 EDT 2025
Sat Nov 29 07:32:33 EST 2025
Tue Nov 18 22:12:42 EST 2025
Mon Nov 10 09:10:56 EST 2025
Fri Feb 23 02:35:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Concurrent flame spread
Sample size
Duct size
Microgravity
Cellulose fabrics
Combustion
Language English
Japanese
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-2f8e8718c20b242c083e70b46ab3672a89f8f8c4ba0a81a5e28d3338fdb3b5a23
ORCID 0000-0001-7655-2125
0000-0003-4469-1133
0000-0001-8670-5623
0000-0001-5168-9547
0000-0003-0427-1871
0000-0001-5759-5971
0000-0003-4245-8258
OpenAccessLink https://cir.nii.ac.jp/crid/1873962440698012288
ParticipantIDs hal_primary_oai_HAL_hal_04458901v1
crossref_primary_10_1016_j_combustflame_2022_112559
crossref_citationtrail_10_1016_j_combustflame_2022_112559
nii_cinii_1873962440698012288
elsevier_sciencedirect_doi_10_1016_j_combustflame_2022_112559
PublicationCentury 2000
PublicationDate February 2023
2023-02-01
2023-02-00
2023-02
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Combustion and Flame
PublicationYear 2023
Publisher Elsevier Inc
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
– name: Elsevier
References Zhao, Fang, Tao, Wang, Zhang (bib0029) 2021; 57
Urban, Ferkul, Olson, Ruff, Easton, T'ien, Liao, Li, Fernandez-Pello, Torero, Legros, Eigenbrod, Smirnov, Fujita, Rouvreau, Toth, Jomaas (bib0003) 2019; 199
Shih, Wu (bib0015) 2008; 26
L. Chu, C.H. Chen, J.S. T'ien, Upward spreading flames over paper samples, ASME 81-WA/HT-42 (1981) 1–8.
Li, Liao, Ferkul, Johnston, Bunnell (bib0020) 2020
Vleggaar (bib0033) 1977; 32
Di Blasi (bib0011) 1995; 25
Olson, Gokoglu, Urban, Ruff, Ferkul (bib0027) 2015; 35
Shih (bib0014) 2009; 13
Thomsen, Fernandez-Pello, Urban, Ruff, Olson (bib0028) 2018
Li, Liao, T'ien, Urban, Ferkul, Olson, Ruff, Easton (bib0017) 2019; 37
Li, Liao (bib0031) 2018; 190
Grayson, Sacksteder, Ferkul, T'ien (bib0007) 1994; 7
White, Dietenberger (bib0032) 2001
Zhao, T'ien (bib0012) 2015; 162
Olson, Miller (bib0008) 2009; 32
Markstein, de Ris (bib0005) 1973; 14
Zhao, Liao, Johnston, T'ien, Ferkul, Olson (bib0030) 2017; 36
Ferkul, Olson, Urban, Ruff, Easton, T'ien, Liao, Fernandez-Pello, Torero, Eigenbrod, Legros (bib0002) 2017
Shih, T'ien (bib0013) 1997
Li, Liao (bib0018) 2021; 38
Li, Liao, Ferkul (bib0019) 2020; 142
Ferkul, T'ien (bib0009) 1994; 99
Jomaas, Torero, Eigenbrod, Niehaus, Olson, Ferkul, Legros, Fernandez-Pello, Cowlard, Rouvreau, Smirnov, Fujita, T'ien, Ruff, Urban (bib0001) 2015; 109
Thomsen, Fernandez-Pello, Urban, Ruff, Olson (bib0024) 2019; 37
Tseng, T'ien (bib0016) 2010; 132
Li, Liao, Ferkul, Johnston, Bunnell (bib0021) 2021; 227
Urban, Ruff, Ferkul, Easton, Owens, Olson, Meyer, Fortenberry, Brooker, Graf, Casteel, Toth, Meyer C. Eigenbrod, T'ien, Liao, Fernandez-Pello, Legros, Guibaud, Smirnov, Fujita, Jomaas (bib0004) 2021
Kleinhenz, Feier, Hsu, T'ien, Ferkul, Sacksteder (bib0025) 2008; 154
Li, Liao (bib0022) 2022; 235
Jiang, T'ien (bib0010) 1994
Honda, Ronney (bib0023) 2000; 28
Gollner, Miller, Tang, Singh (bib0026) 2017; 91
Thomsen (10.1016/j.combustflame.2022.112559_bib0024) 2019; 37
Olson (10.1016/j.combustflame.2022.112559_bib0027) 2015; 35
Grayson (10.1016/j.combustflame.2022.112559_bib0007) 1994; 7
Li (10.1016/j.combustflame.2022.112559_bib0020) 2020
Zhao (10.1016/j.combustflame.2022.112559_bib0012) 2015; 162
Shih (10.1016/j.combustflame.2022.112559_bib0013) 1997
Li (10.1016/j.combustflame.2022.112559_bib0017) 2019; 37
Ferkul (10.1016/j.combustflame.2022.112559_bib0009) 1994; 99
Tseng (10.1016/j.combustflame.2022.112559_bib0016) 2010; 132
Urban (10.1016/j.combustflame.2022.112559_bib0003) 2019; 199
Li (10.1016/j.combustflame.2022.112559_bib0019) 2020; 142
Urban (10.1016/j.combustflame.2022.112559_bib0004) 2021
Olson (10.1016/j.combustflame.2022.112559_bib0008) 2009; 32
Li (10.1016/j.combustflame.2022.112559_bib0018) 2021; 38
Zhao (10.1016/j.combustflame.2022.112559_bib0030) 2017; 36
Shih (10.1016/j.combustflame.2022.112559_bib0014) 2009; 13
Shih (10.1016/j.combustflame.2022.112559_bib0015) 2008; 26
10.1016/j.combustflame.2022.112559_bib0006
Jiang (10.1016/j.combustflame.2022.112559_bib0010) 1994
Zhao (10.1016/j.combustflame.2022.112559_bib0029) 2021; 57
Thomsen (10.1016/j.combustflame.2022.112559_bib0028) 2018
Jomaas (10.1016/j.combustflame.2022.112559_bib0001) 2015; 109
Li (10.1016/j.combustflame.2022.112559_bib0021) 2021; 227
Gollner (10.1016/j.combustflame.2022.112559_bib0026) 2017; 91
Di Blasi (10.1016/j.combustflame.2022.112559_bib0011) 1995; 25
Ferkul (10.1016/j.combustflame.2022.112559_bib0002) 2017
Honda (10.1016/j.combustflame.2022.112559_bib0023) 2000; 28
White (10.1016/j.combustflame.2022.112559_bib0032) 2001
Markstein (10.1016/j.combustflame.2022.112559_bib0005) 1973; 14
Li (10.1016/j.combustflame.2022.112559_bib0031) 2018; 190
Kleinhenz (10.1016/j.combustflame.2022.112559_bib0025) 2008; 154
Vleggaar (10.1016/j.combustflame.2022.112559_bib0033) 1977; 32
Li (10.1016/j.combustflame.2022.112559_bib0022) 2022; 235
References_xml – volume: 28
  start-page: 2793
  year: 2000
  end-page: 2801
  ident: bib0023
  article-title: Mechanisms of concurrent-flow flame spread over solid fuel beds
  publication-title: Proc. Combust. Inst.
– volume: 37
  start-page: 3793
  year: 2019
  end-page: 3800
  ident: bib0024
  article-title: On simulating concurrent flame spread in reduced gravity by reducing ambient pressure
  publication-title: Proc. Combust. Inst.
– volume: 37
  start-page: 4163
  year: 2019
  end-page: 4171
  ident: bib0017
  article-title: Transient flame growth and spread processes over a large solid fabric in concurrent low-speed flows in microgravity –model versus experiment
  publication-title: Proc. Combust. Inst.
– volume: 142
  year: 2020
  ident: bib0019
  article-title: Numerical study of the effects of confinement on concurrent-flow flame spread in microgravity
  publication-title: ASME J. Heat Transf.
– volume: 235
  year: 2022
  ident: bib0022
  article-title: Numerical study of flame spread in a narrow flow duct in microgravity–effects of flow confinement and radiation reflection
  publication-title: Combust. Flame
– volume: 36
  start-page: 2971
  year: 2017
  end-page: 2978
  ident: bib0030
  article-title: Concurrent flame growth, spread, and quenching over composite fabric samples in low speed purely forced flow in microgravity
  publication-title: Proc. Combust. Inst.
– volume: 7
  start-page: 187
  year: 1994
  end-page: 195
  ident: bib0007
  article-title: Flame spreading over a thin solid in low-speed concurrent flow-drop tower experimental results and comparison with theory
  publication-title: Microgravity Sci. Technol.
– volume: 154
  start-page: 637
  year: 2008
  end-page: 643
  ident: bib0025
  article-title: Pressure modeling of upward flame spread and burning rates over solids in partial gravity
  publication-title: Combust. Flame
– volume: 227
  start-page: 39
  year: 2021
  end-page: 51
  ident: bib0021
  article-title: Experimental study of concurrent-flow flame spread over thin solids in confined space in microgravity
  publication-title: Combust. Flame
– volume: 26
  start-page: 435
  year: 2008
  end-page: 453
  ident: bib0015
  article-title: An experimental study of upward flame spread and interactions over multiple solid fuels
  publication-title: J. Fire Sci.
– start-page: 1
  year: 1994
  end-page: 2
  ident: bib0010
  article-title: Numerical computation of flame spread over a thin solid in forced concurrent flow with gas-phase radiation
  publication-title: Fall Tech. Meet. Easter States Sect. Combust. Inst.
– volume: 109
  start-page: 208
  year: 2015
  end-page: 216
  ident: bib0001
  article-title: Fire safety in space–beyond flammability testing of small samples
  publication-title: Acta Astronaut.
– reference: L. Chu, C.H. Chen, J.S. T'ien, Upward spreading flames over paper samples, ASME 81-WA/HT-42 (1981) 1–8.
– start-page: 9712
  year: 2001
  end-page: 9716
  ident: bib0032
  article-title: Wood products: Thermal Degradation and Fire
– volume: 190
  start-page: 2082
  year: 2018
  end-page: 2096
  ident: bib0031
  article-title: Numerical investigation of flame splitting phenomenon in upward flame spread over solids with a two-stage pyrolysis model
  publication-title: Combust. Sci. Technol.
– year: 2021
  ident: bib0004
  article-title: Fire Safety Implications of Preliminary results from Saffire IV and V experiments on large scale spacecraft fires
  publication-title: Proceedings of the 50th International Conference on Environmental Systems
– volume: 35
  start-page: 2623
  year: 2015
  end-page: 2630
  ident: bib0027
  article-title: Upward flame spread in large enclosures: flame growth and pressure rise
  publication-title: Proc. Combust. Inst.
– volume: 38
  start-page: 4775
  year: 2021
  end-page: 4784
  ident: bib0018
  article-title: Effects of ambient conditions on concurrent-flow flame spread over a wide thin solid in microgravity
  publication-title: Proc. Combust. Inst.
– volume: 57
  start-page: 145
  year: 2021
  end-page: 161
  ident: bib0029
  article-title: Effects of ambient parameters and sample width on upward flame spread over thermally thin solids
  publication-title: Fire Technol.
– volume: 25
  start-page: 287
  year: 1995
  end-page: 304
  ident: bib0011
  article-title: Influences of sample thickness on the early transient stages of concurrent flame spread and solid burning
  publication-title: Fire Saf. J.
– volume: 32
  start-page: 2445
  year: 2009
  end-page: 2452
  ident: bib0008
  article-title: Experimental comparison of opposed and concurrent flame spread in a forced convective microgravity environment
  publication-title: Proc. Combust. Inst.
– volume: 32
  start-page: 1517
  year: 1977
  end-page: 1525
  ident: bib0033
  article-title: Laminar boundary-layer behaviour on continuous, accelerating surfaces
  publication-title: Chem. Eng. Sci.
– year: 2017
  ident: bib0002
  article-title: Results of large-scale spacecraft flammability tests
  publication-title: Proceedings of the47th International Conference on Environmental Systems
– volume: 132
  year: 2010
  ident: bib0016
  article-title: Limiting length, steady spread and non-growing flames in concurrent flow over solids
  publication-title: J. Heat Transf.
– volume: 91
  start-page: 68
  year: 2017
  end-page: 78
  ident: bib0026
  article-title: The effect of flow and geometry on concurrent flame spread
  publication-title: Fire Saf. J
– volume: 162
  start-page: 1829
  year: 2015
  end-page: 1839
  ident: bib0012
  article-title: A three-dimensional transient model for flame growth and extinction in concurrent flows
  publication-title: Combust. Flame
– year: 2018
  ident: bib0028
  article-title: Upward flame spread over a thin composite fabric: the effect of pressure and microgravity
  publication-title: Proceedings of the 48th International Conference on Environmental Systems
– volume: 14
  start-page: 1085
  year: 1973
  end-page: 1097
  ident: bib0005
  article-title: Upward fire spread over textiles
  publication-title: Symp. (Int.) Combust.
– volume: 99
  start-page: 345
  year: 1994
  end-page: 370
  ident: bib0009
  article-title: A model of low-speed concurrent flow flame spread over a thin fuel
  publication-title: Combust. Sci. Technol.
– year: 1997
  ident: bib0013
  article-title: Modeling wall influence on solid-fuel flame spread in a flow tunnel
  publication-title: Proceedings of the AIAA 35th Aerospace Sciences Meeting and Exhibit
– year: 2020
  ident: bib0020
  article-title: Effects of Confinement on Flame Spread in Microgravity
  publication-title: Proceedings of the 49th International Conference on Environmental Systems
– volume: 199
  start-page: 168
  year: 2019
  end-page: 182
  ident: bib0003
  article-title: Flame spread: effects of microgravity and scale
  publication-title: Combust. Flame
– volume: 13
  start-page: 443
  year: 2009
  end-page: 459
  ident: bib0014
  article-title: Flame spread and interactions in an array of thin solids in low-speed concurrent flows
  publication-title: Combust. Theor. Model.
– volume: 109
  start-page: 208
  year: 2015
  ident: 10.1016/j.combustflame.2022.112559_bib0001
  article-title: Fire safety in space–beyond flammability testing of small samples
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2014.11.025
– volume: 14
  start-page: 1085
  year: 1973
  ident: 10.1016/j.combustflame.2022.112559_bib0005
  article-title: Upward fire spread over textiles
  publication-title: Symp. (Int.) Combust.
  doi: 10.1016/S0082-0784(73)80098-0
– volume: 142
  year: 2020
  ident: 10.1016/j.combustflame.2022.112559_bib0019
  article-title: Numerical study of the effects of confinement on concurrent-flow flame spread in microgravity
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.4047645
– year: 2021
  ident: 10.1016/j.combustflame.2022.112559_bib0004
  article-title: Fire Safety Implications of Preliminary results from Saffire IV and V experiments on large scale spacecraft fires
– volume: 25
  start-page: 287
  year: 1995
  ident: 10.1016/j.combustflame.2022.112559_bib0011
  article-title: Influences of sample thickness on the early transient stages of concurrent flame spread and solid burning
  publication-title: Fire Saf. J.
  doi: 10.1016/0379-7112(96)00010-0
– volume: 28
  start-page: 2793
  year: 2000
  ident: 10.1016/j.combustflame.2022.112559_bib0023
  article-title: Mechanisms of concurrent-flow flame spread over solid fuel beds
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S0082-0784(00)80701-8
– volume: 199
  start-page: 168
  year: 2019
  ident: 10.1016/j.combustflame.2022.112559_bib0003
  article-title: Flame spread: effects of microgravity and scale
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2018.10.012
– year: 2020
  ident: 10.1016/j.combustflame.2022.112559_bib0020
  article-title: Effects of Confinement on Flame Spread in Microgravity
– volume: 162
  start-page: 1829
  year: 2015
  ident: 10.1016/j.combustflame.2022.112559_bib0012
  article-title: A three-dimensional transient model for flame growth and extinction in concurrent flows
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2014.12.003
– volume: 7
  start-page: 187
  year: 1994
  ident: 10.1016/j.combustflame.2022.112559_bib0007
  article-title: Flame spreading over a thin solid in low-speed concurrent flow-drop tower experimental results and comparison with theory
  publication-title: Microgravity Sci. Technol.
– volume: 154
  start-page: 637
  issue: 4
  year: 2008
  ident: 10.1016/j.combustflame.2022.112559_bib0025
  article-title: Pressure modeling of upward flame spread and burning rates over solids in partial gravity
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2008.05.023
– volume: 235
  year: 2022
  ident: 10.1016/j.combustflame.2022.112559_bib0022
  article-title: Numerical study of flame spread in a narrow flow duct in microgravity–effects of flow confinement and radiation reflection
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2021.111714
– ident: 10.1016/j.combustflame.2022.112559_bib0006
– volume: 38
  start-page: 4775
  year: 2021
  ident: 10.1016/j.combustflame.2022.112559_bib0018
  article-title: Effects of ambient conditions on concurrent-flow flame spread over a wide thin solid in microgravity
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2020.05.011
– volume: 57
  start-page: 145
  year: 2021
  ident: 10.1016/j.combustflame.2022.112559_bib0029
  article-title: Effects of ambient parameters and sample width on upward flame spread over thermally thin solids
  publication-title: Fire Technol.
  doi: 10.1007/s10694-020-00987-x
– volume: 13
  start-page: 443
  year: 2009
  ident: 10.1016/j.combustflame.2022.112559_bib0014
  article-title: Flame spread and interactions in an array of thin solids in low-speed concurrent flows
  publication-title: Combust. Theor. Model.
  doi: 10.1080/13647830902807314
– volume: 37
  start-page: 3793
  year: 2019
  ident: 10.1016/j.combustflame.2022.112559_bib0024
  article-title: On simulating concurrent flame spread in reduced gravity by reducing ambient pressure
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2018.05.004
– volume: 26
  start-page: 435
  year: 2008
  ident: 10.1016/j.combustflame.2022.112559_bib0015
  article-title: An experimental study of upward flame spread and interactions over multiple solid fuels
  publication-title: J. Fire Sci.
  doi: 10.1177/0734904108092547
– volume: 35
  start-page: 2623
  year: 2015
  ident: 10.1016/j.combustflame.2022.112559_bib0027
  article-title: Upward flame spread in large enclosures: flame growth and pressure rise
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2014.05.069
– year: 2018
  ident: 10.1016/j.combustflame.2022.112559_bib0028
  article-title: Upward flame spread over a thin composite fabric: the effect of pressure and microgravity
– volume: 32
  start-page: 2445
  year: 2009
  ident: 10.1016/j.combustflame.2022.112559_bib0008
  article-title: Experimental comparison of opposed and concurrent flame spread in a forced convective microgravity environment
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2008.05.081
– start-page: 1
  year: 1994
  ident: 10.1016/j.combustflame.2022.112559_bib0010
  article-title: Numerical computation of flame spread over a thin solid in forced concurrent flow with gas-phase radiation
  publication-title: Fall Tech. Meet. Easter States Sect. Combust. Inst.
– volume: 132
  year: 2010
  ident: 10.1016/j.combustflame.2022.112559_bib0016
  article-title: Limiting length, steady spread and non-growing flames in concurrent flow over solids
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4001645
– volume: 99
  start-page: 345
  year: 1994
  ident: 10.1016/j.combustflame.2022.112559_bib0009
  article-title: A model of low-speed concurrent flow flame spread over a thin fuel
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102209408935440
– volume: 32
  start-page: 1517
  year: 1977
  ident: 10.1016/j.combustflame.2022.112559_bib0033
  article-title: Laminar boundary-layer behaviour on continuous, accelerating surfaces
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(77)80249-2
– year: 2017
  ident: 10.1016/j.combustflame.2022.112559_bib0002
  article-title: Results of large-scale spacecraft flammability tests
– volume: 190
  start-page: 2082
  year: 2018
  ident: 10.1016/j.combustflame.2022.112559_bib0031
  article-title: Numerical investigation of flame splitting phenomenon in upward flame spread over solids with a two-stage pyrolysis model
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102202.2018.1489380
– start-page: 9712
  year: 2001
  ident: 10.1016/j.combustflame.2022.112559_bib0032
– volume: 91
  start-page: 68
  year: 2017
  ident: 10.1016/j.combustflame.2022.112559_bib0026
  article-title: The effect of flow and geometry on concurrent flame spread
  publication-title: Fire Saf. J
  doi: 10.1016/j.firesaf.2017.05.007
– year: 1997
  ident: 10.1016/j.combustflame.2022.112559_bib0013
  article-title: Modeling wall influence on solid-fuel flame spread in a flow tunnel
– volume: 227
  start-page: 39
  year: 2021
  ident: 10.1016/j.combustflame.2022.112559_bib0021
  article-title: Experimental study of concurrent-flow flame spread over thin solids in confined space in microgravity
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2020.12.042
– volume: 36
  start-page: 2971
  year: 2017
  ident: 10.1016/j.combustflame.2022.112559_bib0030
  article-title: Concurrent flame growth, spread, and quenching over composite fabric samples in low speed purely forced flow in microgravity
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2016.06.028
– volume: 37
  start-page: 4163
  year: 2019
  ident: 10.1016/j.combustflame.2022.112559_bib0017
  article-title: Transient flame growth and spread processes over a large solid fabric in concurrent low-speed flows in microgravity –model versus experiment
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2018.05.168
SSID ssj0007433
ssib006541818
ssib017383942
Score 2.4425187
Snippet Concurrent flame spread data for thermally-thin charring solid fuels are presented from Saffire and BASS experiments performed in habitable spacecraft for...
SourceID hal
crossref
nii
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 112559
SubjectTerms [SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environment
Cellulose fabrics
celulozne tkanine
Combustion
Concurrent flame spread
Duct size
Engineering Sciences
info:eu-repo/classification/udc/62
Microgravity
mikrogravitacija
Reactive fluid environment
Sample size
sočasno širjenje plamena
velikost kanalov
velikost vzorca
Title The effect of duct size, sample size, and fuel composition on concurrent flame spread over large cellulose samples in microgravity
URI https://dx.doi.org/10.1016/j.combustflame.2022.112559
https://cir.nii.ac.jp/crid/1873962440698012288
https://cnrs.hal.science/hal-04458901
Volume 248
WOSCitedRecordID wos000915431800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1556-2921
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007433
  issn: 0010-2180
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXaDgl4QDBAFBiyEG8lVWLnw3ngoZo2xlQNJMbUt8hxHS0jZFW_mHjkL_EHuTd20gw0UZCQKqtx5Js498Q5dk7uJeQV91IV-1nmTLOIOX4Wh44Mp74TCqXjOAUMVHELzsbRyYmYTOIPnc6P-luYdRGVpbi6imf_1dVQB87GT2f_wt2NUaiA_-B0KMHtUG7teKPSQCKI4VwHi_ybSZ8oMRZws4lr5tlKF5Wu3Iq38OUBTJFVHbYJAAMNZkAtpwNUew4KlI4PcL1_VaDW3disVLVfUNyH-Yzy5bWXxTDmpJg0zAqfK5ubxV37yddH2DWXg_GweQW0MgEj36Kub9RUH-r551VRixoHZ82O91-1mRMcSxjmhu3lDMZrBfRmiIYHA_AOtz1EMxON0w6yQBEDE0b8t_HfLEVcoPuwY1WHhnAYNtw0uh50-5eHYSNRrNVvF0nbVoK2EmOrS3ZYFMSiR3ZG7w4mxw0BAFJmhA22J3Ws20pWeNOZ3cSLuuco0O2Wed7iPaf3yT07YaEjA7QHpKPLXXJ7v84TuEvutkJaPiTfAX7UwI9eZhThRxFvr6kBit0AZ1OEHm1Bj8JvAz1anTs10KMIPVpBjzbQsxYXNC9pG3qPyKfDg9P9I8fm-XCUH_ClwzKhYd4uFHNTYIwKZgU6clM_lCkPIyZFnIlMKD-VrhSeDDQTU865yKYpTwPJ-GPSKy9L_YRQTMsoOV5RxXzteinTkkUpU6nOPOVGfRLXVzlRNgg-5mIpkj_7u09403ZmQsFs1epN7czEklpDVhPA7FbtXwICmgNiNPij0TjBOtf3AwF8fu31yR4ABHqEpSciHodA290wRv7JhHj6T6f-jNzZ3KHPSW85X-k9ckutl_li_sKi_ic9uOFu
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+duct+size%2C+sample+size%2C+and+fuel+composition+on+concurrent+flame+spread+over+large+cellulose+samples+in+microgravity&rft.jtitle=Combustion+and+flame&rft.au=Olson%2C+Sandra+L.&rft.au=Ruff%2C+Gary+A.&rft.au=Ferkul%2C+Paul+V.&rft.au=Owens%2C+Jay+C.&rft.date=2023-02-01&rft.issn=0010-2180&rft.volume=248&rft.spage=112559&rft_id=info:doi/10.1016%2Fj.combustflame.2022.112559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_combustflame_2022_112559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon