Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing

The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but intermittent energy sources, and in smart grids in general. Lithium is a vital raw material for the build-up of both currently available lith...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Science of the total environment Ročník 639; s. 1188 - 1204
Hlavní autori: Flexer, Victoria, Baspineiro, Celso Fernando, Galli, Claudia Inés
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 15.10.2018
Predmet:
ISSN:0048-9697, 1879-1026, 1879-1026
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but intermittent energy sources, and in smart grids in general. Lithium is a vital raw material for the build-up of both currently available lithium-ion batteries, and prospective next generation batteries such as lithium-air and lithium sulphur. The continued availability of lithium can only rely on a strong increase of mining and ore processing. It would be an inconsistency if the increased production of lithium for a more sustainable society would be associated with non-sustainable mining practices. Currently 2/3 of the world production of lithium is extracted from brines, a practice that evaporates on average half a million litres of brine per ton of lithium carbonate. Furthermore, the extraction is chemical intensive, extremely slow, and delivers large volumes of waste. This technology is heavily dependent on the geological structure of the deposits, brine chemical composition and both climate and weather conditions. Therefore, it is difficult to adapt from one successful exploitation to new deposits. A few years of simulations and piloting are needed before large scale production is achieved. Consequently, this technology is struggling with the current surge in demand. At time of writing, only 5 industrial scale facilities are in operation worldwide, highlighting the shortcomings in this technology. Both mining companies and academics are intensively searching for new technologies for lithium recovery from brines. However, focus on the chemistry of brine processing has left unattended the analysis of the sustainability of the overall process. Here we review both the current available technology and new proposed methodologies. We make a special focus on an overall sustainability analysis, with particular emphasis to the geological characteristics of deposits and water usage in relation to mining processes. [Display omitted] •A strong increase in lithium mining is expected because of the battery industry.•Energy storage is vital for electric mobility and intermittent energy sources.•The largest lithium deposits are found in continental brines in desertic areas.•Current mining practices are water intensive and produce large volumes of waste.•Future technologies should analyse chemistry and geology of the individual deposits.
AbstractList The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but intermittent energy sources, and in smart grids in general. Lithium is a vital raw material for the build-up of both currently available lithium-ion batteries, and prospective next generation batteries such as lithium-air and lithium sulphur. The continued availability of lithium can only rely on a strong increase of mining and ore processing. It would be an inconsistency if the increased production of lithium for a more sustainable society would be associated with non-sustainable mining practices. Currently 2/3 of the world production of lithium is extracted from brines, a practice that evaporates on average half a million litres of brine per ton of lithium carbonate. Furthermore, the extraction is chemical intensive, extremely slow, and delivers large volumes of waste. This technology is heavily dependent on the geological structure of the deposits, brine chemical composition and both climate and weather conditions. Therefore, it is difficult to adapt from one successful exploitation to new deposits. A few years of simulations and piloting are needed before large scale production is achieved. Consequently, this technology is struggling with the current surge in demand. At time of writing, only 5 industrial scale facilities are in operation worldwide, highlighting the shortcomings in this technology. Both mining companies and academics are intensively searching for new technologies for lithium recovery from brines. However, focus on the chemistry of brine processing has left unattended the analysis of the sustainability of the overall process. Here we review both the current available technology and new proposed methodologies. We make a special focus on an overall sustainability analysis, with particular emphasis to the geological characteristics of deposits and water usage in relation to mining processes.
The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but intermittent energy sources, and in smart grids in general. Lithium is a vital raw material for the build-up of both currently available lithium-ion batteries, and prospective next generation batteries such as lithium-air and lithium sulphur. The continued availability of lithium can only rely on a strong increase of mining and ore processing. It would be an inconsistency if the increased production of lithium for a more sustainable society would be associated with non-sustainable mining practices. Currently 2/3 of the world production of lithium is extracted from brines, a practice that evaporates on average half a million litres of brine per ton of lithium carbonate. Furthermore, the extraction is chemical intensive, extremely slow, and delivers large volumes of waste. This technology is heavily dependent on the geological structure of the deposits, brine chemical composition and both climate and weather conditions. Therefore, it is difficult to adapt from one successful exploitation to new deposits. A few years of simulations and piloting are needed before large scale production is achieved. Consequently, this technology is struggling with the current surge in demand. At time of writing, only 5 industrial scale facilities are in operation worldwide, highlighting the shortcomings in this technology. Both mining companies and academics are intensively searching for new technologies for lithium recovery from brines. However, focus on the chemistry of brine processing has left unattended the analysis of the sustainability of the overall process. Here we review both the current available technology and new proposed methodologies. We make a special focus on an overall sustainability analysis, with particular emphasis to the geological characteristics of deposits and water usage in relation to mining processes.The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but intermittent energy sources, and in smart grids in general. Lithium is a vital raw material for the build-up of both currently available lithium-ion batteries, and prospective next generation batteries such as lithium-air and lithium sulphur. The continued availability of lithium can only rely on a strong increase of mining and ore processing. It would be an inconsistency if the increased production of lithium for a more sustainable society would be associated with non-sustainable mining practices. Currently 2/3 of the world production of lithium is extracted from brines, a practice that evaporates on average half a million litres of brine per ton of lithium carbonate. Furthermore, the extraction is chemical intensive, extremely slow, and delivers large volumes of waste. This technology is heavily dependent on the geological structure of the deposits, brine chemical composition and both climate and weather conditions. Therefore, it is difficult to adapt from one successful exploitation to new deposits. A few years of simulations and piloting are needed before large scale production is achieved. Consequently, this technology is struggling with the current surge in demand. At time of writing, only 5 industrial scale facilities are in operation worldwide, highlighting the shortcomings in this technology. Both mining companies and academics are intensively searching for new technologies for lithium recovery from brines. However, focus on the chemistry of brine processing has left unattended the analysis of the sustainability of the overall process. Here we review both the current available technology and new proposed methodologies. We make a special focus on an overall sustainability analysis, with particular emphasis to the geological characteristics of deposits and water usage in relation to mining processes.
The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but intermittent energy sources, and in smart grids in general. Lithium is a vital raw material for the build-up of both currently available lithium-ion batteries, and prospective next generation batteries such as lithium-air and lithium sulphur. The continued availability of lithium can only rely on a strong increase of mining and ore processing. It would be an inconsistency if the increased production of lithium for a more sustainable society would be associated with non-sustainable mining practices. Currently 2/3 of the world production of lithium is extracted from brines, a practice that evaporates on average half a million litres of brine per ton of lithium carbonate. Furthermore, the extraction is chemical intensive, extremely slow, and delivers large volumes of waste. This technology is heavily dependent on the geological structure of the deposits, brine chemical composition and both climate and weather conditions. Therefore, it is difficult to adapt from one successful exploitation to new deposits. A few years of simulations and piloting are needed before large scale production is achieved. Consequently, this technology is struggling with the current surge in demand. At time of writing, only 5 industrial scale facilities are in operation worldwide, highlighting the shortcomings in this technology. Both mining companies and academics are intensively searching for new technologies for lithium recovery from brines. However, focus on the chemistry of brine processing has left unattended the analysis of the sustainability of the overall process. Here we review both the current available technology and new proposed methodologies. We make a special focus on an overall sustainability analysis, with particular emphasis to the geological characteristics of deposits and water usage in relation to mining processes. [Display omitted] •A strong increase in lithium mining is expected because of the battery industry.•Energy storage is vital for electric mobility and intermittent energy sources.•The largest lithium deposits are found in continental brines in desertic areas.•Current mining practices are water intensive and produce large volumes of waste.•Future technologies should analyse chemistry and geology of the individual deposits.
Author Flexer, Victoria
Galli, Claudia Inés
Baspineiro, Celso Fernando
Author_xml – sequence: 1
  givenname: Victoria
  orcidid: 0000-0002-4385-8846
  surname: Flexer
  fullname: Flexer, Victoria
  email: vflexer@unju.edu.ar
  organization: Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Manuel Savio, Palpalá, Jujuy, Argentina
– sequence: 2
  givenname: Celso Fernando
  surname: Baspineiro
  fullname: Baspineiro, Celso Fernando
  organization: Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Manuel Savio, Palpalá, Jujuy, Argentina
– sequence: 3
  givenname: Claudia Inés
  surname: Galli
  fullname: Galli, Claudia Inés
  organization: Instituto de Ecoregiones Andinas - INECOA-CONICET, Av. Bolivia 1661, S.S. de Jujuy, Argentina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29929287$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u3CAUhVGVqpkkfYWWZTd2ABsbV-piFPUn0kjZNGuE8fX0jmyYAjNR3qCPXaxJuugmYYOO9J37dy7ImfMOCPnIWckZb653ZbSYfAJ3LAXjqmSyFKJ6Q1ZctV3BmWjOyIqxWhVd07Xn5CLGHcuvVfwdORddJzqh2hX5s8H0Cw8zDWD9EcIjHYOfaR_QQfxM1_SIyUw0mAc6mwQBsxh9oNsA4Cg4CFuESB9yFWrofpkoLUweDIN3c5ZZ4bw3NlF0FFOkMzp0W2rcQPfBW4gxyyvydjRThPdP_yW5__b1582PYnP3_fZmvSlsLatU8Jb1neRVq0DWfOyVHaSwqrZ5SzZwMUrJeW_rkUPTcNsoANNDVQ9G1b1htrokn051c-vfB4hJzxgtTJNx4A9RC6Zq1rSct69ApZJM1kxk9MMTeuhnGPQ-4GzCo34-dAa-nAAbfIwBRp3zMwm9S8HgpDnTS7B6p_8Fq5dgNZM6B5v97X_-5xYvO9cnJ-SrHhHCwoGzMGDOPOnB44s1_gIRiMVi
CitedBy_id crossref_primary_10_1515_zpch_2019_1550
crossref_primary_10_1186_s40659_022_00382_6
crossref_primary_10_1038_s41598_020_71596_5
crossref_primary_10_1007_s40831_021_00488_3
crossref_primary_10_1016_j_jwpe_2025_108356
crossref_primary_10_1002_celc_202400160
crossref_primary_10_1016_j_cjche_2024_01_013
crossref_primary_10_1016_j_hydromet_2019_105166
crossref_primary_10_1016_j_seppur_2022_120789
crossref_primary_10_1021_acs_iecr_5c00735
crossref_primary_10_1016_j_cherd_2025_06_011
crossref_primary_10_1016_j_jclepro_2020_124528
crossref_primary_10_52363_2522_1892_2025_1_3
crossref_primary_10_1016_j_jhazmat_2025_137420
crossref_primary_10_1038_s44286_025_00250_6
crossref_primary_10_1016_j_seppur_2025_134428
crossref_primary_10_1016_j_exis_2024_101509
crossref_primary_10_1016_j_actaastro_2021_05_021
crossref_primary_10_1016_j_jallcom_2021_159402
crossref_primary_10_1016_j_jes_2021_02_001
crossref_primary_10_1038_s41598_024_68072_9
crossref_primary_10_1016_j_cherd_2025_06_020
crossref_primary_10_1039_D4SC03760J
crossref_primary_10_1016_j_desal_2025_118960
crossref_primary_10_1016_j_exis_2021_100927
crossref_primary_10_1002_aenm_202100771
crossref_primary_10_1016_j_exis_2021_100928
crossref_primary_10_1016_j_cej_2021_134391
crossref_primary_10_1016_j_coelec_2021_100778
crossref_primary_10_3390_membranes11030175
crossref_primary_10_1016_j_ces_2023_119400
crossref_primary_10_1016_j_gexplo_2023_107383
crossref_primary_10_1149_1945_7111_ae00f9
crossref_primary_10_1016_j_colsurfa_2025_137354
crossref_primary_10_1016_j_erss_2024_103862
crossref_primary_10_1016_j_dwt_2025_101128
crossref_primary_10_1016_j_fluid_2019_04_015
crossref_primary_10_1016_j_cej_2020_125386
crossref_primary_10_3390_asi6040061
crossref_primary_10_1016_j_exis_2021_100932
crossref_primary_10_1016_j_mineng_2019_105868
crossref_primary_10_1080_21622515_2021_1995786
crossref_primary_10_1016_j_hydromet_2019_105193
crossref_primary_10_3390_su17010160
crossref_primary_10_1016_j_cscee_2024_100761
crossref_primary_10_1007_s13204_021_01832_5
crossref_primary_10_1016_j_desal_2022_115611
crossref_primary_10_1016_j_rser_2024_114642
crossref_primary_10_1002_cssc_201802431
crossref_primary_10_1016_j_geoen_2024_213189
crossref_primary_10_1016_j_exis_2024_101567
crossref_primary_10_1016_j_exis_2023_101326
crossref_primary_10_1016_j_cej_2025_159990
crossref_primary_10_15446_cuad_econ_v43n92_103077
crossref_primary_10_1016_j_seppur_2023_126162
crossref_primary_10_3389_fmicb_2021_688929
crossref_primary_10_1016_j_jece_2022_107622
crossref_primary_10_1016_j_resconrec_2021_105514
crossref_primary_10_1016_j_erss_2023_103043
crossref_primary_10_1016_j_cej_2025_159637
crossref_primary_10_1002_hyp_15031
crossref_primary_10_5004_dwt_2022_28432
crossref_primary_10_1016_j_desal_2024_118016
crossref_primary_10_1016_j_desal_2021_115269
crossref_primary_10_1002_pol_20200500
crossref_primary_10_1007_s40831_022_00602_z
crossref_primary_10_1016_j_jece_2025_117398
crossref_primary_10_3390_en18164323
crossref_primary_10_1016_j_jenvman_2024_120758
crossref_primary_10_1016_j_cep_2024_110079
crossref_primary_10_1016_j_cej_2025_168234
crossref_primary_10_1016_j_seppur_2021_119177
crossref_primary_10_4000_poldev_5284
crossref_primary_10_1080_03067319_2023_2198643
crossref_primary_10_1002_fee_2624
crossref_primary_10_1007_s11242_024_02071_2
crossref_primary_10_1016_j_desal_2022_115887
crossref_primary_10_1016_j_jct_2022_106814
crossref_primary_10_1007_s43979_025_00131_0
crossref_primary_10_3390_en18123146
crossref_primary_10_1016_j_jssc_2019_121157
crossref_primary_10_1080_07366299_2025_2452890
crossref_primary_10_1016_j_seppur_2021_120055
crossref_primary_10_1016_j_enconman_2025_119873
crossref_primary_10_1038_s43017_022_00387_5
crossref_primary_10_1016_j_cej_2021_130713
crossref_primary_10_1016_j_ccr_2023_215054
crossref_primary_10_1016_j_jclepro_2020_121152
crossref_primary_10_1002_adfm_202400416
crossref_primary_10_1016_j_mineng_2024_108586
crossref_primary_10_1038_s43017_021_00211_6
crossref_primary_10_1080_07366299_2024_2441930
crossref_primary_10_1016_j_jechem_2020_11_012
crossref_primary_10_1016_j_rineng_2025_107352
crossref_primary_10_1016_j_seppur_2019_01_027
crossref_primary_10_1016_j_desal_2022_115652
crossref_primary_10_1016_j_memsci_2020_117832
crossref_primary_10_3390_membranes12040373
crossref_primary_10_1016_j_geoforum_2021_01_001
crossref_primary_10_1002_smll_202406607
crossref_primary_10_1002_advs_202404887
crossref_primary_10_1016_j_exis_2024_101485
crossref_primary_10_1016_j_hydromet_2023_106025
crossref_primary_10_1016_j_inoche_2025_115169
crossref_primary_10_1016_j_jclepro_2024_142108
crossref_primary_10_1002_cnma_202200324
crossref_primary_10_1016_j_cej_2020_127715
crossref_primary_10_1007_s40831_024_00933_z
crossref_primary_10_1016_j_memsci_2019_117683
crossref_primary_10_1007_s13563_025_00517_7
crossref_primary_10_1016_j_renene_2023_05_090
crossref_primary_10_1016_j_memsci_2020_118416
crossref_primary_10_1016_j_resourpol_2022_103288
crossref_primary_10_1016_j_jclepro_2024_144635
crossref_primary_10_3390_met10070893
crossref_primary_10_1007_s11027_020_09911_8
crossref_primary_10_31643_2026_6445_21
crossref_primary_10_1126_sciadv_adx3242
crossref_primary_10_1016_j_jclepro_2020_124244
crossref_primary_10_1016_j_jwpe_2025_108181
crossref_primary_10_1016_j_resourpol_2023_103572
crossref_primary_10_1016_j_desal_2023_116944
crossref_primary_10_3390_jmse10101394
crossref_primary_10_4028_www_scientific_net_MSF_964_228
crossref_primary_10_1007_s10008_022_05219_6
crossref_primary_10_1039_D4RA03986F
crossref_primary_10_1016_j_resconrec_2024_107554
crossref_primary_10_1016_j_seppur_2020_118042
crossref_primary_10_1016_j_exis_2024_101463
crossref_primary_10_1126_science_adm7034
crossref_primary_10_1016_j_jwpe_2024_105743
crossref_primary_10_1016_j_heliyon_2025_e42523
crossref_primary_10_1016_j_exis_2025_101625
crossref_primary_10_1016_j_cej_2024_154640
crossref_primary_10_1016_j_chemosphere_2023_137902
crossref_primary_10_3390_en14206805
crossref_primary_10_3390_met13071213
crossref_primary_10_1002_cjce_25537
crossref_primary_10_1016_j_cej_2022_134955
crossref_primary_10_1016_j_watres_2025_123451
crossref_primary_10_1016_j_hydromet_2019_105222
crossref_primary_10_1016_j_seppur_2020_118154
crossref_primary_10_1016_j_coche_2024_101081
crossref_primary_10_1016_j_seppur_2025_134005
crossref_primary_10_1007_s10668_023_03279_w
crossref_primary_10_1016_j_memsci_2022_121251
crossref_primary_10_1007_s10311_025_01871_2
crossref_primary_10_1016_j_seppur_2022_120715
crossref_primary_10_1016_j_susmat_2024_e00923
crossref_primary_10_1016_j_cej_2023_144532
crossref_primary_10_1016_j_hydromet_2023_106102
crossref_primary_10_1002_wat2_1748
crossref_primary_10_1016_j_scitotenv_2023_168639
crossref_primary_10_1002_adma_201905440
crossref_primary_10_1016_j_jece_2025_119162
crossref_primary_10_1016_j_biortech_2020_123078
crossref_primary_10_3389_frwa_2023_1075139
crossref_primary_10_1002_celc_201901728
crossref_primary_10_1016_j_cej_2025_162886
crossref_primary_10_1016_j_jag_2019_04_016
crossref_primary_10_5382_econgeo_5154
crossref_primary_10_1080_08827508_2025_2507873
crossref_primary_10_1007_s10853_020_05019_1
crossref_primary_10_1021_acs_iecr_4c03046
crossref_primary_10_3390_membranes10120371
crossref_primary_10_1016_j_seppur_2024_126675
crossref_primary_10_1002_cjce_25604
crossref_primary_10_1002_aoc_6631
crossref_primary_10_1016_j_molliq_2025_127193
crossref_primary_10_1016_j_jallcom_2020_156234
crossref_primary_10_1016_j_erss_2025_104029
crossref_primary_10_1016_j_chemosphere_2019_03_138
crossref_primary_10_1016_j_seppur_2025_134214
crossref_primary_10_1016_j_chemer_2024_126132
crossref_primary_10_3390_w14060880
crossref_primary_10_1073_pnas_2410033121
crossref_primary_10_1016_j_cej_2025_159219
crossref_primary_10_1051_e3sconf_202128008016
crossref_primary_10_1016_j_hydromet_2023_106131
crossref_primary_10_3390_toxics13070567
crossref_primary_10_1016_j_partic_2024_05_012
crossref_primary_10_1007_s00767_022_00522_5
crossref_primary_10_1016_j_desal_2023_116891
crossref_primary_10_1016_j_desal_2025_119166
crossref_primary_10_1016_j_exis_2024_101498
crossref_primary_10_1016_j_matt_2021_02_005
crossref_primary_10_1016_j_nxmate_2024_100231
crossref_primary_10_1007_s40831_025_01220_1
crossref_primary_10_3390_rs14061383
crossref_primary_10_1007_s44169_023_00054_w
crossref_primary_10_3390_min9090528
crossref_primary_10_1016_j_cej_2023_145957
crossref_primary_10_1557_s43581_023_00066_y
crossref_primary_10_1016_j_cej_2025_159220
crossref_primary_10_1007_s13369_020_05006_3
crossref_primary_10_1016_j_rser_2025_116180
crossref_primary_10_1016_j_procir_2022_02_112
crossref_primary_10_1016_j_electacta_2023_143519
crossref_primary_10_1016_j_desal_2023_116525
crossref_primary_10_1016_j_resourpol_2019_101510
crossref_primary_10_1016_j_erss_2020_101902
crossref_primary_10_1016_j_cej_2025_165433
crossref_primary_10_1016_j_desal_2025_119156
crossref_primary_10_1002_adsu_202300460
crossref_primary_10_3390_resources13110148
crossref_primary_10_1016_j_snb_2021_130799
crossref_primary_10_1016_j_cej_2022_140416
crossref_primary_10_1016_j_memsci_2023_122133
crossref_primary_10_1016_j_desal_2021_114935
crossref_primary_10_1016_j_susmat_2025_e01420
crossref_primary_10_1111_1755_6724_14675
crossref_primary_10_3389_fceng_2022_741281
crossref_primary_10_1016_j_jenvrad_2019_106070
crossref_primary_10_1016_j_memsci_2019_117724
crossref_primary_10_1016_j_jclepro_2020_120719
crossref_primary_10_1016_j_matt_2024_07_014
crossref_primary_10_1016_j_cej_2023_144287
crossref_primary_10_1016_j_desal_2025_119026
crossref_primary_10_1016_j_chemosphere_2020_127500
crossref_primary_10_1088_1361_6528_acb15c
crossref_primary_10_57634_RCR5074
crossref_primary_10_3390_su13031273
crossref_primary_10_1016_j_cej_2021_131423
crossref_primary_10_1016_j_marpetgeo_2024_107261
crossref_primary_10_1016_j_desal_2019_114192
crossref_primary_10_4000_cal_14501
crossref_primary_10_1016_j_seppur_2021_118995
crossref_primary_10_1007_s40831_025_01114_2
crossref_primary_10_1016_j_nxener_2024_100160
crossref_primary_10_1016_j_coelec_2019_04_010
crossref_primary_10_3390_nano13050895
crossref_primary_10_1038_s43247_025_02130_6
crossref_primary_10_1016_j_cej_2024_155349
crossref_primary_10_1002_joom_70010
crossref_primary_10_1002_cssc_202401600
crossref_primary_10_1016_j_apmt_2020_100638
crossref_primary_10_1016_j_cherd_2025_02_003
crossref_primary_10_1016_j_scitotenv_2020_137523
crossref_primary_10_1016_j_resourpol_2025_105599
crossref_primary_10_1080_08827508_2023_2295849
crossref_primary_10_1016_j_mineng_2020_106743
crossref_primary_10_1016_j_ccr_2024_215968
crossref_primary_10_3390_molecules28217356
crossref_primary_10_1002_anie_202216549
crossref_primary_10_1002_mde_4324
crossref_primary_10_1016_j_memsci_2023_122351
crossref_primary_10_3390_su15021736
crossref_primary_10_1016_j_desal_2024_117826
crossref_primary_10_1016_j_jallcom_2024_176058
crossref_primary_10_1080_00084433_2025_2540724
crossref_primary_10_1016_j_seppur_2023_124643
crossref_primary_10_1016_j_earscirev_2025_105241
crossref_primary_10_1016_j_micromeso_2024_113403
crossref_primary_10_1016_j_chemosphere_2021_130196
crossref_primary_10_1016_j_seppur_2025_134086
crossref_primary_10_3390_membranes12020233
crossref_primary_10_1016_j_jsames_2020_102742
crossref_primary_10_1016_j_hydromet_2020_105386
crossref_primary_10_1016_j_resourpol_2020_101912
crossref_primary_10_1016_j_surfin_2024_105697
crossref_primary_10_3390_pr12071453
crossref_primary_10_1016_j_seppur_2021_118613
crossref_primary_10_1016_j_jenvrad_2020_106300
crossref_primary_10_1590_0001_3765202320211199
crossref_primary_10_1016_j_jwpe_2024_106322
crossref_primary_10_1016_j_apgeochem_2024_106126
crossref_primary_10_1016_j_envpol_2020_115458
crossref_primary_10_1016_j_microc_2024_110291
crossref_primary_10_1016_j_nxener_2025_100414
crossref_primary_10_1016_j_cej_2023_144136
crossref_primary_10_1016_j_jclepro_2020_120510
crossref_primary_10_1016_j_desal_2025_119232
crossref_primary_10_3390_en15155569
crossref_primary_10_1039_D5SU00552C
crossref_primary_10_1016_j_jclepro_2025_145254
crossref_primary_10_1039_D5YA00092K
crossref_primary_10_1016_j_yofte_2025_104187
crossref_primary_10_1016_j_desal_2020_114850
crossref_primary_10_1016_j_jpowsour_2023_233888
crossref_primary_10_2174_0118741231373719250430111944
crossref_primary_10_3390_batteries10110377
crossref_primary_10_3390_batteries10110379
crossref_primary_10_1016_j_desal_2022_116093
crossref_primary_10_3390_su17135903
crossref_primary_10_1016_j_seppur_2021_118796
crossref_primary_10_3390_app15179248
crossref_primary_10_5004_dwt_2023_29963
crossref_primary_10_1080_27658511_2025_2505288
crossref_primary_10_3390_membranes15090260
crossref_primary_10_1021_acs_est_5c06546
crossref_primary_10_1002_adfm_202404562
crossref_primary_10_1016_j_nxsust_2024_100055
crossref_primary_10_1155_2022_6884947
crossref_primary_10_1039_D5MA00467E
crossref_primary_10_1016_j_desal_2022_116186
crossref_primary_10_1016_j_saa_2021_120543
crossref_primary_10_1016_j_mtener_2025_101848
crossref_primary_10_1002_est2_339
crossref_primary_10_1016_j_desal_2024_117741
crossref_primary_10_23818_limn_45_09
crossref_primary_10_1016_j_jallcom_2025_181972
crossref_primary_10_1007_s11356_023_29672_6
crossref_primary_10_1038_s41598_021_88006_z
crossref_primary_10_1016_j_est_2025_116511
crossref_primary_10_1016_j_jwpe_2025_108600
crossref_primary_10_1016_j_desal_2020_114883
crossref_primary_10_3390_en15239069
crossref_primary_10_1016_j_resourpol_2021_102261
crossref_primary_10_1016_j_resourpol_2019_101473
crossref_primary_10_46652_rgn_v9i42_1285
crossref_primary_10_1039_D0EE02511A
crossref_primary_10_1016_j_desal_2025_119311
crossref_primary_10_3390_batteries8120287
crossref_primary_10_3390_atoms13060056
crossref_primary_10_1016_j_seppur_2020_116682
crossref_primary_10_1016_j_seppur_2020_117410
crossref_primary_10_1016_j_seppur_2020_117653
crossref_primary_10_1007_s10668_023_03271_4
crossref_primary_10_1016_j_gce_2025_03_005
crossref_primary_10_1016_j_pmatsci_2024_101424
crossref_primary_10_1016_j_coelec_2022_101087
crossref_primary_10_3390_en18061359
crossref_primary_10_1016_j_envpol_2023_121416
crossref_primary_10_3390_su152216016
crossref_primary_10_1016_j_desal_2023_117249
crossref_primary_10_1016_j_resconrec_2020_105034
crossref_primary_10_1038_s43017_025_00683_w
crossref_primary_10_1016_j_jelechem_2022_116623
crossref_primary_10_1073_pnas_2022197118
crossref_primary_10_1016_j_mineng_2022_107905
crossref_primary_10_1016_j_desal_2023_116395
crossref_primary_10_1016_j_enconman_2023_117396
crossref_primary_10_1093_bulcsj_uoaf002
crossref_primary_10_1021_acssuschemeng_5c05254
crossref_primary_10_1038_s44296_025_00069_5
crossref_primary_10_1016_j_electacta_2024_144686
crossref_primary_10_1039_D4EW00422A
crossref_primary_10_1016_j_procir_2021_05_012
crossref_primary_10_1002_adfm_202408685
crossref_primary_10_1016_j_jiec_2020_09_014
crossref_primary_10_1002_advs_202002213
crossref_primary_10_1002_adfm_202418358
crossref_primary_10_3390_batteries8110225
crossref_primary_10_1016_j_desal_2024_117659
crossref_primary_10_1016_j_desal_2024_117895
crossref_primary_10_1016_j_apgeochem_2020_104566
crossref_primary_10_3390_en13102638
crossref_primary_10_1016_j_jece_2023_110490
crossref_primary_10_1007_s11273_022_09872_6
crossref_primary_10_1002_advs_202201380
crossref_primary_10_1016_j_renene_2025_122643
crossref_primary_10_1016_j_gexplo_2021_106937
crossref_primary_10_1007_s10040_022_02499_0
crossref_primary_10_1016_j_desal_2024_118519
crossref_primary_10_1016_j_resconrec_2024_108081
crossref_primary_10_1021_acsami_5c06231
crossref_primary_10_1016_j_inoche_2022_109693
crossref_primary_10_1016_j_resourpol_2025_105600
crossref_primary_10_1108_BIJ_01_2021_0017
crossref_primary_10_1016_j_watres_2019_01_050
crossref_primary_10_1007_s10163_024_02146_8
crossref_primary_10_1080_08827508_2022_2047041
crossref_primary_10_24857_rgsa_v18n10_251
crossref_primary_10_3390_resources14020027
crossref_primary_10_1016_j_jclepro_2025_146535
crossref_primary_10_1016_j_scitotenv_2019_135605
crossref_primary_10_1016_j_scitotenv_2025_178992
crossref_primary_10_1016_j_jtice_2021_05_041
crossref_primary_10_1007_s12613_023_2750_2
crossref_primary_10_1007_s43615_022_00171_z
crossref_primary_10_1002_cssc_202400931
crossref_primary_10_1016_j_apgeochem_2020_104588
crossref_primary_10_1016_j_envsci_2025_104155
crossref_primary_10_1002_adfm_202105991
crossref_primary_10_1007_s11053_022_10070_7
crossref_primary_10_1016_j_seppur_2025_131643
crossref_primary_10_1080_07366299_2021_1876443
crossref_primary_10_1016_j_seppur_2025_133823
crossref_primary_10_1016_j_desal_2022_115822
crossref_primary_10_1016_j_desal_2022_115827
crossref_primary_10_1016_j_susmat_2025_e01341
crossref_primary_10_1016_j_desal_2022_115704
crossref_primary_10_3390_ma17174389
crossref_primary_10_1016_j_desal_2025_118658
crossref_primary_10_1088_1755_1315_882_1_012003
crossref_primary_10_1016_j_desal_2025_118899
crossref_primary_10_1016_j_desal_2024_117446
crossref_primary_10_1016_j_envsci_2021_05_002
crossref_primary_10_1016_j_est_2022_106362
crossref_primary_10_1016_j_cej_2022_138662
crossref_primary_10_3390_pr13041116
crossref_primary_10_1007_s43546_023_00486_5
crossref_primary_10_3389_fmicb_2023_1233221
crossref_primary_10_3390_min11060649
crossref_primary_10_1557_s43578_025_01533_7
crossref_primary_10_1002_aesr_202400070
crossref_primary_10_1016_j_scitotenv_2022_159374
crossref_primary_10_1016_j_apgeochem_2021_104985
crossref_primary_10_1016_j_reseneeco_2023_101389
crossref_primary_10_3390_su142114429
crossref_primary_10_1007_s41101_025_00365_0
crossref_primary_10_1016_j_resconrec_2022_106611
crossref_primary_10_1016_j_resconrec_2025_108574
crossref_primary_10_1016_j_colsurfa_2024_134833
crossref_primary_10_1016_j_erss_2024_103672
crossref_primary_10_3390_pr9020398
crossref_primary_10_1016_j_desal_2022_115951
crossref_primary_10_1016_j_desal_2025_118766
crossref_primary_10_1016_j_scitotenv_2021_148192
crossref_primary_10_1002_ange_202216549
crossref_primary_10_1016_j_etap_2023_104197
crossref_primary_10_1016_j_susmat_2025_e01339
crossref_primary_10_1002_celc_202101652
crossref_primary_10_1088_2516_1083_ada199
crossref_primary_10_1039_D5LC00387C
crossref_primary_10_3390_pr11020418
crossref_primary_10_1016_j_jclepro_2019_119178
crossref_primary_10_1134_S2517751622040059
crossref_primary_10_1016_j_jece_2025_116471
crossref_primary_10_3390_en16114400
crossref_primary_10_3390_su17104469
crossref_primary_10_1029_2025GB008513
crossref_primary_10_1016_j_jwpe_2021_102063
crossref_primary_10_1016_j_memsci_2025_124662
crossref_primary_10_1002_celc_202400035
crossref_primary_10_3390_membranes11090697
crossref_primary_10_1021_acs_est_4c12619
crossref_primary_10_3390_en16073149
crossref_primary_10_3390_inorganics11020088
crossref_primary_10_1071_EN24031
crossref_primary_10_1016_j_desal_2024_118449
crossref_primary_10_1016_j_resconrec_2022_106634
crossref_primary_10_3390_ma17246269
Cites_doi 10.1016/j.mineng.2016.01.010
10.1016/j.oregeorev.2012.11.001
10.1039/C6TA05985F
10.1021/cr020730k
10.1039/C4DT00467A
10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
10.1016/j.cej.2016.09.133
10.1016/j.seppur.2016.08.031
10.1016/j.molliq.2016.01.025
10.1016/j.desal.2013.03.009
10.1149/2.0591609jes
10.1002/chem.201403535
10.1029/2000TC900031
10.1021/acs.est.5b00032
10.1016/S0895-9811(01)00058-X
10.1039/C4TA01101E
10.1081/SS-100102353
10.1016/S0895-9811(99)00012-7
10.1021/es1010384
10.1007/s00792-013-0617-6
10.1016/j.apenergy.2015.09.090
10.1039/b002465l
10.1002/2016GL070076
10.1371/journal.pone.0053497
10.1016/j.scitotenv.2017.12.003
10.1016/j.scitotenv.2014.06.097
10.1246/cl.2012.1647
10.1029/TC008i003p00517
10.1016/j.mineng.2013.10.026
10.1016/j.hydromet.2012.02.008
10.1149/2.0181801jes
10.1016/0895-9811(91)90007-8
10.1016/j.desal.2016.11.018
10.1371/journal.pone.0185922
10.2113/econgeo.108.7.1691
10.1039/C4EE04041D
10.1021/cm0000191
10.1039/c3cp50919b
10.1039/C5TA02540K
10.1002/ijch.196300021
10.1039/c2ee22977c
10.1002/cssc.201500368
10.1038/nmat3191
10.1016/0304-386X(91)90056-R
10.1038/507026a
10.1016/j.scitotenv.2013.05.042
10.1007/s10498-008-9056-x
10.1080/01496399308018042
10.2118/9925-PA
10.1016/j.desal.2015.08.013
10.1029/2004TC001762
10.1029/1999TC001102
10.1039/C4EE03051F
10.1016/j.apgeochem.2013.09.002
10.1130/0091-7613(1991)019<0401:GEBOTN>2.3.CO;2
10.1021/ie000911h
10.1016/j.rser.2011.11.023
10.1016/j.apenergy.2013.04.005
10.1007/s00126-016-0656-x
10.1002/celc.201600509
10.1016/j.hydromet.2014.10.012
10.1021/ie404334s
10.1021/acs.jpcc.5b11722
10.2113/econgeo.106.7.1225
10.1016/0304-386X(87)90045-4
10.1016/j.oregeorev.2012.05.006
10.1109/MIE.2013.2250351
10.1016/S0012-8252(03)00037-0
10.1039/C7EW00020K
10.1016/0304-386X(78)90004-X
10.1007/s11837-013-0666-4
10.1007/s00382-016-3127-2
10.1016/j.hydromet.2015.03.002
10.1038/35002501
10.1016/j.scitotenv.2017.12.134
10.1016/j.rser.2016.10.019
10.1016/0039-9140(73)80275-9
10.1130/B25602.1
10.1080/07366299.2011.573435
10.1149/2.1531714jes
10.1016/j.jvolgeores.2012.09.009
10.1016/S1364-6826(03)00084-1
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2018.05.223
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 1204
ExternalDocumentID 29929287
10_1016_j_scitotenv_2018_05_223
S0048969718318746
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
XPP
ZXP
ZY4
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c453t-170b951378e541fb8cd52c84c6970d12f5511bc4f1e661c68eeabe34da84ba0c3
ISICitedReferencesCount 510
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436806200117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0048-9697
1879-1026
IngestDate Sun Sep 28 08:04:22 EDT 2025
Sun Nov 09 12:51:59 EST 2025
Wed Feb 19 02:41:46 EST 2025
Sat Nov 29 07:29:55 EST 2025
Tue Nov 18 22:39:56 EST 2025
Fri Feb 23 02:46:16 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sustainable mining
Lithium
Magnesium
Batteries
Aquifer
Brine deposits
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c453t-170b951378e541fb8cd52c84c6970d12f5511bc4f1e661c68eeabe34da84ba0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4385-8846
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S0048969718318746-fx1_lrg.jpg
PMID 29929287
PQID 2058505402
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2084067117
proquest_miscellaneous_2058505402
pubmed_primary_29929287
crossref_citationtrail_10_1016_j_scitotenv_2018_05_223
crossref_primary_10_1016_j_scitotenv_2018_05_223
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_05_223
PublicationCentury 2000
PublicationDate 2018-10-15
PublicationDateYYYYMMDD 2018-10-15
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References (bb0060) 2017
Ahumada (bb0010) 2014
Habashi (bb0275) 1997
Roskill's Information Services Ltd. (bb0545) 2016
Du, Guan, Li, Jagadale, Ma, Wang, Hao, Abudula (bb0195) 2016; 4
Swain (bb0590) 2017; 172
Van Noorden (bb0635) 2014; 507
Gabra, Torma (bb0240) 1978; 3
Kim, Lee, Choi, Shin, Dinh, Choi (bb0395) 2015; 49
Jochens, Munk (bb0370) 2011
Palagonia, Brogioli, La Mantia (bb0495) 2017; 164
Zhang, Shen, Gao, Wang, Guo, Deng (bb0660) 2012
Albarracín, Kurth, Ordoñez, Belfiore, Luccini, Salum, Piacentini, Farías (bb0020) 2015; 6
Chitrakar, Kanoh, Miyai, Ooi (bb0145) 2001; 40
Bazán, Rieradevall, Gabarrell, Vázquez-Rowe (bb0055) 2018; 622-623
Marrett, Strecker (bb0450) 2000; 19
Risacher, Fritz (bb0530) 2009; 15
Arias, Tesio, Flexer (bb0045) 2018; 165
Trócoli, Battistel, La Mantia (bb0615) 2014; 20
Chitrakar, Kanoh, Makita, Miyai, Ooi (bb0135) 2000; 10
Corenthal, Boutt, Hynek, Munk (bb0185) 2016; 43
Boualleg, M., F.A.P. Burdet, and R.C.J.R. Soulairol. Process for preparing an adsorbent material in the absence of binder comprising a hydrothermal treatment step and process for extracting lithium from saline solutions using said material. PATENT EP20150720043. ERAMET.
Carrapa, Adelmann, Hilley, Mortimer, Sobel, Strecker (bb0120) 2005; 24
Chen, Shen (bb0130) 2017; 12
Harrison, S., C.V.K. Sharma, B.E. Viani, and D. Peykova. Lithium extraction composition and method of preparation thereof. PATENT US 12/972,728. Geothermal Energy Project.
Shi, Jing, Jia (bb0555) 2016; 215
Chitrakar, Kanoh, Miyai, Ooi (bb0140) 2000; 12
Myers, Mittermeler, Mittermeler, Da Fonseca, Kent (bb0475) 2000; 403
Brouwer, van den Broek, Zappa, Turkenburg, Faaij (bb0095) 2016; 161
Hien-Dinh, Luong, Gieré, Tran (bb0295) 2015; 153
Shin, Kim, Noh, Byun, Chung, Kim, Cho (bb0560) 2015; 3
Castino, Bookhagen, Strecker (bb0125) 2017; 48
Evans (bb0215) 2010; 96
Olson, Dinerstein, Wikramanayake, Burgess, Powell, Underwood, D'Amico, Itoua, Strand, Morrison, Loucks, Allnutt, Ricketts, Kura, Lamoreux, Wettengel, Hedao, Kassem (bb0485) 2001; 51
Hofstra, Todorov, Mercer, Adams, Marsh (bb0305) 2013; 108
Coutand, Cobbold, De Urreiztieta, Gautier, Chauvin, Gapais, Rossello, López-Gamundí (bb0190) 2001; 20
Farías, Contreras, Rasuk, Kurth, Flores, Poiré, Novoa, Visscher (bb0225) 2014; 18
Lee, J.M. and W.C. Bauman. Recovery of lithium from brines. PATENT US 05/812,534. FMC Corporation.
Kaplan, Mamrosh, Salih, Dastgheib (bb0385) 2017; 404
bb0340
Goodenough, R.D. Recovery of lithium. PATENT US 2,964,381.
Zbranek, V., S. Bertolli, and P. Vargas. Production of lithium and potassium compounds. PATENT US8431005B1. Western Lithium Corp.
Jiang, Wang, Wang, Feng, Xu (bb0365) 2014; 53
Chon, U., I.C. Lee, K.Y. Kim, G.C. Han, C.H. Song, and S.R. Jung. Method for manufacturing lithium hydroxide and method using same for manufacturing lithium carbonate. PATENT US 14/389,860. POSCO.
bb0335
An, Kang, Tran, Kim, Lim, Tran (bb0040) 2012; 117–118
bb0330
Intaranont, Garcia-Araez, Hector, Milton, Owen (bb0350) 2014; 2
Bukowsky, Uhlemann (bb0105) 1993; 28
Ericksen, Salas (bb0205) 1990
Lee (bb0420) 2015; 5
Alurralde, P. and V. Mehta. Recovery of Li values from sodium saturate brine. PATENT US 13/288,389. FMC Corporation.
Risacher, Alonso, Salazar (bb0535) 2003; 63
Barbosa, Valente, Orosco, González (bb0050) 2014; 56
Ide, Kunasz (bb0345) 1989; vol. 11
Herrera, Gamboa, Custodio, Jordan, Godfrey, Jódar, Luque, Vargas, Sáez (bb0290) 2018; 624
Yu, Gao, Cheng, Liu, Zhang, He (bb0650) 2013; 50
Vikström, Davidsson, Höök (bb0640) 2013; 110
Prior, Wäger, Stamp, Widmer, Giurco (bb0520) 2013; 461-462
Steinmetz (bb0575) 2017; 52
Ma, Chen, Hossain (bb0440) 2000; 35
Border, Sawyer (bb0065) 2014; 123
Choubey, Kim, Srivastava, Lee, Lee (bb0165) 2016; 89
Fernandez, Rasuk, Visscher, Contreras, Novoa, Poire, Patterson, Ventosa, Farias (bb0230) 2016; 7
Food and Agriculture Organization of the United Nations (bb0235)
Opitz, Badami, Shen, Vignarooban, Kannan (bb0490) 2017; 68
Grier, Salfity, Allmendinger (bb0265) 1991; 4
Horne (bb0310) 1982; 34
Kaplan (bb0380) 1963; 1
Schaller, Headley, Prigent, Breuer (bb0550) 2014; 493
Izquierdo, Grau, Carilla, Casagranda (bb0355) 2015; 12
Meshram, Pandey, Mankhand (bb0460) 2014; 150
Bruce, Freunberger, Hardwick, Tarascon (bb0100) 2012; 11
British Geological Service (bb0090) 2016
Munk, Hynek, Bradley, Boutt, Labay, Jochens (bb0470) 2016
Kunasz (bb0410) 2006
Sternberg, Bardow (bb0580) 2015; 8
Piacentini, Cede, Bárcena (bb0510) 2003; 65
Marchini, Rubi, Del Pozo, Williams, Calvo (bb0445) 2016; 120
Concha, Broberg, Grandér, Cardozo, Palm, Vahter (bb0180) 2010; 44
Chitrakar, Makita, Ooi, Sonoda (bb0150) 2012; 41
U.S. Geological Survey (bb0630) 2018
Grosjean, Miranda, Perrin, Poggi (bb0270) 2012; 16
Pellow, Emmott, Barnhart, Benson (bb0505) 2015; 8
Rahimi-Eichi, Ojha, Baronti, Chow (bb0525) 2013; 7
Nishihama, Onishi, Yoshizuka (bb0480) 2011; 29
Rona, Schmuckler (bb0540) 1973; 20
Missoni, Marchini, Pozo, Calvo (bb0465) 2016; 163
Winter, Brodd (bb0645) 2004; 104
King, Kellye, Abbey (bb0400) 2012
Liu, Chen, He, Zhao (bb0435) 2015; 376
Chitrakar, Makita, Ooi, Sonoda (bb0155) 2014; 43
Trócoli, Erinmwingbovo, La Mantia (bb0625) 2017; 4
Horton (bb0315) 2012
Eugster, Hardie, Lerman (bb0210) 1978
Kesler, Gruber, Medina, Keoleian, Everson, Wallington (bb0390) 2012; 48
(bb0605) 2016
Lee, Yu, Kim, Sung, Yoon (bb0430) 2013; 15
Price, Lechler, Lear, Giles, J.G. (bb0515) 2000
Alonso, Bookhagen, Carrapa, Coutand, Haschke, Hilley, Schoenbohm, Sobel, Strecker, Trauth, Villanueva (bb0030) 2006
Bradley, Munk, Jochens, Hynek, Labay (bb0085) 2013
Giordano, Pinton, Cianfarra, Baez, Chiodi, Viramonte, Norini, Groppelli (bb0250) 2013; 249
Bukowsky, Uhlemann, Steinborn (bb0110) 1991; 27
Chung, Torrejos, Park, Vivas, Limjuco, Lawagon, Parohinog, Lee, Shon, Kim, Nisola (bb0170) 2017; 309
Kraemer, Adelmann, Alten, Schnurr, Erpenstein, Kiefer, Van Den Bogaard, Görler (bb0405) 1999; 12
Somrani, Hamzaoui, Pontie (bb0565) 2013; 317
Farías, Rascovan, Toneatti, Albarracín, Flores, Poiré, Collavino, Aguilar, Vazquez, Polerecky (bb0220) 2013; 8
Taylor, McLennan (bb0600) 1985
Abe, Chitrakar (bb0005) 1987; 19
Coira (bb0175) 1995
Haynes (bb0285) 2012
Hilley, Strecker (bb0300) 2005; 117
Pasta, Battistel, La Mantia (bb0500) 2012; 5
(bb0325) May 2014
Song, Nghiem, Li, He (bb0570) 2017; 3
Trócoli, Battistel, La Mantia (bb0620) 2015; 8
Bossi, Georgieff, Gavriloff, Ibañez, Muruaga (bb0070) 2001; 14
Godfrey, Chan, Alonso, Lowenstein, McDonough, Houston, Li, Bobst, Jordan (bb0255) 2013; 38
Alonso, Jordan, Tabbutt, Vandervoort (bb0025) 1991; 19
Boualleg, M., F.A.P. Burdet, and R.C.J.R. Soulairol. Method of preparing a shaped adsorbent material comprising a shaping step in the presence of an organic binder, and method of extracting lithium from saline solutions using said material. PATENT PCT/EP2014/079121. ERAMET.
ERAMET (bb0200)
Jaskula (bb0360) 2017
Houston, Butcher, Ehren, Evans, Godfrey (bb0320) 2011; 106
Burba, J.L. Crystalline lithium aluminates. PATENT US 06/217,614. The Dow Chemical Company.
Strecker, Cerveny, Bloom, Malizia (bb0585) 1989; 8
Talens Peiró, Villalba Méndez, Ayres (bb0595) 2013; 65
Garrett (bb0245) 2004
Jordan, Alonso (bb0375) 1987; 71
Langbein (bb0415) 1961; vol. 412
Toneatti, Albarracín, Flores, Polerecky, Farías (bb0610) 2017; 8
Mason, Moore (bb0455) 1982
Kaplan (10.1016/j.scitotenv.2018.05.223_bb0385) 2017; 404
Kesler (10.1016/j.scitotenv.2018.05.223_bb0390) 2012; 48
Risacher (10.1016/j.scitotenv.2018.05.223_bb0535) 2003; 63
Horton (10.1016/j.scitotenv.2018.05.223_bb0315) 2012
Lee (10.1016/j.scitotenv.2018.05.223_bb0420) 2015; 5
10.1016/j.scitotenv.2018.05.223_bb0035
Corenthal (10.1016/j.scitotenv.2018.05.223_bb0185) 2016; 43
Intaranont (10.1016/j.scitotenv.2018.05.223_bb0350) 2014; 2
Ma (10.1016/j.scitotenv.2018.05.223_bb0440) 2000; 35
Strecker (10.1016/j.scitotenv.2018.05.223_bb0585) 1989; 8
Opitz (10.1016/j.scitotenv.2018.05.223_bb0490) 2017; 68
Jordan (10.1016/j.scitotenv.2018.05.223_bb0375) 1987; 71
Bukowsky (10.1016/j.scitotenv.2018.05.223_bb0110) 1991; 27
Vikström (10.1016/j.scitotenv.2018.05.223_bb0640) 2013; 110
Du (10.1016/j.scitotenv.2018.05.223_bb0195) 2016; 4
Marchini (10.1016/j.scitotenv.2018.05.223_bb0445) 2016; 120
10.1016/j.scitotenv.2018.05.223_bb0160
Farías (10.1016/j.scitotenv.2018.05.223_bb0220) 2013; 8
Liu (10.1016/j.scitotenv.2018.05.223_bb0435) 2015; 376
Munk (10.1016/j.scitotenv.2018.05.223_bb0470) 2016
Carrapa (10.1016/j.scitotenv.2018.05.223_bb0120) 2005; 24
Jiang (10.1016/j.scitotenv.2018.05.223_bb0365) 2014; 53
Myers (10.1016/j.scitotenv.2018.05.223_bb0475) 2000; 403
Steinmetz (10.1016/j.scitotenv.2018.05.223_bb0575) 2017; 52
10.1016/j.scitotenv.2018.05.223_bb0280
Evans (10.1016/j.scitotenv.2018.05.223_bb0215) 2010; 96
Price (10.1016/j.scitotenv.2018.05.223_bb0515) 2000
Arias (10.1016/j.scitotenv.2018.05.223_bb0045) 2018; 165
Somrani (10.1016/j.scitotenv.2018.05.223_bb0565) 2013; 317
Zhang (10.1016/j.scitotenv.2018.05.223_bb0660) 2012
Herrera (10.1016/j.scitotenv.2018.05.223_bb0290) 2018; 624
Grosjean (10.1016/j.scitotenv.2018.05.223_bb0270) 2012; 16
Jaskula (10.1016/j.scitotenv.2018.05.223_bb0360)
Kim (10.1016/j.scitotenv.2018.05.223_bb0395) 2015; 49
(10.1016/j.scitotenv.2018.05.223_bb0060) 2017
Chitrakar (10.1016/j.scitotenv.2018.05.223_bb0140) 2000; 12
Mason (10.1016/j.scitotenv.2018.05.223_bb0455) 1982
Van Noorden (10.1016/j.scitotenv.2018.05.223_bb0635) 2014; 507
Schaller (10.1016/j.scitotenv.2018.05.223_bb0550) 2014; 493
Nishihama (10.1016/j.scitotenv.2018.05.223_bb0480) 2011; 29
King (10.1016/j.scitotenv.2018.05.223_bb0400) 2012
Marrett (10.1016/j.scitotenv.2018.05.223_bb0450) 2000; 19
Winter (10.1016/j.scitotenv.2018.05.223_bb0645) 2004; 104
Choubey (10.1016/j.scitotenv.2018.05.223_bb0165) 2016; 89
Rona (10.1016/j.scitotenv.2018.05.223_bb0540) 1973; 20
Barbosa (10.1016/j.scitotenv.2018.05.223_bb0050) 2014; 56
Song (10.1016/j.scitotenv.2018.05.223_bb0570) 2017; 3
Risacher (10.1016/j.scitotenv.2018.05.223_bb0530) 2009; 15
Rahimi-Eichi (10.1016/j.scitotenv.2018.05.223_bb0525) 2013; 7
British Geological Service (10.1016/j.scitotenv.2018.05.223_bb0090)
Jochens (10.1016/j.scitotenv.2018.05.223_bb0370) 2011
Chitrakar (10.1016/j.scitotenv.2018.05.223_bb0135) 2000; 10
Kunasz (10.1016/j.scitotenv.2018.05.223_bb0410) 2006
Roskill's Information Services Ltd. (10.1016/j.scitotenv.2018.05.223_bb0545) 2016
Concha (10.1016/j.scitotenv.2018.05.223_bb0180) 2010; 44
Chitrakar (10.1016/j.scitotenv.2018.05.223_bb0145) 2001; 40
Olson (10.1016/j.scitotenv.2018.05.223_bb0485) 2001; 51
Fernandez (10.1016/j.scitotenv.2018.05.223_bb0230) 2016; 7
Toneatti (10.1016/j.scitotenv.2018.05.223_bb0610) 2017; 8
Coira (10.1016/j.scitotenv.2018.05.223_bb0175) 1995
Bukowsky (10.1016/j.scitotenv.2018.05.223_bb0105) 1993; 28
Chitrakar (10.1016/j.scitotenv.2018.05.223_bb0155) 2014; 43
Garrett (10.1016/j.scitotenv.2018.05.223_bb0245) 2004
Meshram (10.1016/j.scitotenv.2018.05.223_bb0460) 2014; 150
Habashi (10.1016/j.scitotenv.2018.05.223_bb0275) 1997
Houston (10.1016/j.scitotenv.2018.05.223_bb0320) 2011; 106
ERAMET (10.1016/j.scitotenv.2018.05.223_bb0200)
Prior (10.1016/j.scitotenv.2018.05.223_bb0520) 2013; 461-462
Ahumada (10.1016/j.scitotenv.2018.05.223_bb0010) 2014
Palagonia (10.1016/j.scitotenv.2018.05.223_bb0495) 2017; 164
Alonso (10.1016/j.scitotenv.2018.05.223_bb0030) 2006
Bossi (10.1016/j.scitotenv.2018.05.223_bb0070) 2001; 14
10.1016/j.scitotenv.2018.05.223_bb0075
Kraemer (10.1016/j.scitotenv.2018.05.223_bb0405) 1999; 12
Talens Peiró (10.1016/j.scitotenv.2018.05.223_bb0595) 2013; 65
Hilley (10.1016/j.scitotenv.2018.05.223_bb0300) 2005; 117
Hien-Dinh (10.1016/j.scitotenv.2018.05.223_bb0295) 2015; 153
Chen (10.1016/j.scitotenv.2018.05.223_bb0130) 2017; 12
Swain (10.1016/j.scitotenv.2018.05.223_bb0590) 2017; 172
Sternberg (10.1016/j.scitotenv.2018.05.223_bb0580) 2015; 8
An (10.1016/j.scitotenv.2018.05.223_bb0040) 2012; 117–118
Hofstra (10.1016/j.scitotenv.2018.05.223_bb0305) 2013; 108
Alonso (10.1016/j.scitotenv.2018.05.223_bb0025) 1991; 19
Langbein (10.1016/j.scitotenv.2018.05.223_bb0415) 1961; vol. 412
10.1016/j.scitotenv.2018.05.223_bb0115
Piacentini (10.1016/j.scitotenv.2018.05.223_bb0510) 2003; 65
Bazán (10.1016/j.scitotenv.2018.05.223_bb0055) 2018; 622-623
Bradley (10.1016/j.scitotenv.2018.05.223_bb0085) 2013
Yu (10.1016/j.scitotenv.2018.05.223_bb0650) 2013; 50
Lee (10.1016/j.scitotenv.2018.05.223_bb0430) 2013; 15
Ide (10.1016/j.scitotenv.2018.05.223_bb0345) 1989; vol. 11
Food and Agriculture Organization of the United Nations (10.1016/j.scitotenv.2018.05.223_bb0235)
Gabra (10.1016/j.scitotenv.2018.05.223_bb0240) 1978; 3
10.1016/j.scitotenv.2018.05.223_bb0080
Chitrakar (10.1016/j.scitotenv.2018.05.223_bb0150) 2012; 41
Brouwer (10.1016/j.scitotenv.2018.05.223_bb0095) 2016; 161
Taylor (10.1016/j.scitotenv.2018.05.223_bb0600) 1985
Shi (10.1016/j.scitotenv.2018.05.223_bb0555) 2016; 215
Izquierdo (10.1016/j.scitotenv.2018.05.223_bb0355) 2015; 12
Coutand (10.1016/j.scitotenv.2018.05.223_bb0190) 2001; 20
Shin (10.1016/j.scitotenv.2018.05.223_bb0560) 2015; 3
Horne (10.1016/j.scitotenv.2018.05.223_bb0310) 1982; 34
Godfrey (10.1016/j.scitotenv.2018.05.223_bb0255) 2013; 38
Castino (10.1016/j.scitotenv.2018.05.223_bb0125) 2017; 48
Trócoli (10.1016/j.scitotenv.2018.05.223_bb0625) 2017; 4
Pasta (10.1016/j.scitotenv.2018.05.223_bb0500) 2012; 5
Abe (10.1016/j.scitotenv.2018.05.223_bb0005) 1987; 19
Haynes (10.1016/j.scitotenv.2018.05.223_bb0285) 2012
Albarracín (10.1016/j.scitotenv.2018.05.223_bb0020) 2015; 6
Pellow (10.1016/j.scitotenv.2018.05.223_bb0505) 2015; 8
Border (10.1016/j.scitotenv.2018.05.223_bb0065) 2014; 123
Eugster (10.1016/j.scitotenv.2018.05.223_bb0210) 1978
Ericksen (10.1016/j.scitotenv.2018.05.223_bb0205) 1990
U.S. Geological Survey (10.1016/j.scitotenv.2018.05.223_bb0630)
Farías (10.1016/j.scitotenv.2018.05.223_bb0225) 2014; 18
Missoni (10.1016/j.scitotenv.2018.05.223_bb0465) 2016; 163
10.1016/j.scitotenv.2018.05.223_bb0655
Giordano (10.1016/j.scitotenv.2018.05.223_bb0250) 2013; 249
10.1016/j.scitotenv.2018.05.223_bb0260
Kaplan (10.1016/j.scitotenv.2018.05.223_bb0380) 1963; 1
Trócoli (10.1016/j.scitotenv.2018.05.223_bb0615) 2014; 20
Chung (10.1016/j.scitotenv.2018.05.223_bb0170) 2017; 309
Grier (10.1016/j.scitotenv.2018.05.223_bb0265) 1991; 4
Trócoli (10.1016/j.scitotenv.2018.05.223_bb0620) 2015; 8
10.1016/j.scitotenv.2018.05.223_bb0425
Bruce (10.1016/j.scitotenv.2018.05.223_bb0100) 2012; 11
References_xml – reference: Chon, U., I.C. Lee, K.Y. Kim, G.C. Han, C.H. Song, and S.R. Jung. Method for manufacturing lithium hydroxide and method using same for manufacturing lithium carbonate. PATENT US 14/389,860. POSCO.
– reference: Boualleg, M., F.A.P. Burdet, and R.C.J.R. Soulairol. Method of preparing a shaped adsorbent material comprising a shaping step in the presence of an organic binder, and method of extracting lithium from saline solutions using said material. PATENT PCT/EP2014/079121. ERAMET.
– volume: vol. 11
  start-page: 165
  year: 1989
  end-page: 172
  ident: bb0345
  article-title: Origin of lithium in Salar de Atacama, northern Chile
  publication-title: Geology of the Andes and Its Relation to Hydrocarbon and Mineral Resources
– reference: Boualleg, M., F.A.P. Burdet, and R.C.J.R. Soulairol. Process for preparing an adsorbent material in the absence of binder comprising a hydrothermal treatment step and process for extracting lithium from saline solutions using said material. PATENT EP20150720043. ERAMET.
– volume: 44
  start-page: 6875
  year: 2010
  end-page: 6880
  ident: bb0180
  article-title: High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of Northern Argentina
  publication-title: Environ. Sci. Technol.
– volume: 110
  start-page: 252
  year: 2013
  end-page: 266
  ident: bb0640
  article-title: Lithium availability and future production outlooks
  publication-title: Appl. Energy
– volume: 15
  start-page: 123
  year: 2009
  end-page: 157
  ident: bb0530
  article-title: Origin of salts and brine evolution of Bolivian and Chilean salars
  publication-title: Aquat. Geochem.
– volume: 172
  start-page: 388
  year: 2017
  end-page: 403
  ident: bb0590
  article-title: Recovery and recycling of lithium: a review
  publication-title: Sep. Purif. Technol.
– year: 1990
  ident: bb0205
  article-title: Geology and resources of salars in the central Andes
  publication-title: Geology of the Andes and Its Relation to Hydrocarbon and Mineral Resources
– volume: 317
  start-page: 184
  year: 2013
  end-page: 192
  ident: bb0565
  article-title: Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)
  publication-title: Desalination
– volume: 48
  start-page: 55
  year: 2012
  end-page: 69
  ident: bb0390
  article-title: Global lithium resources: relative importance of pegmatite, brine and other deposits
  publication-title: Ore Geol. Rev.
– start-page: 101
  year: 2014
  ident: bb0010
  article-title: Caracterización hidrogeológica e hidroquímica del sector sur del Salar de Atacama, II° región de Antofagasta, Chile
– reference: Alurralde, P. and V. Mehta. Recovery of Li values from sodium saturate brine. PATENT US 13/288,389. FMC Corporation.
– volume: 376
  start-page: 35
  year: 2015
  end-page: 40
  ident: bb0435
  article-title: Study on extraction of lithium from salt lake brine by membrane electrolysis
  publication-title: Desalination
– volume: 8
  start-page: 517
  year: 1989
  end-page: 534
  ident: bb0585
  article-title: Late Cenozoic tectonism and landscape development in the foreland of the Andes: Northern Sierras Pampeanas (26°–28°S), Argentina
  publication-title: Tectonics
– volume: 16
  start-page: 1735
  year: 2012
  end-page: 1744
  ident: bb0270
  article-title: Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry
  publication-title: Renew. Sust. Energ. Rev.
– volume: 3
  start-page: 593
  year: 2017
  end-page: 597
  ident: bb0570
  article-title: Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook
  publication-title: Environ. Sci. Water Res. Technol.
– volume: 10
  start-page: 2325
  year: 2000
  end-page: 2329
  ident: bb0135
  article-title: Synthesis of spinel-type lithium antimony manganese oxides and their Li+ extraction/ion insertion reactions
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 13989
  year: 2016
  end-page: 13996
  ident: bb0195
  article-title: A novel electroactive [small lambda]-MnO2/PPy/PSS core-shell nanorod coated electrode for selective recovery of lithium ions at low concentration
  publication-title: J. Mater. Chem. A
– ident: bb0340
  article-title: Lithium: Orocobre operations hit by Puna snowfall
– volume: 8
  start-page: 2514
  year: 2015
  end-page: 2519
  ident: bb0620
  article-title: Nickel hexacyanoferrate as suitable alternative to ag for electrochemical lithium recovery
  publication-title: ChemSusChem
– volume: vol. 412
  year: 1961
  ident: bb0415
  article-title: Salinity and hydrology of closed lakes
  publication-title: U.S. Geological Survey Professional Paper
– volume: 8
  start-page: 389
  year: 2015
  end-page: 400
  ident: bb0580
  article-title: Power-to-What?-environmental assessment of energy storage systems
  publication-title: Energy Environ. Sci.
– volume: 117–118
  start-page: 64
  year: 2012
  end-page: 70
  ident: bb0040
  article-title: Recovery of lithium from Uyuni salar brine
  publication-title: Hydrometallurgy
– volume: 20
  start-page: 237
  year: 1973
  end-page: 240
  ident: bb0540
  article-title: Separation of lithium from dead sea brines by gel permeation chromatography
  publication-title: Talanta
– volume: 19
  start-page: 117
  year: 1987
  end-page: 128
  ident: bb0005
  article-title: Synthetic inorganic ion-exchange materials. XLV. Recovery of lithium from seawater and hydrothermal water by titanium (iv) antimonate cation exchanger
  publication-title: Hydrometallurgy
– volume: 215
  start-page: 640
  year: 2016
  end-page: 646
  ident: bb0555
  article-title: Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid
  publication-title: J. Mol. Liq.
– volume: 161
  start-page: 48
  year: 2016
  end-page: 74
  ident: bb0095
  article-title: Least-cost options for integrating intermittent renewables in low-carbon power systems
  publication-title: Appl. Energy
– volume: 19
  start-page: 401
  year: 1991
  end-page: 404
  ident: bb0025
  article-title: Giant evaporite belts of the Neogene central Andes
  publication-title: Geology
– volume: 12
  year: 2017
  ident: bb0130
  article-title: A degradation-based sorting method for lithium-ion battery reuse
  publication-title: PLoS One
– volume: 52
  start-page: 35
  year: 2017
  end-page: 50
  ident: bb0575
  article-title: Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30′S
  publication-title: Mineral. Deposita
– year: 2011
  ident: bb0370
  article-title: Experimental weathering of lithium bearing source rocks, Clayton Valley, Nevada, USA
  publication-title: 11th SGA Biennial Meeting
– year: May 2014
  ident: bb0325
  article-title: Report on Critical raw materials for the EU. Report of the Ad hoc Working Group on defining critical raw materials
– year: 2016
  ident: bb0605
  article-title: An increasingly precious metal
– volume: 104
  start-page: 4245
  year: 2004
  end-page: 4269
  ident: bb0645
  article-title: What are batteries, fuel cells, and supercapacitors?
  publication-title: Chem. Rev.
– volume: 4
  start-page: 351
  year: 1991
  end-page: 372
  ident: bb0265
  article-title: Andean reactivation of the Cretaceous Salta rift, northwestern Argentina
  publication-title: J. S. Am. Earth Sci.
– start-page: 9
  year: 2013
  ident: bb0085
  article-title: A preliminary deposit model for lithium brines
  publication-title: Open-File Report
– volume: 8
  year: 2017
  ident: bb0610
  article-title: Stratified bacterial diversity along physico-chemical gradients in high-altitude modern stromatolites
  publication-title: Front. Microbiol.
– volume: 28
  start-page: 1357
  year: 1993
  end-page: 1360
  ident: bb0105
  article-title: Selective extraction of lithium chloride from brines
  publication-title: Sep. Sci. Technol.
– reference: Goodenough, R.D. Recovery of lithium. PATENT US 2,964,381.
– volume: 11
  start-page: 19
  year: 2012
  end-page: 29
  ident: bb0100
  article-title: Li-O2 and Li-S batteries with high energy storage
  publication-title: Nat. Mater.
– year: 1982
  ident: bb0455
  article-title: Principles of Geochemistry
– year: 2006
  ident: bb0410
  article-title: Lithium resources
  publication-title: Industrial Minerals and Rocks - Commodities, Markets, and Uses
– volume: 3
  start-page: 23
  year: 1978
  end-page: 33
  ident: bb0240
  article-title: Lithium chloride extraction by n-butanol
  publication-title: Hydrometallurgy
– volume: 53
  start-page: 6103
  year: 2014
  end-page: 6112
  ident: bb0365
  article-title: Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM)
  publication-title: Ind. Eng. Chem. Res.
– volume: 19
  start-page: 452
  year: 2000
  end-page: 467
  ident: bb0450
  article-title: Response of intracontinental deformation in the central Andes to late Cenozoic reorganization of South American Plate motions
  publication-title: Tectonics
– volume: 404
  start-page: 87
  year: 2017
  end-page: 101
  ident: bb0385
  article-title: Assessment of desalination technologies for treatment of a highly saline brine from a potential CO2 storage site
  publication-title: Desalination
– volume: 493
  start-page: 910
  year: 2014
  end-page: 913
  ident: bb0550
  article-title: Potential mining of lithium, beryllium and strontium from oilfield wastewater after enrichment in constructed wetlands and ponds
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 9888
  year: 2014
  end-page: 9891
  ident: bb0615
  article-title: Selectivity of a lithium-recovery process based on LiFePO4
  publication-title: Chem. Eur. J.
– volume: 35
  start-page: 2513
  year: 2000
  end-page: 2533
  ident: bb0440
  article-title: Lithium extraction from a multicomponent mixture using supported liquid membranes
  publication-title: Sep. Sci. Technol.
– volume: 153
  start-page: 154
  year: 2015
  end-page: 159
  ident: bb0295
  article-title: Extraction of lithium from lepidolite via iron sulphide roasting and water leaching
  publication-title: Hydrometallurgy
– year: 2012
  ident: bb0400
  article-title: Feasibility Study. Reserve Estimation and Lithium Carbonate and Potash Production at the Cauchari-Olaroz Salars, Jujuy Province, Argentina. Lithium of Americas NI 43-101 Technical Report, Effective Date: July 11th 2012
– volume: 123
  start-page: 95
  year: 2014
  end-page: 106
  ident: bb0065
  article-title: Evaporites and brines – geological, hydrological and chemical aspects of resource estimation
  publication-title: Trans. Inst. Min. Metall. Sect. B Appl. Earth Sci.
– volume: 7
  start-page: 4
  year: 2013
  end-page: 16
  ident: bb0525
  article-title: Battery management system: an overview of its application in the smart grid and electric vehicles
  publication-title: IEEE Ind. Electron. Mag.
– volume: 7
  year: 2016
  ident: bb0230
  article-title: Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile
  publication-title: Front. Microbiol.
– volume: 108
  start-page: 1691
  year: 2013
  end-page: 1701
  ident: bb0305
  article-title: Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the Western United States: implications for the origin of lithium-rich brines
  publication-title: Econ. Geol.
– volume: 15
  start-page: 7690
  year: 2013
  end-page: 7695
  ident: bb0430
  article-title: Highly selective lithium recovery from brine using a λ-MnO 2-Ag battery
  publication-title: Phys. Chem. Chem. Phys.
– volume: 5
  start-page: 737
  year: 2015
  end-page: 743
  ident: bb0420
  article-title: Extraction of lithium from lepidolite using mixed grinding with sodium sulfide followed by water leaching
  publication-title: Fortschr. Mineral.
– volume: 63
  start-page: 249
  year: 2003
  end-page: 293
  ident: bb0535
  article-title: The origin of brines and salts in Chilean salars: a hydrochemical review
  publication-title: Earth Sci. Rev.
– ident: bb0200
  article-title: Infographic: ERAMET's lithium direct extraction process
– volume: 120
  start-page: 15875
  year: 2016
  end-page: 15883
  ident: bb0445
  article-title: Surface chemistry and lithium-ion exchange in LiMnO4 for the electrochemical selective extraction of LiCl from natural salt lake brines
  publication-title: J. Phys. Chem. C
– reference: Burba, J.L. Crystalline lithium aluminates. PATENT US 06/217,614. The Dow Chemical Company.
– volume: 12
  start-page: 157
  year: 1999
  end-page: 182
  ident: bb0405
  article-title: Incorporation of the Paleogene foreland into the Neogene Puna plateau: the Salar de Antofalla area, NW Argentina
  publication-title: J. S. Am. Earth Sci.
– year: 2018
  ident: bb0630
  article-title: Mineral commodity summaries
– reference: Harrison, S., C.V.K. Sharma, B.E. Viani, and D. Peykova. Lithium extraction composition and method of preparation thereof. PATENT US 12/972,728. Geothermal Energy Project.
– volume: 1
  start-page: 115
  year: 1963
  end-page: 120
  ident: bb0380
  article-title: Process for the extraction of lithium from Dead Sea solutions
  publication-title: Isr. J. Chem.
– volume: 507
  start-page: 26
  year: 2014
  end-page: 28
  ident: bb0635
  article-title: The rechargeable revolution: a better battery
  publication-title: Nature
– year: 1997
  ident: bb0275
  article-title: Handbook of Extractive Metallurgy
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1239
  ident: bb0320
  article-title: The evaluation of brine prospects and the requirement for modifications to filing standards
  publication-title: Econ. Geol.
– year: 2016
  ident: bb0470
  article-title: Lithium Brines: A Global Perspective
– volume: 164
  start-page: E586
  year: 2017
  end-page: E595
  ident: bb0495
  article-title: Influence of hydrodynamics on the lithium recovery efficiency in an electrochemical ion pumping separation process
  publication-title: J. Electrochem. Soc.
– start-page: 241
  year: 2000
  end-page: 248
  ident: bb0515
  article-title: Possible volcanic sources of lithium in brines in Clayton Valley, Nevada
  publication-title: Geology and Ore Deposits 2000: The Great Basin and Beyond: Geological Society of Nevada Symposium Proceedings
– volume: 41
  start-page: 1647
  year: 2012
  end-page: 1649
  ident: bb0150
  article-title: Selective uptake of lithium ion from brine by H1.33Mn 1.67O4 and H1.6Mn1.6O4
  publication-title: Chem. Lett.
– volume: 51
  start-page: 933
  year: 2001
  end-page: 938
  ident: bb0485
  article-title: Terrestrial ecoregions of the world: a new map of life on Earth
  publication-title: Bioscience
– year: 1995
  ident: bb0175
  article-title: Cerro Tuzgle geothermal prospect, Jujuy, Argentina
  publication-title: Proceedings of the World Geothermal Congress
– volume: 622-623
  start-page: 1448
  year: 2018
  end-page: 1462
  ident: bb0055
  article-title: Low-carbon electricity production through the implementation of photovoltaic panels in rooftops in urban environments: a case study for three cities in Peru
  publication-title: Sci. Total Environ.
– volume: 24
  start-page: 1
  year: 2005
  end-page: 19
  ident: bb0120
  article-title: Oligocene range uplift and development of plateau morphology in the southern central Andes
  publication-title: Tectonics
– start-page: 265
  year: 2006
  end-page: 286
  ident: bb0030
  article-title: Tectonics, climate, and landscape evolution of the southern Central Andes: the Argentine Puna Plateau and adjacent regions between 22 and 28°S lat
  publication-title: The Andes: Active Subduction Orogeny
– volume: 56
  start-page: 29
  year: 2014
  end-page: 34
  ident: bb0050
  article-title: Lithium extraction from β-spodumene through chlorination with chlorine gas
  publication-title: Miner. Eng.
– volume: 309
  start-page: 49
  year: 2017
  end-page: 62
  ident: bb0170
  article-title: Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves
  publication-title: Chem. Eng. J.
– volume: 71
  start-page: 49
  year: 1987
  end-page: 64
  ident: bb0375
  article-title: Cenozoic stratigraphy and basin tectonics of the Andes Mountains, 20–28 south latitude
  publication-title: AAPG Bull.
– volume: 8
  start-page: 1938
  year: 2015
  end-page: 1952
  ident: bb0505
  article-title: Hydrogen or batteries for grid storage? A net energy analysis
  publication-title: Energy Environ. Sci.
– volume: 43
  start-page: 8933
  year: 2014
  end-page: 8939
  ident: bb0155
  article-title: Lithium recovery from salt lake brine by H2TiO3
  publication-title: Dalton Trans.
– start-page: 528
  year: 2012
  end-page: 531
  ident: bb0660
  article-title: Lithium recovery techniques from solid and liquid mineral resources
  publication-title: Adv. Mater. Res.
– reference: Zbranek, V., S. Bertolli, and P. Vargas. Production of lithium and potassium compounds. PATENT US8431005B1. Western Lithium Corp.
– volume: 29
  start-page: 421
  year: 2011
  end-page: 431
  ident: bb0480
  article-title: Selective recovery process of lithium from seawater using integrated ion exchange methods
  publication-title: Solvent Extr. Ion Exch.
– ident: bb0330
  article-title: Pure energy minerals
– ident: bb0235
  article-title: Water uses
– volume: 48
  start-page: 1049
  year: 2017
  end-page: 1067
  ident: bb0125
  article-title: Rainfall variability and trends of the past six decades (1950–2014) in the subtropical NW Argentine Andes
  publication-title: Clim. Dyn.
– volume: 249
  start-page: 77
  year: 2013
  end-page: 94
  ident: bb0250
  article-title: Structural control on geothermal circulation in the Cerro Tuzgle–Tocomar geothermal volcanic area (Puna plateau, Argentina)
  publication-title: J. Volcanol. Geotherm. Res.
– volume: 165
  start-page: A6119
  year: 2018
  end-page: A6135
  ident: bb0045
  article-title: Review - non-carbonaceous materials as cathodes for lithium-sulfur batteries
  publication-title: J. Electrochem. Soc.
– ident: bb0335
  article-title: Brisbane firm wins $250m to mine lithium to power world's phones
– start-page: 273
  year: 1978
  end-page: 293
  ident: bb0210
  article-title: Saline lakes
  publication-title: Chemistry, Geology and Physics of Lakes
– volume: 18
  start-page: 311
  year: 2014
  end-page: 329
  ident: bb0225
  article-title: Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile
  publication-title: Extremophiles
– volume: 3
  start-page: 11493
  year: 2015
  end-page: 11502
  ident: bb0560
  article-title: A green recycling process designed for LiFePO4; cathode materials for Li-ion batteries
  publication-title: J. Mater. Chem. A
– volume: 461-462
  start-page: 785
  year: 2013
  end-page: 791
  ident: bb0520
  article-title: Sustainable governance of scarce metals: the case of lithium
  publication-title: Sci. Total Environ.
– year: 2016
  ident: bb0090
  article-title: Lithium
– reference: Lee, J.M. and W.C. Bauman. Recovery of lithium from brines. PATENT US 05/812,534. FMC Corporation.
– year: 1985
  ident: bb0600
  article-title: The Continental Crust: Its Composition and Evolution
– volume: 8
  year: 2013
  ident: bb0220
  article-title: The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic Lake Socompa, Argentinean Andes
  publication-title: PLoS One
– volume: 2
  start-page: 6374
  year: 2014
  end-page: 6377
  ident: bb0350
  article-title: Selective lithium extraction from brines by chemical reaction with battery materials
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 171
  year: 2013
  end-page: 183
  ident: bb0650
  article-title: Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern Tibetan Plateau, China
  publication-title: Ore Geol. Rev.
– volume: 38
  start-page: 92
  year: 2013
  end-page: 102
  ident: bb0255
  article-title: The role of climate in the accumulation of lithium-rich brine in the Central Andes
  publication-title: Appl. Geochem.
– volume: 12
  start-page: 3151
  year: 2000
  end-page: 3157
  ident: bb0140
  article-title: A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties
  publication-title: Chem. Mater.
– volume: 14
  start-page: 725
  year: 2001
  end-page: 734
  ident: bb0070
  article-title: Cenozoic evolution of the intramontane Santa María basin, Pampean Ranges, northwestern Argentina
  publication-title: J. S. Am. Earth Sci.
– volume: 12
  start-page: 53
  year: 2015
  end-page: 56
  ident: bb0355
  article-title: Side effects of green technologies: the potential environmental costs of lithium mining on high elevation Andean wetlands in the context of climate change
  publication-title: GLP News Newsletter of the Global Land Project
– year: 2012
  ident: bb0285
  article-title: CRC Handbook of Chemistry and Physics
– year: 2016
  ident: bb0545
  article-title: Roskill's Lithium: Global Industry, Markets & Outlook
– volume: 34
  start-page: 495
  year: 1982
  end-page: 503
  ident: bb0310
  article-title: Geothermal reinjection experience in Japan
  publication-title: JPT J. Pet. Technol.
– year: 2017
  ident: bb0060
  publication-title: Book of Abstracts 3rd International Workshop on Lithium, Industrial Minerals and Energy (IWLiME)
– year: 2017
  ident: bb0360
  article-title: USGS: 2015 Minerals Yearbook: lithium [advanced released]
– volume: 117
  start-page: 887
  year: 2005
  end-page: 901
  ident: bb0300
  article-title: Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina
  publication-title: Geol. Soc. Am. Bull.
– volume: 65
  start-page: 727
  year: 2003
  end-page: 731
  ident: bb0510
  article-title: Extreme solar total and UV irradiances due to cloud effect measured near the summer solstice at the high-altitude desertic plateau Puna of Atacama (Argentina)
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 96
  start-page: 11
  year: 2010
  end-page: 12
  ident: bb0215
  article-title: Lithium's future supply, demand
  publication-title: North. Miner.
– volume: 163
  start-page: A1898
  year: 2016
  end-page: A1902
  ident: bb0465
  article-title: A LiMn2O4-polypyrrole system for the extraction of LiCl from natural brine
  publication-title: J. Electrochem. Soc.
– volume: 43
  start-page: 8017
  year: 2016
  end-page: 8025
  ident: bb0185
  article-title: Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano
  publication-title: Geophys. Res. Lett.
– volume: 150
  start-page: 192
  year: 2014
  end-page: 208
  ident: bb0460
  article-title: Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review
  publication-title: Hydrometallurgy
– volume: 4
  start-page: 143
  year: 2017
  end-page: 149
  ident: bb0625
  article-title: Optimized lithium recovery from brines by using an electrochemical ion-pumping process based on λ-MnO2 and nickel hexacyanoferrate
  publication-title: ChemElectroChem
– volume: 20
  start-page: 210
  year: 2001
  end-page: 234
  ident: bb0190
  article-title: Style and history of Andean deformation, Puna plateau, northwestern Argentina
  publication-title: Tectonics
– volume: 89
  start-page: 119
  year: 2016
  end-page: 137
  ident: bb0165
  article-title: Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: from mineral and brine resources
  publication-title: Miner. Eng.
– volume: 403
  start-page: 853
  year: 2000
  end-page: 858
  ident: bb0475
  article-title: Biodiversity hotspots for conservation priorities
  publication-title: Nature
– volume: 68
  start-page: 685
  year: 2017
  end-page: 692
  ident: bb0490
  article-title: Can Li-Ion batteries be the panacea for automotive applications?
  publication-title: Renew. Sust. Energ. Rev.
– volume: 40
  start-page: 2054
  year: 2001
  end-page: 2058
  ident: bb0145
  article-title: Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4
  publication-title: Ind. Eng. Chem. Res.
– volume: 624
  start-page: 114
  year: 2018
  end-page: 132
  ident: bb0290
  article-title: Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile
  publication-title: Sci. Total Environ.
– volume: 49
  start-page: 9415
  year: 2015
  end-page: 9422
  ident: bb0395
  article-title: An electrochemical cell for selective lithium capture from seawater
  publication-title: Environ. Sci. Technol.
– volume: 65
  start-page: 986
  year: 2013
  end-page: 996
  ident: bb0595
  article-title: Lithium: sources, production, uses, and recovery outlook
  publication-title: JOM
– volume: 27
  start-page: 317
  year: 1991
  end-page: 325
  ident: bb0110
  article-title: The recovery of pure lithium chloride from “brines” containing higher contents of calcium chloride and magnesium chloride
  publication-title: Hydrometallurgy
– volume: 5
  start-page: 9487
  year: 2012
  end-page: 9491
  ident: bb0500
  article-title: Batteries for lithium recovery from brines
  publication-title: Energy Environ. Sci.
– volume: 6
  year: 2015
  ident: bb0020
  article-title: High-up: a remote reservoir of microbial extremophiles in central Andean wetlands
  publication-title: Front. Microbiol.
– start-page: 427
  year: 2012
  end-page: 444
  ident: bb0315
  article-title: Cenozoic evolution of hinterland basins in the Andes and Tibet
  publication-title: Tectonics of Sedimentary Basins: Recent Advances
– year: 2004
  ident: bb0245
  article-title: Handbook of Lithium and Natural Calcium Chloride
– year: 2011
  ident: 10.1016/j.scitotenv.2018.05.223_bb0370
  article-title: Experimental weathering of lithium bearing source rocks, Clayton Valley, Nevada, USA
– ident: 10.1016/j.scitotenv.2018.05.223_bb0360
– volume: 89
  start-page: 119
  year: 2016
  ident: 10.1016/j.scitotenv.2018.05.223_bb0165
  article-title: Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: from mineral and brine resources
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2016.01.010
– volume: 50
  start-page: 171
  year: 2013
  ident: 10.1016/j.scitotenv.2018.05.223_bb0650
  article-title: Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern Tibetan Plateau, China
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2012.11.001
– volume: 4
  start-page: 13989
  issue: 36
  year: 2016
  ident: 10.1016/j.scitotenv.2018.05.223_bb0195
  article-title: A novel electroactive [small lambda]-MnO2/PPy/PSS core-shell nanorod coated electrode for selective recovery of lithium ions at low concentration
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05985F
– volume: 104
  start-page: 4245
  issue: 10
  year: 2004
  ident: 10.1016/j.scitotenv.2018.05.223_bb0645
  article-title: What are batteries, fuel cells, and supercapacitors?
  publication-title: Chem. Rev.
  doi: 10.1021/cr020730k
– volume: 43
  start-page: 8933
  issue: 23
  year: 2014
  ident: 10.1016/j.scitotenv.2018.05.223_bb0155
  article-title: Lithium recovery from salt lake brine by H2TiO3
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT00467A
– volume: 51
  start-page: 933
  issue: 11
  year: 2001
  ident: 10.1016/j.scitotenv.2018.05.223_bb0485
  article-title: Terrestrial ecoregions of the world: a new map of life on Earth
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
– volume: 309
  start-page: 49
  year: 2017
  ident: 10.1016/j.scitotenv.2018.05.223_bb0170
  article-title: Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.09.133
– volume: 172
  start-page: 388
  year: 2017
  ident: 10.1016/j.scitotenv.2018.05.223_bb0590
  article-title: Recovery and recycling of lithium: a review
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.08.031
– volume: 215
  start-page: 640
  year: 2016
  ident: 10.1016/j.scitotenv.2018.05.223_bb0555
  article-title: Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.01.025
– volume: 317
  start-page: 184
  year: 2013
  ident: 10.1016/j.scitotenv.2018.05.223_bb0565
  article-title: Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)
  publication-title: Desalination
  doi: 10.1016/j.desal.2013.03.009
– volume: 163
  start-page: A1898
  issue: 9
  year: 2016
  ident: 10.1016/j.scitotenv.2018.05.223_bb0465
  article-title: A LiMn2O4-polypyrrole system for the extraction of LiCl from natural brine
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0591609jes
– volume: 20
  start-page: 9888
  issue: 32
  year: 2014
  ident: 10.1016/j.scitotenv.2018.05.223_bb0615
  article-title: Selectivity of a lithium-recovery process based on LiFePO4
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201403535
– volume: vol. 11
  start-page: 165
  year: 1989
  ident: 10.1016/j.scitotenv.2018.05.223_bb0345
  article-title: Origin of lithium in Salar de Atacama, northern Chile
– year: 2016
  ident: 10.1016/j.scitotenv.2018.05.223_bb0470
– volume: 20
  start-page: 210
  issue: 2
  year: 2001
  ident: 10.1016/j.scitotenv.2018.05.223_bb0190
  article-title: Style and history of Andean deformation, Puna plateau, northwestern Argentina
  publication-title: Tectonics
  doi: 10.1029/2000TC900031
– year: 2006
  ident: 10.1016/j.scitotenv.2018.05.223_bb0410
  article-title: Lithium resources
– start-page: 241
  year: 2000
  ident: 10.1016/j.scitotenv.2018.05.223_bb0515
  article-title: Possible volcanic sources of lithium in brines in Clayton Valley, Nevada
– volume: 123
  start-page: 95
  issue: 2
  year: 2014
  ident: 10.1016/j.scitotenv.2018.05.223_bb0065
  article-title: Evaporites and brines – geological, hydrological and chemical aspects of resource estimation
  publication-title: Trans. Inst. Min. Metall. Sect. B Appl. Earth Sci.
– volume: 49
  start-page: 9415
  issue: 16
  year: 2015
  ident: 10.1016/j.scitotenv.2018.05.223_bb0395
  article-title: An electrochemical cell for selective lithium capture from seawater
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b00032
– year: 1985
  ident: 10.1016/j.scitotenv.2018.05.223_bb0600
– volume: 14
  start-page: 725
  issue: 7
  year: 2001
  ident: 10.1016/j.scitotenv.2018.05.223_bb0070
  article-title: Cenozoic evolution of the intramontane Santa María basin, Pampean Ranges, northwestern Argentina
  publication-title: J. S. Am. Earth Sci.
  doi: 10.1016/S0895-9811(01)00058-X
– volume: 5
  start-page: 737
  issue: 4
  year: 2015
  ident: 10.1016/j.scitotenv.2018.05.223_bb0420
  article-title: Extraction of lithium from lepidolite using mixed grinding with sodium sulfide followed by water leaching
  publication-title: Fortschr. Mineral.
– volume: 71
  start-page: 49
  issue: 1
  year: 1987
  ident: 10.1016/j.scitotenv.2018.05.223_bb0375
  article-title: Cenozoic stratigraphy and basin tectonics of the Andes Mountains, 20–28 south latitude
  publication-title: AAPG Bull.
– volume: 2
  start-page: 6374
  issue: 18
  year: 2014
  ident: 10.1016/j.scitotenv.2018.05.223_bb0350
  article-title: Selective lithium extraction from brines by chemical reaction with battery materials
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01101E
– volume: 35
  start-page: 2513
  issue: 15
  year: 2000
  ident: 10.1016/j.scitotenv.2018.05.223_bb0440
  article-title: Lithium extraction from a multicomponent mixture using supported liquid membranes
  publication-title: Sep. Sci. Technol.
  doi: 10.1081/SS-100102353
– volume: 12
  start-page: 157
  issue: 2
  year: 1999
  ident: 10.1016/j.scitotenv.2018.05.223_bb0405
  article-title: Incorporation of the Paleogene foreland into the Neogene Puna plateau: the Salar de Antofalla area, NW Argentina
  publication-title: J. S. Am. Earth Sci.
  doi: 10.1016/S0895-9811(99)00012-7
– volume: 44
  start-page: 6875
  issue: 17
  year: 2010
  ident: 10.1016/j.scitotenv.2018.05.223_bb0180
  article-title: High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of Northern Argentina
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es1010384
– volume: 18
  start-page: 311
  issue: 2
  year: 2014
  ident: 10.1016/j.scitotenv.2018.05.223_bb0225
  article-title: Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile
  publication-title: Extremophiles
  doi: 10.1007/s00792-013-0617-6
– volume: 161
  start-page: 48
  year: 2016
  ident: 10.1016/j.scitotenv.2018.05.223_bb0095
  article-title: Least-cost options for integrating intermittent renewables in low-carbon power systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.09.090
– volume: 10
  start-page: 2325
  issue: 10
  year: 2000
  ident: 10.1016/j.scitotenv.2018.05.223_bb0135
  article-title: Synthesis of spinel-type lithium antimony manganese oxides and their Li+ extraction/ion insertion reactions
  publication-title: J. Mater. Chem.
  doi: 10.1039/b002465l
– ident: 10.1016/j.scitotenv.2018.05.223_bb0200
– start-page: 427
  year: 2012
  ident: 10.1016/j.scitotenv.2018.05.223_bb0315
  article-title: Cenozoic evolution of hinterland basins in the Andes and Tibet
– ident: 10.1016/j.scitotenv.2018.05.223_bb0090
– ident: 10.1016/j.scitotenv.2018.05.223_bb0115
– volume: 43
  start-page: 8017
  issue: 15
  year: 2016
  ident: 10.1016/j.scitotenv.2018.05.223_bb0185
  article-title: Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL070076
– volume: 8
  issue: 1
  year: 2013
  ident: 10.1016/j.scitotenv.2018.05.223_bb0220
  article-title: The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic Lake Socompa, Argentinean Andes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0053497
– start-page: 101
  year: 2014
  ident: 10.1016/j.scitotenv.2018.05.223_bb0010
– volume: 622-623
  start-page: 1448
  year: 2018
  ident: 10.1016/j.scitotenv.2018.05.223_bb0055
  article-title: Low-carbon electricity production through the implementation of photovoltaic panels in rooftops in urban environments: a case study for three cities in Peru
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.003
– ident: 10.1016/j.scitotenv.2018.05.223_bb0160
– volume: 493
  start-page: 910
  year: 2014
  ident: 10.1016/j.scitotenv.2018.05.223_bb0550
  article-title: Potential mining of lithium, beryllium and strontium from oilfield wastewater after enrichment in constructed wetlands and ponds
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.06.097
– volume: 41
  start-page: 1647
  issue: 12
  year: 2012
  ident: 10.1016/j.scitotenv.2018.05.223_bb0150
  article-title: Selective uptake of lithium ion from brine by H1.33Mn 1.67O4 and H1.6Mn1.6O4
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2012.1647
– volume: 8
  start-page: 517
  issue: 3
  year: 1989
  ident: 10.1016/j.scitotenv.2018.05.223_bb0585
  article-title: Late Cenozoic tectonism and landscape development in the foreland of the Andes: Northern Sierras Pampeanas (26°–28°S), Argentina
  publication-title: Tectonics
  doi: 10.1029/TC008i003p00517
– volume: 56
  start-page: 29
  year: 2014
  ident: 10.1016/j.scitotenv.2018.05.223_bb0050
  article-title: Lithium extraction from β-spodumene through chlorination with chlorine gas
  publication-title: Miner. Eng.
  doi: 10.1016/j.mineng.2013.10.026
– ident: 10.1016/j.scitotenv.2018.05.223_bb0630
– volume: 117–118
  start-page: 64
  year: 2012
  ident: 10.1016/j.scitotenv.2018.05.223_bb0040
  article-title: Recovery of lithium from Uyuni salar brine
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2012.02.008
– volume: 165
  start-page: A6119
  issue: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2018.05.223_bb0045
  article-title: Review - non-carbonaceous materials as cathodes for lithium-sulfur batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0181801jes
– volume: 96
  start-page: 11
  issue: 35
  year: 2010
  ident: 10.1016/j.scitotenv.2018.05.223_bb0215
  article-title: Lithium's future supply, demand
  publication-title: North. Miner.
– volume: 4
  start-page: 351
  issue: 4
  year: 1991
  ident: 10.1016/j.scitotenv.2018.05.223_bb0265
  article-title: Andean reactivation of the Cretaceous Salta rift, northwestern Argentina
  publication-title: J. S. Am. Earth Sci.
  doi: 10.1016/0895-9811(91)90007-8
– ident: 10.1016/j.scitotenv.2018.05.223_bb0075
– volume: 404
  start-page: 87
  year: 2017
  ident: 10.1016/j.scitotenv.2018.05.223_bb0385
  article-title: Assessment of desalination technologies for treatment of a highly saline brine from a potential CO2 storage site
  publication-title: Desalination
  doi: 10.1016/j.desal.2016.11.018
– year: 2012
  ident: 10.1016/j.scitotenv.2018.05.223_bb0400
– volume: 12
  issue: 10
  year: 2017
  ident: 10.1016/j.scitotenv.2018.05.223_bb0130
  article-title: A degradation-based sorting method for lithium-ion battery reuse
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0185922
– volume: 12
  start-page: 53
  year: 2015
  ident: 10.1016/j.scitotenv.2018.05.223_bb0355
  article-title: Side effects of green technologies: the potential environmental costs of lithium mining on high elevation Andean wetlands in the context of climate change
  publication-title: GLP News Newsletter of the Global Land Project
– volume: 108
  start-page: 1691
  issue: 7
  year: 2013
  ident: 10.1016/j.scitotenv.2018.05.223_bb0305
  article-title: Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the Western United States: implications for the origin of lithium-rich brines
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.108.7.1691
– volume: 8
  start-page: 1938
  issue: 7
  year: 2015
  ident: 10.1016/j.scitotenv.2018.05.223_bb0505
  article-title: Hydrogen or batteries for grid storage? A net energy analysis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE04041D
– volume: 12
  start-page: 3151
  issue: 10
  year: 2000
  ident: 10.1016/j.scitotenv.2018.05.223_bb0140
  article-title: A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties
  publication-title: Chem. Mater.
  doi: 10.1021/cm0000191
– volume: 15
  start-page: 7690
  issue: 20
  year: 2013
  ident: 10.1016/j.scitotenv.2018.05.223_bb0430
  article-title: Highly selective lithium recovery from brine using a λ-MnO 2-Ag battery
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp50919b
– volume: 3
  start-page: 11493
  issue: 21
  year: 2015
  ident: 10.1016/j.scitotenv.2018.05.223_bb0560
  article-title: A green recycling process designed for LiFePO4; cathode materials for Li-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02540K
– volume: 1
  start-page: 115
  issue: 2
  year: 1963
  ident: 10.1016/j.scitotenv.2018.05.223_bb0380
  article-title: Process for the extraction of lithium from Dead Sea solutions
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.196300021
– volume: 5
  start-page: 9487
  issue: 11
  year: 2012
  ident: 10.1016/j.scitotenv.2018.05.223_bb0500
  article-title: Batteries for lithium recovery from brines
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22977c
– volume: 8
  start-page: 2514
  issue: 15
  year: 2015
  ident: 10.1016/j.scitotenv.2018.05.223_bb0620
  article-title: Nickel hexacyanoferrate as suitable alternative to ag for electrochemical lithium recovery
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500368
– start-page: 528
  year: 2012
  ident: 10.1016/j.scitotenv.2018.05.223_bb0660
  article-title: Lithium recovery techniques from solid and liquid mineral resources
  publication-title: Adv. Mater. Res.
– volume: 11
  start-page: 19
  issue: 1
  year: 2012
  ident: 10.1016/j.scitotenv.2018.05.223_bb0100
  article-title: Li-O2 and Li-S batteries with high energy storage
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 27
  start-page: 317
  issue: 3
  year: 1991
  ident: 10.1016/j.scitotenv.2018.05.223_bb0110
  article-title: The recovery of pure lithium chloride from “brines” containing higher contents of calcium chloride and magnesium chloride
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(91)90056-R
– ident: 10.1016/j.scitotenv.2018.05.223_bb0425
– ident: 10.1016/j.scitotenv.2018.05.223_bb0280
– volume: 8
  issue: APR
  year: 2017
  ident: 10.1016/j.scitotenv.2018.05.223_bb0610
  article-title: Stratified bacterial diversity along physico-chemical gradients in high-altitude modern stromatolites
  publication-title: Front. Microbiol.
– start-page: 9
  year: 2013
  ident: 10.1016/j.scitotenv.2018.05.223_bb0085
  article-title: A preliminary deposit model for lithium brines
– year: 2012
  ident: 10.1016/j.scitotenv.2018.05.223_bb0285
– volume: 507
  start-page: 26
  year: 2014
  ident: 10.1016/j.scitotenv.2018.05.223_bb0635
  article-title: The rechargeable revolution: a better battery
  publication-title: Nature
  doi: 10.1038/507026a
– volume: 461-462
  start-page: 785
  year: 2013
  ident: 10.1016/j.scitotenv.2018.05.223_bb0520
  article-title: Sustainable governance of scarce metals: the case of lithium
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.05.042
– volume: 15
  start-page: 123
  issue: 1–2
  year: 2009
  ident: 10.1016/j.scitotenv.2018.05.223_bb0530
  article-title: Origin of salts and brine evolution of Bolivian and Chilean salars
  publication-title: Aquat. Geochem.
  doi: 10.1007/s10498-008-9056-x
– volume: 28
  start-page: 1357
  issue: 6
  year: 1993
  ident: 10.1016/j.scitotenv.2018.05.223_bb0105
  article-title: Selective extraction of lithium chloride from brines
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496399308018042
– volume: 34
  start-page: 495
  issue: 3
  year: 1982
  ident: 10.1016/j.scitotenv.2018.05.223_bb0310
  article-title: Geothermal reinjection experience in Japan
  publication-title: JPT J. Pet. Technol.
  doi: 10.2118/9925-PA
– volume: 376
  start-page: 35
  year: 2015
  ident: 10.1016/j.scitotenv.2018.05.223_bb0435
  article-title: Study on extraction of lithium from salt lake brine by membrane electrolysis
  publication-title: Desalination
  doi: 10.1016/j.desal.2015.08.013
– volume: 24
  start-page: 1
  issue: 4
  year: 2005
  ident: 10.1016/j.scitotenv.2018.05.223_bb0120
  article-title: Oligocene range uplift and development of plateau morphology in the southern central Andes
  publication-title: Tectonics
  doi: 10.1029/2004TC001762
– volume: 19
  start-page: 452
  issue: 3
  year: 2000
  ident: 10.1016/j.scitotenv.2018.05.223_bb0450
  article-title: Response of intracontinental deformation in the central Andes to late Cenozoic reorganization of South American Plate motions
  publication-title: Tectonics
  doi: 10.1029/1999TC001102
– year: 2017
  ident: 10.1016/j.scitotenv.2018.05.223_bb0060
– volume: 8
  start-page: 389
  issue: 2
  year: 2015
  ident: 10.1016/j.scitotenv.2018.05.223_bb0580
  article-title: Power-to-What?-environmental assessment of energy storage systems
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03051F
– ident: 10.1016/j.scitotenv.2018.05.223_bb0260
– year: 2004
  ident: 10.1016/j.scitotenv.2018.05.223_bb0245
– volume: 38
  start-page: 92
  year: 2013
  ident: 10.1016/j.scitotenv.2018.05.223_bb0255
  article-title: The role of climate in the accumulation of lithium-rich brine in the Central Andes
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2013.09.002
– volume: 19
  start-page: 401
  issue: 4
  year: 1991
  ident: 10.1016/j.scitotenv.2018.05.223_bb0025
  article-title: Giant evaporite belts of the Neogene central Andes
  publication-title: Geology
  doi: 10.1130/0091-7613(1991)019<0401:GEBOTN>2.3.CO;2
– volume: 40
  start-page: 2054
  issue: 9
  year: 2001
  ident: 10.1016/j.scitotenv.2018.05.223_bb0145
  article-title: Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie000911h
– start-page: 273
  year: 1978
  ident: 10.1016/j.scitotenv.2018.05.223_bb0210
  article-title: Saline lakes
– volume: 6
  issue: 1404
  year: 2015
  ident: 10.1016/j.scitotenv.2018.05.223_bb0020
  article-title: High-up: a remote reservoir of microbial extremophiles in central Andean wetlands
  publication-title: Front. Microbiol.
– year: 1995
  ident: 10.1016/j.scitotenv.2018.05.223_bb0175
  article-title: Cerro Tuzgle geothermal prospect, Jujuy, Argentina
– volume: 16
  start-page: 1735
  issue: 3
  year: 2012
  ident: 10.1016/j.scitotenv.2018.05.223_bb0270
  article-title: Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2011.11.023
– ident: 10.1016/j.scitotenv.2018.05.223_bb0655
– volume: 110
  start-page: 252
  year: 2013
  ident: 10.1016/j.scitotenv.2018.05.223_bb0640
  article-title: Lithium availability and future production outlooks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.04.005
– volume: 52
  start-page: 35
  issue: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2018.05.223_bb0575
  article-title: Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30′S
  publication-title: Mineral. Deposita
  doi: 10.1007/s00126-016-0656-x
– ident: 10.1016/j.scitotenv.2018.05.223_bb0235
– volume: 4
  start-page: 143
  issue: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2018.05.223_bb0625
  article-title: Optimized lithium recovery from brines by using an electrochemical ion-pumping process based on λ-MnO2 and nickel hexacyanoferrate
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600509
– ident: 10.1016/j.scitotenv.2018.05.223_bb0035
– volume: 150
  start-page: 192
  year: 2014
  ident: 10.1016/j.scitotenv.2018.05.223_bb0460
  article-title: Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2014.10.012
– volume: 53
  start-page: 6103
  issue: 14
  year: 2014
  ident: 10.1016/j.scitotenv.2018.05.223_bb0365
  article-title: Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM)
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie404334s
– volume: 120
  start-page: 15875
  issue: 29
  year: 2016
  ident: 10.1016/j.scitotenv.2018.05.223_bb0445
  article-title: Surface chemistry and lithium-ion exchange in LiMnO4 for the electrochemical selective extraction of LiCl from natural salt lake brines
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b11722
– ident: 10.1016/j.scitotenv.2018.05.223_bb0080
– volume: 106
  start-page: 1125
  issue: 7
  year: 2011
  ident: 10.1016/j.scitotenv.2018.05.223_bb0320
  article-title: The evaluation of brine prospects and the requirement for modifications to filing standards
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.106.7.1225
– volume: 19
  start-page: 117
  issue: 1
  year: 1987
  ident: 10.1016/j.scitotenv.2018.05.223_bb0005
  article-title: Synthetic inorganic ion-exchange materials. XLV. Recovery of lithium from seawater and hydrothermal water by titanium (iv) antimonate cation exchanger
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(87)90045-4
– volume: 48
  start-page: 55
  year: 2012
  ident: 10.1016/j.scitotenv.2018.05.223_bb0390
  article-title: Global lithium resources: relative importance of pegmatite, brine and other deposits
  publication-title: Ore Geol. Rev.
  doi: 10.1016/j.oregeorev.2012.05.006
– year: 1982
  ident: 10.1016/j.scitotenv.2018.05.223_bb0455
– volume: 7
  start-page: 4
  issue: 2
  year: 2013
  ident: 10.1016/j.scitotenv.2018.05.223_bb0525
  article-title: Battery management system: an overview of its application in the smart grid and electric vehicles
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2013.2250351
– volume: 63
  start-page: 249
  issue: 3–4
  year: 2003
  ident: 10.1016/j.scitotenv.2018.05.223_bb0535
  article-title: The origin of brines and salts in Chilean salars: a hydrochemical review
  publication-title: Earth Sci. Rev.
  doi: 10.1016/S0012-8252(03)00037-0
– volume: 3
  start-page: 593
  issue: 4
  year: 2017
  ident: 10.1016/j.scitotenv.2018.05.223_bb0570
  article-title: Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook
  publication-title: Environ. Sci. Water Res. Technol.
  doi: 10.1039/C7EW00020K
– year: 1997
  ident: 10.1016/j.scitotenv.2018.05.223_bb0275
– volume: 3
  start-page: 23
  issue: 1
  year: 1978
  ident: 10.1016/j.scitotenv.2018.05.223_bb0240
  article-title: Lithium chloride extraction by n-butanol
  publication-title: Hydrometallurgy
  doi: 10.1016/0304-386X(78)90004-X
– volume: 65
  start-page: 986
  issue: 8
  year: 2013
  ident: 10.1016/j.scitotenv.2018.05.223_bb0595
  article-title: Lithium: sources, production, uses, and recovery outlook
  publication-title: JOM
  doi: 10.1007/s11837-013-0666-4
– start-page: 265
  year: 2006
  ident: 10.1016/j.scitotenv.2018.05.223_bb0030
  article-title: Tectonics, climate, and landscape evolution of the southern Central Andes: the Argentine Puna Plateau and adjacent regions between 22 and 28°S lat
– year: 1990
  ident: 10.1016/j.scitotenv.2018.05.223_bb0205
  article-title: Geology and resources of salars in the central Andes
– volume: 48
  start-page: 1049
  issue: 3–4
  year: 2017
  ident: 10.1016/j.scitotenv.2018.05.223_bb0125
  article-title: Rainfall variability and trends of the past six decades (1950–2014) in the subtropical NW Argentine Andes
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-016-3127-2
– volume: 153
  start-page: 154
  year: 2015
  ident: 10.1016/j.scitotenv.2018.05.223_bb0295
  article-title: Extraction of lithium from lepidolite via iron sulphide roasting and water leaching
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2015.03.002
– volume: 403
  start-page: 853
  issue: 6772
  year: 2000
  ident: 10.1016/j.scitotenv.2018.05.223_bb0475
  article-title: Biodiversity hotspots for conservation priorities
  publication-title: Nature
  doi: 10.1038/35002501
– year: 2016
  ident: 10.1016/j.scitotenv.2018.05.223_bb0545
– volume: 624
  start-page: 114
  year: 2018
  ident: 10.1016/j.scitotenv.2018.05.223_bb0290
  article-title: Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.134
– volume: vol. 412
  year: 1961
  ident: 10.1016/j.scitotenv.2018.05.223_bb0415
  article-title: Salinity and hydrology of closed lakes
– volume: 68
  start-page: 685
  year: 2017
  ident: 10.1016/j.scitotenv.2018.05.223_bb0490
  article-title: Can Li-Ion batteries be the panacea for automotive applications?
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2016.10.019
– volume: 20
  start-page: 237
  issue: 2
  year: 1973
  ident: 10.1016/j.scitotenv.2018.05.223_bb0540
  article-title: Separation of lithium from dead sea brines by gel permeation chromatography
  publication-title: Talanta
  doi: 10.1016/0039-9140(73)80275-9
– volume: 117
  start-page: 887
  issue: 7
  year: 2005
  ident: 10.1016/j.scitotenv.2018.05.223_bb0300
  article-title: Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina
  publication-title: Geol. Soc. Am. Bull.
  doi: 10.1130/B25602.1
– volume: 29
  start-page: 421
  issue: 3
  year: 2011
  ident: 10.1016/j.scitotenv.2018.05.223_bb0480
  article-title: Selective recovery process of lithium from seawater using integrated ion exchange methods
  publication-title: Solvent Extr. Ion Exch.
  doi: 10.1080/07366299.2011.573435
– volume: 7
  issue: AUG
  year: 2016
  ident: 10.1016/j.scitotenv.2018.05.223_bb0230
  article-title: Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile
  publication-title: Front. Microbiol.
– volume: 164
  start-page: E586
  issue: 14
  year: 2017
  ident: 10.1016/j.scitotenv.2018.05.223_bb0495
  article-title: Influence of hydrodynamics on the lithium recovery efficiency in an electrochemical ion pumping separation process
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.1531714jes
– volume: 249
  start-page: 77
  year: 2013
  ident: 10.1016/j.scitotenv.2018.05.223_bb0250
  article-title: Structural control on geothermal circulation in the Cerro Tuzgle–Tocomar geothermal volcanic area (Puna plateau, Argentina)
  publication-title: J. Volcanol. Geotherm. Res.
  doi: 10.1016/j.jvolgeores.2012.09.009
– volume: 65
  start-page: 727
  issue: 6
  year: 2003
  ident: 10.1016/j.scitotenv.2018.05.223_bb0510
  article-title: Extreme solar total and UV irradiances due to cloud effect measured near the summer solstice at the high-altitude desertic plateau Puna of Atacama (Argentina)
  publication-title: J. Atmos. Sol. Terr. Phys.
  doi: 10.1016/S1364-6826(03)00084-1
SSID ssj0000781
Score 2.6957889
SecondaryResourceType review_article
Snippet The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1188
SubjectTerms Aquifer
Batteries
Brine deposits
chemical composition
climate
energy
environmental impact
Lithium
lithium batteries
Magnesium
mining
raw materials
sulfur
sustainable communities
Sustainable mining
technology
vehicles (equipment)
wastes
water utilization
weather
Title Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing
URI https://dx.doi.org/10.1016/j.scitotenv.2018.05.223
https://www.ncbi.nlm.nih.gov/pubmed/29929287
https://www.proquest.com/docview/2058505402
https://www.proquest.com/docview/2084067117
Volume 639
WOSCitedRecordID wos000436806200117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000781
  issn: 0048-9697
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELa6DiQkhGAwKC-TkfhWdUqcFzv7VlVFgKYJiTH1W-Q47kjVJdWalu4f8Pf4R5xzTtoyxkCIL1EVxekl9-R8Z99zR8gbJ5Ip2N6wx8MEAhQW8Z4MZWAqYXLFUpnqqm7B2TE_ORGjUfSx1fpec2GWU57nYrWKZv9V1XAOlG2os3-h7uamcAJ-g9LhCGqH4x8p_jgrv2SLi64JdUH4K2SQJIblN0ce-jKryvnLr11wVyuRqmTDc5OC0zVlqE3pCMt6686K0iQUwTUbnDhTqQPplVlebT1cVH0mbNWBinpQT4mTNRxrO2LTEsqi3L7rBpZWiKSzzOwpZOtFAzmfwXNkSM4ZwLxedO1KeNFkEskpUr4HU7kA9IMJxGyArRUOtyo3ixxPXHa7Rr1BU-6DpQ4xufdQo_UWPILBSMGvzXuIxZKsgYZ4SmxM9i7D5sfXJhJc05gcgh9Smve8NFmAwhR5ZciP_qlK9ycjjxEHTKRpcxjukF3Gg0i0yW7__XD0Ye0ecIFtHK38W0mHv_y7m1ymm0KiyjU6fUge2JiG9hGLj0hL53vkLnY5vdoj-8NN4FCLgvkeuY9rxhSpcI_JNwtdWkOXGuhShO4R7dMKuBSAS2vgUgAurYBLa-BSA1wqaQNcugVcisClWU4BuBSBSwFAdA3cJ-Tz2-Hp4F3PdgrpKT_wSrAsTgKhgseFDnx3nAiVBkwJX8H7dVKXjSEucBPlj10N_qgKhdYy0Z6fSuEn0lHePmnnRa6fEaohBmBhpMauUr5MUtMxxPeUp9lYcuXIDglrZcTKltE33VymcZ0vOYkbLcZGi7ETxKDFDnGagTOsJHP7kKNa27F1iNHRjQGmtw9-XeMjhinD7APKXBeLOVwUiMCEaux31whw9bnr8g55iuBqpAYPlkVM8Of_It4Lcm_9rb8k7fJyoV-RO2pZZvPLA7LDR-LAfjo_AL2JCA0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+recovery+from+brines%3A+A+vital+raw+material+for+green+energies+with+a+potential+environmental+impact+in+its+mining+and+processing&rft.jtitle=The+Science+of+the+total+environment&rft.au=Flexer%2C+Victoria&rft.au=Baspineiro%2C+Celso+Fernando&rft.au=Galli%2C+Claudia+In%C3%A9s&rft.date=2018-10-15&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=639&rft.spage=1188&rft.epage=1204&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.05.223&rft.externalDocID=S0048969718318746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon