Collaborative swarm intelligence to estimate PV parameters

•Collaborative swarm intelligence is proposed to estimate PV parameters.•The proposed methodology mitigates premature convergence and population stagnation.•Benchmark functions and experimental data are used to test the new methodology.•The new methodology determines reliable solutions quickly and a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy conversion and management Ročník 185; s. 866 - 890
Hlavní autoři: Nunes, H.G.G., Pombo, J.A.N., Bento, P.M.R., Mariano, S.J.P.S., Calado, M.R.A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 01.04.2019
Elsevier Science Ltd
Témata:
ISSN:0196-8904, 1879-2227
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Collaborative swarm intelligence is proposed to estimate PV parameters.•The proposed methodology mitigates premature convergence and population stagnation.•Benchmark functions and experimental data are used to test the new methodology.•The new methodology determines reliable solutions quickly and accurately.•Several comparisons and metrics support the obtained results. To properly evaluate, control and optimize photovoltaic (PV) systems, it is crucial to accurately estimate the equivalent electric circuit parameters from the respective mathematical models that characterize the PV cells or modules behavior. This is currently a hot research topic that has attracted the attention of numerous researchers. In this paper, we propose a new hybrid methodology that combines diversification and intensification mechanisms from different metaheuristics (MHs) to estimate PV parameters precisely. The proposed methodology has the capacity to adapt to the specific optimization problem and maintain diversity when building solutions, thus mitigating premature convergence and population stagnation. This methodology can incorporate several MHs (two or more swarms) with different potentialities, enabling a good balance between diversification and intensification mechanisms. Furthermore, it is able to explore a multidimensional search space in different regions simultaneously. To validate its performance, the proposed methodology was compared with other well-established MHs in several benchmark functions, and used to estimate PV parameters in single and double-diode models in two case studies, the first using standard literature data, and the second using measured data from a real application with and without the occurrence of partial shading. The proposed methodology was able to find highly accurate solutions with reduced computational cost and high reliability. Comparisons with the other MHs demonstrate that the proposed methodology presents a very competitive performance when solving the PV parameter estimation problem.
AbstractList To properly evaluate, control and optimize photovoltaic (PV) systems, it is crucial to accurately estimate the equivalent electric circuit parameters from the respective mathematical models that characterize the PV cells or modules behavior. This is currently a hot research topic that has attracted the attention of numerous researchers. In this paper, we propose a new hybrid methodology that combines diversification and intensification mechanisms from different metaheuristics (MHs) to estimate PV parameters precisely. The proposed methodology has the capacity to adapt to the specific optimization problem and maintain diversity when building solutions, thus mitigating premature convergence and population stagnation. This methodology can incorporate several MHs (two or more swarms) with different potentialities, enabling a good balance between diversification and intensification mechanisms. Furthermore, it is able to explore a multidimensional search space in different regions simultaneously. To validate its performance, the proposed methodology was compared with other well-established MHs in several benchmark functions, and used to estimate PV parameters in single and double-diode models in two case studies, the first using standard literature data, and the second using measured data from a real application with and without the occurrence of partial shading. The proposed methodology was able to find highly accurate solutions with reduced computational cost and high reliability. Comparisons with the other MHs demonstrate that the proposed methodology presents a very competitive performance when solving the PV parameter estimation problem.
•Collaborative swarm intelligence is proposed to estimate PV parameters.•The proposed methodology mitigates premature convergence and population stagnation.•Benchmark functions and experimental data are used to test the new methodology.•The new methodology determines reliable solutions quickly and accurately.•Several comparisons and metrics support the obtained results. To properly evaluate, control and optimize photovoltaic (PV) systems, it is crucial to accurately estimate the equivalent electric circuit parameters from the respective mathematical models that characterize the PV cells or modules behavior. This is currently a hot research topic that has attracted the attention of numerous researchers. In this paper, we propose a new hybrid methodology that combines diversification and intensification mechanisms from different metaheuristics (MHs) to estimate PV parameters precisely. The proposed methodology has the capacity to adapt to the specific optimization problem and maintain diversity when building solutions, thus mitigating premature convergence and population stagnation. This methodology can incorporate several MHs (two or more swarms) with different potentialities, enabling a good balance between diversification and intensification mechanisms. Furthermore, it is able to explore a multidimensional search space in different regions simultaneously. To validate its performance, the proposed methodology was compared with other well-established MHs in several benchmark functions, and used to estimate PV parameters in single and double-diode models in two case studies, the first using standard literature data, and the second using measured data from a real application with and without the occurrence of partial shading. The proposed methodology was able to find highly accurate solutions with reduced computational cost and high reliability. Comparisons with the other MHs demonstrate that the proposed methodology presents a very competitive performance when solving the PV parameter estimation problem.
Author Calado, M.R.A.
Pombo, J.A.N.
Mariano, S.J.P.S.
Bento, P.M.R.
Nunes, H.G.G.
Author_xml – sequence: 1
  givenname: H.G.G.
  orcidid: 0000-0002-6029-7032
  surname: Nunes
  fullname: Nunes, H.G.G.
  email: hugo.nunes@ubi.pt
  organization: Department of Electromechanical Engineering, University of Beira Interior, Covilhã 6201-001, Portugal
– sequence: 2
  givenname: J.A.N.
  surname: Pombo
  fullname: Pombo, J.A.N.
  email: jose.pombo@ubi.pt
  organization: Department of Electromechanical Engineering, University of Beira Interior, Covilhã 6201-001, Portugal
– sequence: 3
  givenname: P.M.R.
  surname: Bento
  fullname: Bento, P.M.R.
  email: pedro.bento@ubi.pt
  organization: Department of Electromechanical Engineering, University of Beira Interior, Covilhã 6201-001, Portugal
– sequence: 4
  givenname: S.J.P.S.
  surname: Mariano
  fullname: Mariano, S.J.P.S.
  email: sm@ubi.pt
  organization: Department of Electromechanical Engineering, University of Beira Interior, Covilhã 6201-001, Portugal
– sequence: 5
  givenname: M.R.A.
  surname: Calado
  fullname: Calado, M.R.A.
  email: rc@ubi.pt
  organization: Department of Electromechanical Engineering, University of Beira Interior, Covilhã 6201-001, Portugal
BookMark eNqFkEtLAzEUhYNUsK3-BRlw42bGZDKPjLhQii8o6KK4DbeZjKTMJDVJK_57b6luuukqi3zncO43ISPrrCbkktGMUVbdrDJtlbMD2CynrMlonlHKT8iYibpJ8zyvR2SMH1UqGlqckUkIK4pESasxuZ25voel8xDNVifhG_yQGBt135tP7NVJdIkO0QwQdfL-kazBw6Cj9uGcnHbQB33x907J4ulxMXtJ52_Pr7OHeaqKkseULZdNyUFAQ7uqBSgZcCEEVwLqNlcgupYrxZhiLW-pFpwVtFuWrMMcqxSfkut97dq7rw1OkYMJCveB1W4TJB5IRUGLWiB6dYCu3MZbHIcUw-KqLGqkqj2lvAvB606uPZ7nfySjcmdUruS_UbkzKmku0RcG7w6CykT05mz0YPrj8ft9XKOsrdFeBmV2ilvjtYqydeZYxS_ePZiw
CitedBy_id crossref_primary_10_1016_j_solener_2020_09_047
crossref_primary_10_1016_j_enconman_2019_112450
crossref_primary_10_3390_su15010509
crossref_primary_10_1016_j_enconman_2019_05_057
crossref_primary_10_1155_2024_9777345
crossref_primary_10_1016_j_egyr_2022_03_144
crossref_primary_10_1007_s42835_020_00589_1
crossref_primary_10_1016_j_asoc_2024_112221
crossref_primary_10_1016_j_egyr_2023_03_105
crossref_primary_10_1016_j_solener_2022_08_004
crossref_primary_10_1016_j_enconman_2020_112990
crossref_primary_10_1016_j_egyr_2023_05_221
crossref_primary_10_3390_en17071716
crossref_primary_10_1016_j_renene_2025_123427
crossref_primary_10_1016_j_egyr_2022_11_171
crossref_primary_10_1016_j_solener_2020_10_062
crossref_primary_10_1016_j_egyr_2022_11_092
crossref_primary_10_1007_s00500_020_05227_6
crossref_primary_10_1016_j_enconman_2020_112716
crossref_primary_10_1016_j_enconman_2020_113409
crossref_primary_10_1080_02522667_2021_1960545
crossref_primary_10_1016_j_enconman_2019_111870
crossref_primary_10_1016_j_seta_2020_100849
crossref_primary_10_1109_ACCESS_2025_3546986
crossref_primary_10_1016_j_asoc_2024_112295
crossref_primary_10_1109_ACCESS_2021_3069748
crossref_primary_10_3390_en15197212
crossref_primary_10_1016_j_solener_2020_02_068
crossref_primary_10_1016_j_sciaf_2023_e01706
crossref_primary_10_22395_rium_v21n40a2
crossref_primary_10_1016_j_egyr_2021_01_024
crossref_primary_10_1038_s41598_025_85115_x
crossref_primary_10_1007_s10825_024_02205_1
crossref_primary_10_1016_j_asoc_2025_113117
crossref_primary_10_1016_j_heliyon_2021_e06673
crossref_primary_10_3390_en14112980
crossref_primary_10_1155_2019_3923691
crossref_primary_10_1007_s00202_024_02885_9
crossref_primary_10_1007_s10825_020_01617_z
crossref_primary_10_3390_s22186989
crossref_primary_10_1016_j_heliyon_2024_e38412
crossref_primary_10_1049_rpg2_12262
crossref_primary_10_1007_s10825_021_01812_6
crossref_primary_10_1007_s42235_024_00479_6
crossref_primary_10_1155_2019_4692108
crossref_primary_10_1016_j_seta_2022_102582
crossref_primary_10_1007_s00521_022_07047_1
crossref_primary_10_1016_j_enconman_2023_117621
crossref_primary_10_3390_en17102284
crossref_primary_10_1016_j_ijleo_2021_167973
crossref_primary_10_1007_s42341_021_00312_5
crossref_primary_10_1155_2020_6669579
crossref_primary_10_3390_batteries8020018
crossref_primary_10_1007_s00521_021_05822_0
crossref_primary_10_1016_j_enconman_2020_112764
crossref_primary_10_1109_ACCESS_2020_3005236
crossref_primary_10_1002_oca_2984
crossref_primary_10_1007_s11227_024_06899_9
crossref_primary_10_1007_s00521_023_08451_x
crossref_primary_10_1016_j_enconman_2020_113388
crossref_primary_10_1016_j_enconman_2020_113784
crossref_primary_10_1016_j_ijleo_2022_168873
crossref_primary_10_1109_ACCESS_2020_3000770
crossref_primary_10_1002_jnm_3163
crossref_primary_10_1016_j_engappai_2021_104608
crossref_primary_10_3390_sym14081569
crossref_primary_10_1002_er_5756
crossref_primary_10_1049_rpg2_12712
crossref_primary_10_1002_er_5747
crossref_primary_10_1016_j_solener_2020_06_100
crossref_primary_10_1016_j_enconman_2020_113820
crossref_primary_10_1016_j_rser_2022_112436
crossref_primary_10_1109_ACCESS_2022_3142779
crossref_primary_10_1016_j_isatra_2021_01_045
crossref_primary_10_1016_j_egyr_2022_05_011
crossref_primary_10_1016_j_renene_2024_120507
crossref_primary_10_1016_j_enconman_2020_113279
crossref_primary_10_1016_j_solener_2020_02_093
crossref_primary_10_1038_s41598_025_86063_2
crossref_primary_10_3390_electronics10040472
crossref_primary_10_1016_j_enconman_2020_113395
crossref_primary_10_1109_ACCESS_2021_3103146
crossref_primary_10_1016_j_energy_2021_120136
crossref_primary_10_1016_j_renene_2021_04_103
crossref_primary_10_1108_COMPEL_09_2022_0306
crossref_primary_10_1016_j_asoc_2021_108357
Cites_doi 10.1016/j.enconman.2016.09.085
10.1016/j.enconman.2018.08.053
10.1016/j.enconman.2017.04.054
10.1109/T-ED.1987.22920
10.1016/j.solener.2016.08.056
10.1016/j.apenergy.2017.12.115
10.1016/j.enconman.2016.12.082
10.1016/j.swevo.2017.02.005
10.1016/j.apenergy.2018.06.010
10.1016/j.enconman.2016.09.005
10.1016/j.enconman.2018.05.062
10.1016/j.solener.2014.02.014
10.1016/j.solener.2017.10.063
10.1016/j.renene.2017.04.014
10.1016/j.swevo.2018.01.009
10.1007/s40095-015-0198-5
10.1016/j.solmat.2010.09.023
10.1049/ip-epa:19990116
10.1016/j.energy.2016.01.052
10.1109/4235.771163
10.3390/en10070865
10.3390/en8087563
10.1016/j.renene.2018.09.017
10.1016/j.enconman.2017.04.042
10.3390/en10081213
10.1016/j.solener.2017.01.064
10.1016/j.enconman.2018.05.035
10.1016/j.ijhydene.2013.12.110
10.3390/app8030339
10.1016/j.apenergy.2015.05.035
10.1016/j.solener.2016.03.033
10.1016/j.advengsoft.2016.01.008
10.1016/j.solener.2017.08.006
10.1016/j.enconman.2017.08.063
10.1016/j.apenergy.2018.09.161
10.3390/en11051060
10.1063/1.4822054
10.1109/TIE.2018.2793216
10.1109/4235.585893
10.1016/j.enconman.2017.12.033
10.1109/TPEL.2009.2013862
10.1016/j.rser.2018.03.011
10.1016/j.asoc.2018.02.037
10.1016/j.asoc.2018.06.025
10.1016/j.rser.2016.03.049
10.1016/j.solener.2014.09.043
10.1016/j.enconman.2018.06.106
10.1016/j.asoc.2018.02.025
10.1016/j.solener.2018.10.050
10.1016/j.rser.2014.01.027
10.1016/j.enconman.2014.06.026
10.1016/j.solener.2018.06.092
10.1016/j.apenergy.2016.08.083
10.1016/j.apenergy.2017.11.078
10.3390/en6010128
10.3390/app8112155
10.1016/j.apenergy.2017.05.029
10.1016/j.solener.2013.05.007
10.1109/TIE.2015.2390193
10.1080/01425918608909835
10.1109/TIE.2016.2615590
10.3390/en10071052
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier Science Ltd. Apr 1, 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Apr 1, 2019
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2019.02.003
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
EndPage 890
ExternalDocumentID 10_1016_j_enconman_2019_02_003
S0196890419301566
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
9DU
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c453t-1bb953a8a90f6daa51a38883c8a7d2ca8fd3cc11c1d3d0e83140fb51fbb916c3
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464086800065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Sun Sep 28 01:17:11 EDT 2025
Wed Aug 13 09:38:54 EDT 2025
Tue Nov 18 22:12:47 EST 2025
Sat Nov 29 07:20:38 EST 2025
Fri Feb 23 02:47:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Double-diode model
Collaborative swarm intelligence
Parameter estimation
Single-diode model
Hybrid metaheuristic
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-1bb953a8a90f6daa51a38883c8a7d2ca8fd3cc11c1d3d0e83140fb51fbb916c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6029-7032
OpenAccessLink http://hdl.handle.net/10400.6/7051
PQID 2213146547
PQPubID 2047472
PageCount 25
ParticipantIDs proquest_miscellaneous_2220840478
proquest_journals_2213146547
crossref_primary_10_1016_j_enconman_2019_02_003
crossref_citationtrail_10_1016_j_enconman_2019_02_003
elsevier_sciencedirect_doi_10_1016_j_enconman_2019_02_003
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Xiong, Zhang, Shi, He (b0205) 2018; 174
Xiong, Zhang, Yuan, Shi, He, Yao (b0260) 2018; 176
Kennedy, Eberhart (b0320) 1995
Niu, Zhang, Li (b0350) 2014; 86
Lin, Cheng, Yeh, Chen, Wu (b0065) 2017; 144
Xu, Wang (b0095) 2017; 144
Chen, Xu, Mei, Ding, Li (b0120) 2018; 212
Derick, Rani, Rajesh, Farrag, Wang, Busawon (b0155) 2017; 157
Gao, Cui, Hu, Tahir, Xu (b0200) 2018; 171
Lim, Ye, Ye, Yang, Du (b0040) 2015; 62
Wolpert, Macready (b0265) 1997; 1
Toledo, Blanes, Galiano (b0110) 2018; 65
Chan, Phang (b0070) 1987; 34
Harish Kumar (b0195) 2018; 71
Yu, Liang, Qu, Cheng, Wang (b0190) 2018; 226
Clerc (b0315) 2006; hal-001227
Mughal, Ma, Xiao (b0235) 2017; 10
Niu, Zhang, Li (b0345) 2014; 39
Ram, Babu, Dragicevic, Rajasekar (b0060) 2017; 135
Abd-Alsabour (b0220) 2016
Solar S. Sharp solar modules. ND-R250A5 2014:1–2.
Nunes, Pombo, Mariano, Calado, Felippe de Souza (b0020) 2018; 211
Hamid, Abounacer, Idali Oumhand, Feddaoui, Agliz (b0165) 2018
Seyedmahmoudian, Mekhilef, Rahmani, Yusof, Renani (b0300) 2013; 6
Xiong, Zhang, Yuan, Shi, He, Xiong (b0215) 2018; 8
Gao, Cui, Hu, Xu, Wang, Qu (b0080) 2018; 157
Gow, Manning (b0285) 1999; 146
Ma, Bi, Ting, Hao, Hao (b0075) 2016; 132
Laudani, Riganti Fulginei, Salvini (b0100) 2014; 103
[accessed August 19, 2018].
Yao, Liu, Lin (b0365) 1999; 3
Villalva, Gazoli, Filho (b0030) 2009; 24
Kler, Sharma, Banerjee, Rana, Kumar (b0130) 2017; 35
Ishaque, Salam, Taheri (b0035) 2011; 95
Ertenlice, Kalayci (b0310) 2018; 39
Ma, Shen, Yu, Yang, Fei, Zhou (b0305) 2018
Ciulla, Lo Brano, Di Dio, Cipriani (b0010) 2014; 32
Hachana, Hemsas, Tina, Ventura (b0225) 2013; 5
Wu, Chen, Long, Cheng, Lin, Chen (b0255) 2018; 232
Jordehi (b0125) 2016; 129
Gao, Cui, Hu, Xu, Yu (b0290) 2016; 127
Abd Elaziz, Oliva (b0185) 2018; 171
Chen, Yu, Du, Zhao, Liu (b0335) 2016; 99
Aydilek (b0245) 2018; 66
Beigi, Maroosi (b0240) 2018; 171
Di Piazza, Vitale (b0005) 2013
Chin, Salam, Ishaque (b0270) 2015; 154
Abbassi, Abbassi, Jemli, Chebbi (b0025) 2018; 90
Rezaee Jordehi (b0160) 2018; 159
Wang, Zhan, Zhou (b0360) 2015; 8
Tossa, Soro, Azoumah, Yamegueu (b0090) 2014; 110
Muangkote, Sunat, Chiewchanwattana, Kaiwinit (b0210) 2019; 134
Soon, Low, Ting (b0045) 2014
Bayraktar, Komurcu, Werner (b0330) 2010
Oliva, Ewees, El, Hassanien, Peréz Cisneros (b0145) 2017; 10
Petrone, Ramos-Paja, Spagnuolo (b0280) 2017
Yu, Chen, Wang, Wang (b0140) 2017; 145
Easwarakhanthan, Bottin, Bouhouch, Boutrit (b0085) 1986; 4
Chen, Wu, Lin, Wu, Cheng (b0015) 2016; 182
Abdul Hamid, Rahim, Selvaraj (b0230) 2016; 8
Jordehi (b0275) 2016; 61
Louzazni, Khouya, Amechnoue, Gandelli, Mussetta, Crăciunescu (b0170) 2018; 8
Jamadi, Merrikh-Bayat, Bigdeli (b0355) 2016; 7
Kang, Bae, Yeung, Chung (b0250) 2018; 66
Cardenas, Carrasco, Mancilla-David, Street, Cardenas (b0105) 2017; 64
Fathy, Rezk (b0135) 2017; 111
Gong, Cai (b0050) 2013; 94
Oliva, Abd El Aziz, Ella Hassanien (b0055) 2017; 200
Elbaset, Ali, Abd El Sattar (b0295) 2016; 138
Mirjalili, Lewis (b0325) 2016; 95
Valdivia-González, Zaldívar, Cuevas, Pérez-Cisneros, Fausto, González (b0150) 2017; 10
Kang, Yao, Jin, Yang, Duong, Kang (b0175) 2018; 11
Suganthan, Hansen, Liang, Deb, Chen, Auger (b0370) 2005
Zhang, Lin, Chen, Cheng (b0340) 2016; 2016
Yu, Liang, Qu, Chen, Wang (b0115) 2017; 150
Chen, Sun, Meng (b0180) 2018; 169
Chen (10.1016/j.enconman.2019.02.003_b0180) 2018; 169
Laudani (10.1016/j.enconman.2019.02.003_b0100) 2014; 103
Yu (10.1016/j.enconman.2019.02.003_b0140) 2017; 145
Gao (10.1016/j.enconman.2019.02.003_b0080) 2018; 157
Yu (10.1016/j.enconman.2019.02.003_b0115) 2017; 150
Tossa (10.1016/j.enconman.2019.02.003_b0090) 2014; 110
Kang (10.1016/j.enconman.2019.02.003_b0250) 2018; 66
Valdivia-González (10.1016/j.enconman.2019.02.003_b0150) 2017; 10
Zhang (10.1016/j.enconman.2019.02.003_b0340) 2016; 2016
Suganthan (10.1016/j.enconman.2019.02.003_b0370) 2005
Fathy (10.1016/j.enconman.2019.02.003_b0135) 2017; 111
Kang (10.1016/j.enconman.2019.02.003_b0175) 2018; 11
Xiong (10.1016/j.enconman.2019.02.003_b0260) 2018; 176
Niu (10.1016/j.enconman.2019.02.003_b0350) 2014; 86
Ciulla (10.1016/j.enconman.2019.02.003_b0010) 2014; 32
Chen (10.1016/j.enconman.2019.02.003_b0335) 2016; 99
10.1016/j.enconman.2019.02.003_b0375
Hachana (10.1016/j.enconman.2019.02.003_b0225) 2013; 5
Petrone (10.1016/j.enconman.2019.02.003_b0280) 2017
Ertenlice (10.1016/j.enconman.2019.02.003_b0310) 2018; 39
Niu (10.1016/j.enconman.2019.02.003_b0345) 2014; 39
Xu (10.1016/j.enconman.2019.02.003_b0095) 2017; 144
Villalva (10.1016/j.enconman.2019.02.003_b0030) 2009; 24
Rezaee Jordehi (10.1016/j.enconman.2019.02.003_b0160) 2018; 159
Jordehi (10.1016/j.enconman.2019.02.003_b0275) 2016; 61
Xiong (10.1016/j.enconman.2019.02.003_b0215) 2018; 8
Harish Kumar (10.1016/j.enconman.2019.02.003_b0195) 2018; 71
Gong (10.1016/j.enconman.2019.02.003_b0050) 2013; 94
Chen (10.1016/j.enconman.2019.02.003_b0015) 2016; 182
Ma (10.1016/j.enconman.2019.02.003_b0075) 2016; 132
Nunes (10.1016/j.enconman.2019.02.003_b0020) 2018; 211
Wu (10.1016/j.enconman.2019.02.003_b0255) 2018; 232
Di Piazza (10.1016/j.enconman.2019.02.003_b0005) 2013
Gao (10.1016/j.enconman.2019.02.003_b0200) 2018; 171
Derick (10.1016/j.enconman.2019.02.003_b0155) 2017; 157
Lim (10.1016/j.enconman.2019.02.003_b0040) 2015; 62
Hamid (10.1016/j.enconman.2019.02.003_b0165) 2018
Beigi (10.1016/j.enconman.2019.02.003_b0240) 2018; 171
Abdul Hamid (10.1016/j.enconman.2019.02.003_b0230) 2016; 8
Mirjalili (10.1016/j.enconman.2019.02.003_b0325) 2016; 95
Chin (10.1016/j.enconman.2019.02.003_b0270) 2015; 154
Lin (10.1016/j.enconman.2019.02.003_b0065) 2017; 144
Chan (10.1016/j.enconman.2019.02.003_b0070) 1987; 34
Gow (10.1016/j.enconman.2019.02.003_b0285) 1999; 146
Yao (10.1016/j.enconman.2019.02.003_b0365) 1999; 3
Oliva (10.1016/j.enconman.2019.02.003_b0145) 2017; 10
Aydilek (10.1016/j.enconman.2019.02.003_b0245) 2018; 66
Gao (10.1016/j.enconman.2019.02.003_b0290) 2016; 127
Oliva (10.1016/j.enconman.2019.02.003_b0055) 2017; 200
Ram (10.1016/j.enconman.2019.02.003_b0060) 2017; 135
Mughal (10.1016/j.enconman.2019.02.003_b0235) 2017; 10
Seyedmahmoudian (10.1016/j.enconman.2019.02.003_b0300) 2013; 6
Easwarakhanthan (10.1016/j.enconman.2019.02.003_b0085) 1986; 4
Bayraktar (10.1016/j.enconman.2019.02.003_b0330) 2010
Abd Elaziz (10.1016/j.enconman.2019.02.003_b0185) 2018; 171
Muangkote (10.1016/j.enconman.2019.02.003_b0210) 2019; 134
Wolpert (10.1016/j.enconman.2019.02.003_b0265) 1997; 1
Abbassi (10.1016/j.enconman.2019.02.003_b0025) 2018; 90
Elbaset (10.1016/j.enconman.2019.02.003_b0295) 2016; 138
Jamadi (10.1016/j.enconman.2019.02.003_b0355) 2016; 7
Cardenas (10.1016/j.enconman.2019.02.003_b0105) 2017; 64
Ma (10.1016/j.enconman.2019.02.003_b0305) 2018
Abd-Alsabour (10.1016/j.enconman.2019.02.003_b0220) 2016
Jordehi (10.1016/j.enconman.2019.02.003_b0125) 2016; 129
Clerc (10.1016/j.enconman.2019.02.003_b0315) 2006; hal-001227
Toledo (10.1016/j.enconman.2019.02.003_b0110) 2018; 65
Ishaque (10.1016/j.enconman.2019.02.003_b0035) 2011; 95
Yu (10.1016/j.enconman.2019.02.003_b0190) 2018; 226
Chen (10.1016/j.enconman.2019.02.003_b0120) 2018; 212
Soon (10.1016/j.enconman.2019.02.003_b0045) 2014
Xiong (10.1016/j.enconman.2019.02.003_b0205) 2018; 174
Louzazni (10.1016/j.enconman.2019.02.003_b0170) 2018; 8
Kler (10.1016/j.enconman.2019.02.003_b0130) 2017; 35
Kennedy (10.1016/j.enconman.2019.02.003_b0320) 1995
Wang (10.1016/j.enconman.2019.02.003_b0360) 2015; 8
References_xml – volume: 10
  start-page: 1
  year: 2017
  end-page: 19
  ident: b0145
  article-title: A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells
  publication-title: Energies
– volume: 171
  start-page: 1822
  year: 2018
  end-page: 1842
  ident: b0200
  article-title: Performance comparison of exponential, Lambert W function and special trans function based single diode solar cell models
  publication-title: Energy Convers Manage
– year: 2013
  ident: b0005
  article-title: Photovoltaic sources – modeling and emulation
– volume: 182
  start-page: 47
  year: 2016
  end-page: 57
  ident: b0015
  article-title: Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy
  publication-title: Appl Energy
– volume: 39
  start-page: 36
  year: 2018
  end-page: 52
  ident: b0310
  article-title: A survey of swarm intelligence for portfolio optimization: algorithms and applications
  publication-title: Swarm Evol Comput
– volume: 64
  start-page: 1468
  year: 2017
  end-page: 1476
  ident: b0105
  article-title: Experimental parameter extraction in the single-diode photovoltaic model via a reduced-space search
  publication-title: IEEE Trans Ind Electron
– start-page: 1
  year: 2018
  end-page: 8
  ident: b0165
  article-title: Parameters identification of photovoltaic solar cells and module using the genetic algorithm with convex combination crossover
  publication-title: Int J Ambient Energy
– volume: 39
  start-page: 3837
  year: 2014
  end-page: 3854
  ident: b0345
  article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
  publication-title: Int J Hydrogen Energy
– volume: 8
  start-page: 1
  year: 2016
  end-page: 21
  ident: b0230
  article-title: Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization
  publication-title: J Renewable Sustainable Energy
– start-page: 1
  year: 2018
  end-page: 23
  ident: b0305
  article-title: Multi-population techniques in nature inspired optimization algorithms: a comprehensive survey
  publication-title: Swarm Evol Comput
– volume: 132
  start-page: 606
  year: 2016
  end-page: 616
  ident: b0075
  article-title: Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms
  publication-title: Sol Energy
– volume: 127
  start-page: 443
  year: 2016
  end-page: 460
  ident: b0290
  article-title: Lambert W-function based exact representation for double diode model of solar cells: comparison on fitness and parameter extraction
  publication-title: Energy Convers Manage
– volume: 24
  start-page: 1198
  year: 2009
  end-page: 1208
  ident: b0030
  article-title: Comprehensive approach to modeling and simulation of photovoltaic arrays
  publication-title: IEEE Trans Power Electron
– volume: 157
  start-page: 460
  year: 2018
  end-page: 479
  ident: b0080
  article-title: Parameter extraction of solar cell models using improved shuffled complex evolution algorithm
  publication-title: Energy Convers Manage
– start-page: 1
  year: 2010
  end-page: 4
  ident: b0330
  article-title: Wind driven optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics
  publication-title: IEEE Antennas Propag. Soc. Int. Symp.
– volume: 11
  start-page: 1
  year: 2018
  end-page: 31
  ident: b0175
  article-title: A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (PV) models
  publication-title: Energies
– volume: 232
  start-page: 36
  year: 2018
  end-page: 53
  ident: b0255
  article-title: Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm
  publication-title: Appl Energy
– volume: 135
  start-page: 463
  year: 2017
  end-page: 476
  ident: b0060
  article-title: A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation
  publication-title: Energy Convers Manage
– volume: 144
  start-page: 594
  year: 2017
  end-page: 603
  ident: b0065
  article-title: Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm
  publication-title: Sol Energy
– volume: 7
  start-page: 13
  year: 2016
  end-page: 25
  ident: b0355
  article-title: Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm
  publication-title: Int J Energy Environ Eng
– volume: 211
  start-page: 774
  year: 2018
  end-page: 791
  ident: b0020
  article-title: A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization
  publication-title: Appl Energy
– start-page: 2496
  year: 2014
  end-page: 2501
  ident: b0045
  article-title: Multi-dimension diode photovoltaic (PV) model for different PV cell technologies
  publication-title: IEEE 23rd Int. Symp. Ind. Electron.
– volume: 66
  start-page: 232
  year: 2018
  end-page: 249
  ident: b0245
  article-title: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems
  publication-title: Appl Soft Comput
– volume: 226
  start-page: 408
  year: 2018
  end-page: 422
  ident: b0190
  article-title: Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models
  publication-title: Appl Energy
– volume: 138
  start-page: 26
  year: 2016
  end-page: 35
  ident: b0295
  article-title: New seven parameters model for amorphous silicon and thin film PV modules based on solar irradiance
  publication-title: Sol Energy
– volume: 10
  start-page: 1
  year: 2017
  end-page: 14
  ident: b0235
  article-title: Photovoltaic cell parameter estimation using hybrid particle swarm optimization and simulated annealing
  publication-title: Energies
– volume: 103
  start-page: 316
  year: 2014
  end-page: 326
  ident: b0100
  article-title: High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I-V curves by using reduced forms
  publication-title: Sol Energy
– volume: 200
  start-page: 141
  year: 2017
  end-page: 154
  ident: b0055
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl Energy
– volume: 35
  start-page: 93
  year: 2017
  end-page: 110
  ident: b0130
  article-title: PV cell and module efficient parameters estimation using evaporation rate based water cycle algorithm
  publication-title: Swarm Evol Comput
– volume: 32
  start-page: 684
  year: 2014
  end-page: 696
  ident: b0010
  article-title: A comparison of different one-diode models for the representation of I-V characteristic of a PV cell
  publication-title: Renewable Sustainable Energy Rev
– volume: 10
  start-page: 1
  year: 2017
  end-page: 25
  ident: b0150
  article-title: A chaos-embedded gravitational search algorithm for the identification of electrical parameters of photovoltaic cells
  publication-title: Energies
– volume: 110
  start-page: 543
  year: 2014
  end-page: 560
  ident: b0090
  article-title: A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions
  publication-title: Sol Energy
– volume: 66
  start-page: 319
  year: 2018
  end-page: 329
  ident: b0250
  article-title: A hybrid gravitational search algorithm with swarm intelligence and deep convolutional feature for object tracking optimization
  publication-title: Appl Soft Comput
– volume: 8
  start-page: 1
  year: 2018
  end-page: 18
  ident: b0215
  article-title: Application of symbiotic organisms search algorithm for parameter extraction of solar cell models
  publication-title: Appl Sci
– volume: 146
  start-page: 193
  year: 1999
  end-page: 200
  ident: b0285
  article-title: Development of a photovoltaic array model for use in power-electronics simulation studies
  publication-title: IEE Proc – Electr Power Appl
– volume: 71
  start-page: 141
  year: 2018
  end-page: 151
  ident: b0195
  article-title: Modeling of solar cell under different conditions by ant lion optimizer with LambertW function
  publication-title: Appl Soft Comput
– volume: 99
  start-page: 170
  year: 2016
  end-page: 180
  ident: b0335
  article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization
  publication-title: Energy
– volume: 150
  start-page: 742
  year: 2017
  end-page: 753
  ident: b0115
  article-title: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
  publication-title: Energy Convers Manage
– volume: 61
  start-page: 354
  year: 2016
  end-page: 371
  ident: b0275
  article-title: Parameter estimation of solar photovoltaic (PV) cells: a review
  publication-title: Renewable Sustainable Energy Rev
– volume: 111
  start-page: 307
  year: 2017
  end-page: 320
  ident: b0135
  article-title: Parameter estimation of photovoltaic system using imperialist competitive algorithm
  publication-title: Renewable Energy
– volume: 90
  start-page: 453
  year: 2018
  end-page: 474
  ident: b0025
  article-title: Identification of unknown parameters of solar cell models: a comprehensive overview of available approaches
  publication-title: Renewable Sustainable Energy Rev
– volume: 95
  start-page: 586
  year: 2011
  end-page: 594
  ident: b0035
  article-title: Simple, fast and accurate two-diode model for photovoltaic modules
  publication-title: Sol Energy Mater Sol Cells
– volume: 5
  start-page: 1
  year: 2013
  end-page: 18
  ident: b0225
  article-title: Comparison of different metaheuristic algorithms for parameter identification of photovoltaic cell/module
  publication-title: J Renewable Sustainable Energy
– volume: 65
  start-page: 6301
  year: 2018
  end-page: 6308
  ident: b0110
  article-title: Two-step linear least-squares method for photovoltaic single-diode model parameters extraction
  publication-title: IEEE Trans Ind Electron
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: b0365
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans Evol Comput
– volume: 134
  start-page: 1129
  year: 2019
  end-page: 1147
  ident: b0210
  article-title: An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models
  publication-title: Renewable Energy
– volume: 154
  start-page: 500
  year: 2015
  end-page: 519
  ident: b0270
  article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review
  publication-title: Appl Energy
– volume: 6
  start-page: 128
  year: 2013
  end-page: 144
  ident: b0300
  article-title: Analytical modeling of partially shaded photovoltaic systems
  publication-title: Energies
– volume: 4
  start-page: 1
  year: 1986
  end-page: 12
  ident: b0085
  article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers
  publication-title: Int J Sol Energy
– volume: 157
  start-page: 116
  year: 2017
  end-page: 124
  ident: b0155
  article-title: An improved optimization technique for estimation of solar photovoltaic parameters
  publication-title: Sol Energy
– reference: [accessed August 19, 2018].
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 16
  ident: b0340
  article-title: A Population classification evolution algorithm for the parameter extraction of solar cell models
  publication-title: Int J Photoenergy
– volume: 169
  start-page: 345
  year: 2018
  end-page: 358
  ident: b0180
  article-title: An improved explicit double-diode model of solar cells: fitness verification and parameter extraction
  publication-title: Energy Convers Manage
– volume: 129
  start-page: 262
  year: 2016
  end-page: 274
  ident: b0125
  article-title: Time varying acceleration coefficients particle swarm optimisation (TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules
  publication-title: Energy Convers Manage
– volume: 171
  start-page: 435
  year: 2018
  end-page: 446
  ident: b0240
  article-title: Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms
  publication-title: Sol Energy
– volume: 34
  start-page: 286
  year: 1987
  end-page: 293
  ident: b0070
  article-title: Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics
  publication-title: IEEE Trans Electron Devices
– volume: 171
  start-page: 1843
  year: 2018
  end-page: 1859
  ident: b0185
  article-title: Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm
  publication-title: Energy Convers Manage
– year: 2017
  ident: b0280
  publication-title: Photovoltaic sources modeling
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b0320
  article-title: Particle swarm optimization
  publication-title: IEEE Int Conf Neural Networks
– volume: 145
  start-page: 233
  year: 2017
  end-page: 246
  ident: b0140
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers Manage
– volume: 212
  start-page: 1578
  year: 2018
  end-page: 1588
  ident: b0120
  article-title: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation
  publication-title: Appl Energy
– volume: 159
  start-page: 78
  year: 2018
  end-page: 87
  ident: b0160
  article-title: Enhanced leader particle swarm optimisation (ELPSO): an efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules
  publication-title: Sol Energy
– volume: 174
  start-page: 388
  year: 2018
  end-page: 405
  ident: b0205
  article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm
  publication-title: Energy Convers Manage
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0325
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Software
– volume: 86
  start-page: 1173
  year: 2014
  end-page: 1185
  ident: b0350
  article-title: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells
  publication-title: Energy Convers Manage
– volume: 8
  start-page: 1
  year: 2018
  end-page: 22
  ident: b0170
  article-title: Metaheuristic algorithm for photovoltaic parameters: comparative study and prediction with a firefly algorithm
  publication-title: Appl Sci
– reference: Solar S. Sharp solar modules. ND-R250A5 2014:1–2.
– volume: hal-001227
  start-page: 1
  year: 2006
  end-page: 9
  ident: b0315
  article-title: Confinements and biases in particle swarm optimisation
  publication-title: Sci Non Linéaire
– start-page: 19
  year: 2016
  end-page: 33
  ident: b0220
  publication-title: Hybrid metaheuristics for classification problems
– volume: 94
  start-page: 209
  year: 2013
  end-page: 220
  ident: b0050
  article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution
  publication-title: Sol Energy
– volume: 176
  start-page: 742
  year: 2018
  end-page: 761
  ident: b0260
  article-title: Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm
  publication-title: Sol Energy
– start-page: 2005005
  year: 2005
  ident: b0370
  article-title: Special session on real-parameter optimization
  publication-title: KanGAL Rep
– volume: 144
  start-page: 53
  year: 2017
  end-page: 68
  ident: b0095
  article-title: Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm
  publication-title: Energy Convers Manage
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b0265
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
– volume: 62
  start-page: 4181
  year: 2015
  end-page: 4193
  ident: b0040
  article-title: A linear identification of diode models from single I-V characteristics of PV panels
  publication-title: IEEE Trans Ind Electron
– volume: 8
  start-page: 7563
  year: 2015
  end-page: 7581
  ident: b0360
  article-title: Application of artificial bee colony in model parameter identification of solar cells
  publication-title: Energies
– volume: 129
  start-page: 262
  year: 2016
  ident: 10.1016/j.enconman.2019.02.003_b0125
  article-title: Time varying acceleration coefficients particle swarm optimisation (TVACPSO): a new optimisation algorithm for estimating parameters of PV cells and modules
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.09.085
– volume: 174
  start-page: 388
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0205
  article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.08.053
– year: 2013
  ident: 10.1016/j.enconman.2019.02.003_b0005
– volume: 145
  start-page: 233
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0140
  article-title: Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.04.054
– volume: 34
  start-page: 286
  year: 1987
  ident: 10.1016/j.enconman.2019.02.003_b0070
  article-title: Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics
  publication-title: IEEE Trans Electron Devices
  doi: 10.1109/T-ED.1987.22920
– volume: 138
  start-page: 26
  year: 2016
  ident: 10.1016/j.enconman.2019.02.003_b0295
  article-title: New seven parameters model for amorphous silicon and thin film PV modules based on solar irradiance
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2016.08.056
– volume: 212
  start-page: 1578
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0120
  article-title: Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.115
– volume: 135
  start-page: 463
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0060
  article-title: A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.12.082
– volume: 35
  start-page: 93
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0130
  article-title: PV cell and module efficient parameters estimation using evaporation rate based water cycle algorithm
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2017.02.005
– ident: 10.1016/j.enconman.2019.02.003_b0375
– volume: 226
  start-page: 408
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0190
  article-title: Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.06.010
– volume: 127
  start-page: 443
  year: 2016
  ident: 10.1016/j.enconman.2019.02.003_b0290
  article-title: Lambert W-function based exact representation for double diode model of solar cells: comparison on fitness and parameter extraction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.09.005
– volume: 171
  start-page: 1843
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0185
  article-title: Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.05.062
– volume: 103
  start-page: 316
  year: 2014
  ident: 10.1016/j.enconman.2019.02.003_b0100
  article-title: High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I-V curves by using reduced forms
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2014.02.014
– volume: 159
  start-page: 78
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0160
  article-title: Enhanced leader particle swarm optimisation (ELPSO): an efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.10.063
– start-page: 1
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0305
  article-title: Multi-population techniques in nature inspired optimization algorithms: a comprehensive survey
  publication-title: Swarm Evol Comput
– volume: 111
  start-page: 307
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0135
  article-title: Parameter estimation of photovoltaic system using imperialist competitive algorithm
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.04.014
– volume: 39
  start-page: 36
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0310
  article-title: A survey of swarm intelligence for portfolio optimization: algorithms and applications
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.01.009
– start-page: 1
  year: 2010
  ident: 10.1016/j.enconman.2019.02.003_b0330
  article-title: Wind driven optimization (WDO): a novel nature-inspired optimization algorithm and its application to electromagnetics
– volume: 7
  start-page: 13
  year: 2016
  ident: 10.1016/j.enconman.2019.02.003_b0355
  article-title: Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm
  publication-title: Int J Energy Environ Eng
  doi: 10.1007/s40095-015-0198-5
– volume: 95
  start-page: 586
  year: 2011
  ident: 10.1016/j.enconman.2019.02.003_b0035
  article-title: Simple, fast and accurate two-diode model for photovoltaic modules
  publication-title: Sol Energy Mater Sol Cells
  doi: 10.1016/j.solmat.2010.09.023
– volume: 146
  start-page: 193
  year: 1999
  ident: 10.1016/j.enconman.2019.02.003_b0285
  article-title: Development of a photovoltaic array model for use in power-electronics simulation studies
  publication-title: IEE Proc – Electr Power Appl
  doi: 10.1049/ip-epa:19990116
– volume: 99
  start-page: 170
  year: 2016
  ident: 10.1016/j.enconman.2019.02.003_b0335
  article-title: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2016.01.052
– volume: 3
  start-page: 82
  year: 1999
  ident: 10.1016/j.enconman.2019.02.003_b0365
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.771163
– volume: 10
  start-page: 1
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0145
  article-title: A chaotic improved artificial bee colony for parameter estimation of photovoltaic cells
  publication-title: Energies
  doi: 10.3390/en10070865
– volume: 8
  start-page: 7563
  year: 2015
  ident: 10.1016/j.enconman.2019.02.003_b0360
  article-title: Application of artificial bee colony in model parameter identification of solar cells
  publication-title: Energies
  doi: 10.3390/en8087563
– volume: 134
  start-page: 1129
  year: 2019
  ident: 10.1016/j.enconman.2019.02.003_b0210
  article-title: An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.09.017
– start-page: 2005005
  year: 2005
  ident: 10.1016/j.enconman.2019.02.003_b0370
  article-title: Special session on real-parameter optimization
  publication-title: KanGAL Rep
– volume: 144
  start-page: 53
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0095
  article-title: Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.04.042
– volume: 10
  start-page: 1
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0235
  article-title: Photovoltaic cell parameter estimation using hybrid particle swarm optimization and simulated annealing
  publication-title: Energies
  doi: 10.3390/en10081213
– volume: 144
  start-page: 594
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0065
  article-title: Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.01.064
– volume: 169
  start-page: 345
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0180
  article-title: An improved explicit double-diode model of solar cells: fitness verification and parameter extraction
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.05.035
– volume: 39
  start-page: 3837
  year: 2014
  ident: 10.1016/j.enconman.2019.02.003_b0345
  article-title: An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.12.110
– start-page: 2496
  year: 2014
  ident: 10.1016/j.enconman.2019.02.003_b0045
  article-title: Multi-dimension diode photovoltaic (PV) model for different PV cell technologies
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0170
  article-title: Metaheuristic algorithm for photovoltaic parameters: comparative study and prediction with a firefly algorithm
  publication-title: Appl Sci
  doi: 10.3390/app8030339
– volume: 154
  start-page: 500
  year: 2015
  ident: 10.1016/j.enconman.2019.02.003_b0270
  article-title: Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.035
– volume: 132
  start-page: 606
  year: 2016
  ident: 10.1016/j.enconman.2019.02.003_b0075
  article-title: Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2016.03.033
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.enconman.2019.02.003_b0325
  article-title: The whale optimization algorithm
  publication-title: Adv Eng Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 157
  start-page: 116
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0155
  article-title: An improved optimization technique for estimation of solar photovoltaic parameters
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.08.006
– volume: 150
  start-page: 742
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0115
  article-title: Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.08.063
– volume: 232
  start-page: 36
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0255
  article-title: Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.09.161
– volume: 11
  start-page: 1
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0175
  article-title: A novel improved cuckoo search algorithm for parameter estimation of photovoltaic (PV) models
  publication-title: Energies
  doi: 10.3390/en11051060
– volume: 5
  start-page: 1
  year: 2013
  ident: 10.1016/j.enconman.2019.02.003_b0225
  article-title: Comparison of different metaheuristic algorithms for parameter identification of photovoltaic cell/module
  publication-title: J Renewable Sustainable Energy
  doi: 10.1063/1.4822054
– volume: 65
  start-page: 6301
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0110
  article-title: Two-step linear least-squares method for photovoltaic single-diode model parameters extraction
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2018.2793216
– volume: 1
  start-page: 67
  year: 1997
  ident: 10.1016/j.enconman.2019.02.003_b0265
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– start-page: 1942
  year: 1995
  ident: 10.1016/j.enconman.2019.02.003_b0320
  article-title: Particle swarm optimization
  publication-title: IEEE Int Conf Neural Networks
– start-page: 1
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0165
  article-title: Parameters identification of photovoltaic solar cells and module using the genetic algorithm with convex combination crossover
  publication-title: Int J Ambient Energy
– volume: 157
  start-page: 460
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0080
  article-title: Parameter extraction of solar cell models using improved shuffled complex evolution algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.12.033
– volume: 24
  start-page: 1198
  year: 2009
  ident: 10.1016/j.enconman.2019.02.003_b0030
  article-title: Comprehensive approach to modeling and simulation of photovoltaic arrays
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2009.2013862
– volume: 8
  start-page: 1
  year: 2016
  ident: 10.1016/j.enconman.2019.02.003_b0230
  article-title: Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization
  publication-title: J Renewable Sustainable Energy
– volume: 90
  start-page: 453
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0025
  article-title: Identification of unknown parameters of solar cell models: a comprehensive overview of available approaches
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2018.03.011
– volume: 66
  start-page: 319
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0250
  article-title: A hybrid gravitational search algorithm with swarm intelligence and deep convolutional feature for object tracking optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.02.037
– start-page: 19
  year: 2016
  ident: 10.1016/j.enconman.2019.02.003_b0220
– volume: 71
  start-page: 141
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0195
  article-title: Modeling of solar cell under different conditions by ant lion optimizer with LambertW function
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.06.025
– volume: 61
  start-page: 354
  year: 2016
  ident: 10.1016/j.enconman.2019.02.003_b0275
  article-title: Parameter estimation of solar photovoltaic (PV) cells: a review
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2016.03.049
– volume: 110
  start-page: 543
  year: 2014
  ident: 10.1016/j.enconman.2019.02.003_b0090
  article-title: A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2014.09.043
– volume: 171
  start-page: 1822
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0200
  article-title: Performance comparison of exponential, Lambert W function and special trans function based single diode solar cell models
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.06.106
– year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0280
– volume: hal-001227
  start-page: 1
  year: 2006
  ident: 10.1016/j.enconman.2019.02.003_b0315
  article-title: Confinements and biases in particle swarm optimisation
  publication-title: Sci Non Linéaire
– volume: 66
  start-page: 232
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0245
  article-title: A hybrid firefly and particle swarm optimization algorithm for computationally expensive numerical problems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.02.025
– volume: 176
  start-page: 742
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0260
  article-title: Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.10.050
– volume: 32
  start-page: 684
  year: 2014
  ident: 10.1016/j.enconman.2019.02.003_b0010
  article-title: A comparison of different one-diode models for the representation of I-V characteristic of a PV cell
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2014.01.027
– volume: 86
  start-page: 1173
  year: 2014
  ident: 10.1016/j.enconman.2019.02.003_b0350
  article-title: A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.06.026
– volume: 171
  start-page: 435
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0240
  article-title: Parameter identification for solar cells and module using a hybrid firefly and pattern search algorithms
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.06.092
– volume: 182
  start-page: 47
  year: 2016
  ident: 10.1016/j.enconman.2019.02.003_b0015
  article-title: Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.083
– volume: 211
  start-page: 774
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0020
  article-title: A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.11.078
– volume: 6
  start-page: 128
  year: 2013
  ident: 10.1016/j.enconman.2019.02.003_b0300
  article-title: Analytical modeling of partially shaded photovoltaic systems
  publication-title: Energies
  doi: 10.3390/en6010128
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.enconman.2019.02.003_b0215
  article-title: Application of symbiotic organisms search algorithm for parameter extraction of solar cell models
  publication-title: Appl Sci
  doi: 10.3390/app8112155
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.enconman.2019.02.003_b0340
  article-title: A Population classification evolution algorithm for the parameter extraction of solar cell models
  publication-title: Int J Photoenergy
– volume: 200
  start-page: 141
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0055
  article-title: Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.029
– volume: 94
  start-page: 209
  year: 2013
  ident: 10.1016/j.enconman.2019.02.003_b0050
  article-title: Parameter extraction of solar cell models using repaired adaptive differential evolution
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2013.05.007
– volume: 62
  start-page: 4181
  year: 2015
  ident: 10.1016/j.enconman.2019.02.003_b0040
  article-title: A linear identification of diode models from single I-V characteristics of PV panels
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2015.2390193
– volume: 4
  start-page: 1
  year: 1986
  ident: 10.1016/j.enconman.2019.02.003_b0085
  article-title: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers
  publication-title: Int J Sol Energy
  doi: 10.1080/01425918608909835
– volume: 64
  start-page: 1468
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0105
  article-title: Experimental parameter extraction in the single-diode photovoltaic model via a reduced-space search
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2615590
– volume: 10
  start-page: 1
  year: 2017
  ident: 10.1016/j.enconman.2019.02.003_b0150
  article-title: A chaos-embedded gravitational search algorithm for the identification of electrical parameters of photovoltaic cells
  publication-title: Energies
  doi: 10.3390/en10071052
SSID ssj0003506
Score 2.5690105
Snippet •Collaborative swarm intelligence is proposed to estimate PV parameters.•The proposed methodology mitigates premature convergence and population...
To properly evaluate, control and optimize photovoltaic (PV) systems, it is crucial to accurately estimate the equivalent electric circuit parameters from the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 866
SubjectTerms case studies
Circuits
Collaborative swarm intelligence
Computer applications
Data processing
Double-diode model
electronic circuits
Hybrid metaheuristic
Intelligence
Mathematical models
Methodology
Optimization
Parameter estimation
Photovoltaic cells
Photovoltaics
shade
Shading
Single-diode model
Solar cells
Stagnation
Swarm intelligence
system optimization
Title Collaborative swarm intelligence to estimate PV parameters
URI https://dx.doi.org/10.1016/j.enconman.2019.02.003
https://www.proquest.com/docview/2213146547
https://www.proquest.com/docview/2220840478
Volume 185
WOSCitedRecordID wos000464086800065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg4wEeEJ-iMFCQEC9VRhw3sc1bmTrGVJVKhKlvluMkEhNNStOO_fmcP_JRBgweeImqtHYa3_l8Pt_9fgi94moUqXhU-JlkgT-SNPZTqbgPvrFG-5Y0yAxk_pTOZmyx4HMX060NnQAtS3Z5yVf_VdRwD4StS2f_Qdxtp3ADPoPQ4Qpih-tfCf6ok-xFPqy_y_XSgEK0wJvgbWpoDXBV8-H8bKjBv5c6KabeidLbmkCTlG4iauaUYXklWWa2dVj_J-87lq5qmdoDnXF70PMO2lS2uqRL9IV9ujTU38NPp47q2gUgMO_lrZioWFMZ0xijLh3JBCx57DNuKYYPc2tkGeW-rsHdtcJRz44yS8Vyxb7bUMP5oQb5LOGddW4et6CrpFvRmlP82Udx_Hk6FclkkbxeffM115g-k3fEKzfRfkgjDrZwf_xhsjhtV3ASGU7W9r_3Kst__ejfOTU_Le_GZ0nuobtus-GNrZLcRzfy8gG604OgfIje7qiLZ9TF66uLt6m8Rl28-ZnXqcsjlBxPkqMT3_Fp-DAhycbHacojIpnkQRFnUkZYEsYYUUzSLFSSFRlRCmOFM5IFOSOw-S7SCBfQDseKPEZ7ZVXmT5DHA5KNCpzygELXBZYxNlXZOeVRkCk6QFEzHkI5rHlNefJVNEmF56IZR6HHUQShRqkdoDdtu5VFW7m2BW-GWzif0fqCAlTm2rYHjXyEm8C1CEMM760puQfoZfs12Fx9kCbLvNrq34QBG2lcq6d_7uIZut3NmAO0t1lv8-folrrYfKnXL5za_QAjiqJ_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+swarm+intelligence+to+estimate+PV+parameters&rft.jtitle=Energy+conversion+and+management&rft.au=Nunes%2C+HGG&rft.au=Pombo%2C+JAN&rft.au=Bento%2C+PMR&rft.au=Mariano%2C+SJPS&rft.date=2019-04-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=185&rft.spage=866&rft_id=info:doi/10.1016%2Fj.enconman.2019.02.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon