Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing
The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but intermittent energy sources, and in smart grids in general. Lithium is a vital raw material for the build-up of both currently available lith...
Uložené v:
| Vydané v: | The Science of the total environment Ročník 639; s. 1188 - 1204 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
15.10.2018
|
| Predmet: | |
| ISSN: | 0048-9697, 1879-1026, 1879-1026 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but intermittent energy sources, and in smart grids in general. Lithium is a vital raw material for the build-up of both currently available lithium-ion batteries, and prospective next generation batteries such as lithium-air and lithium sulphur. The continued availability of lithium can only rely on a strong increase of mining and ore processing. It would be an inconsistency if the increased production of lithium for a more sustainable society would be associated with non-sustainable mining practices. Currently 2/3 of the world production of lithium is extracted from brines, a practice that evaporates on average half a million litres of brine per ton of lithium carbonate. Furthermore, the extraction is chemical intensive, extremely slow, and delivers large volumes of waste. This technology is heavily dependent on the geological structure of the deposits, brine chemical composition and both climate and weather conditions. Therefore, it is difficult to adapt from one successful exploitation to new deposits. A few years of simulations and piloting are needed before large scale production is achieved. Consequently, this technology is struggling with the current surge in demand. At time of writing, only 5 industrial scale facilities are in operation worldwide, highlighting the shortcomings in this technology.
Both mining companies and academics are intensively searching for new technologies for lithium recovery from brines. However, focus on the chemistry of brine processing has left unattended the analysis of the sustainability of the overall process. Here we review both the current available technology and new proposed methodologies. We make a special focus on an overall sustainability analysis, with particular emphasis to the geological characteristics of deposits and water usage in relation to mining processes.
[Display omitted]
•A strong increase in lithium mining is expected because of the battery industry.•Energy storage is vital for electric mobility and intermittent energy sources.•The largest lithium deposits are found in continental brines in desertic areas.•Current mining practices are water intensive and produce large volumes of waste.•Future technologies should analyse chemistry and geology of the individual deposits. |
|---|---|
| AbstractList | The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but intermittent energy sources, and in smart grids in general. Lithium is a vital raw material for the build-up of both currently available lithium-ion batteries, and prospective next generation batteries such as lithium-air and lithium sulphur. The continued availability of lithium can only rely on a strong increase of mining and ore processing. It would be an inconsistency if the increased production of lithium for a more sustainable society would be associated with non-sustainable mining practices. Currently 2/3 of the world production of lithium is extracted from brines, a practice that evaporates on average half a million litres of brine per ton of lithium carbonate. Furthermore, the extraction is chemical intensive, extremely slow, and delivers large volumes of waste. This technology is heavily dependent on the geological structure of the deposits, brine chemical composition and both climate and weather conditions. Therefore, it is difficult to adapt from one successful exploitation to new deposits. A few years of simulations and piloting are needed before large scale production is achieved. Consequently, this technology is struggling with the current surge in demand. At time of writing, only 5 industrial scale facilities are in operation worldwide, highlighting the shortcomings in this technology. Both mining companies and academics are intensively searching for new technologies for lithium recovery from brines. However, focus on the chemistry of brine processing has left unattended the analysis of the sustainability of the overall process. Here we review both the current available technology and new proposed methodologies. We make a special focus on an overall sustainability analysis, with particular emphasis to the geological characteristics of deposits and water usage in relation to mining processes. The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but intermittent energy sources, and in smart grids in general. Lithium is a vital raw material for the build-up of both currently available lithium-ion batteries, and prospective next generation batteries such as lithium-air and lithium sulphur. The continued availability of lithium can only rely on a strong increase of mining and ore processing. It would be an inconsistency if the increased production of lithium for a more sustainable society would be associated with non-sustainable mining practices. Currently 2/3 of the world production of lithium is extracted from brines, a practice that evaporates on average half a million litres of brine per ton of lithium carbonate. Furthermore, the extraction is chemical intensive, extremely slow, and delivers large volumes of waste. This technology is heavily dependent on the geological structure of the deposits, brine chemical composition and both climate and weather conditions. Therefore, it is difficult to adapt from one successful exploitation to new deposits. A few years of simulations and piloting are needed before large scale production is achieved. Consequently, this technology is struggling with the current surge in demand. At time of writing, only 5 industrial scale facilities are in operation worldwide, highlighting the shortcomings in this technology. Both mining companies and academics are intensively searching for new technologies for lithium recovery from brines. However, focus on the chemistry of brine processing has left unattended the analysis of the sustainability of the overall process. Here we review both the current available technology and new proposed methodologies. We make a special focus on an overall sustainability analysis, with particular emphasis to the geological characteristics of deposits and water usage in relation to mining processes.The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but intermittent energy sources, and in smart grids in general. Lithium is a vital raw material for the build-up of both currently available lithium-ion batteries, and prospective next generation batteries such as lithium-air and lithium sulphur. The continued availability of lithium can only rely on a strong increase of mining and ore processing. It would be an inconsistency if the increased production of lithium for a more sustainable society would be associated with non-sustainable mining practices. Currently 2/3 of the world production of lithium is extracted from brines, a practice that evaporates on average half a million litres of brine per ton of lithium carbonate. Furthermore, the extraction is chemical intensive, extremely slow, and delivers large volumes of waste. This technology is heavily dependent on the geological structure of the deposits, brine chemical composition and both climate and weather conditions. Therefore, it is difficult to adapt from one successful exploitation to new deposits. A few years of simulations and piloting are needed before large scale production is achieved. Consequently, this technology is struggling with the current surge in demand. At time of writing, only 5 industrial scale facilities are in operation worldwide, highlighting the shortcomings in this technology. Both mining companies and academics are intensively searching for new technologies for lithium recovery from brines. However, focus on the chemistry of brine processing has left unattended the analysis of the sustainability of the overall process. Here we review both the current available technology and new proposed methodologies. We make a special focus on an overall sustainability analysis, with particular emphasis to the geological characteristics of deposits and water usage in relation to mining processes. The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but intermittent energy sources, and in smart grids in general. Lithium is a vital raw material for the build-up of both currently available lithium-ion batteries, and prospective next generation batteries such as lithium-air and lithium sulphur. The continued availability of lithium can only rely on a strong increase of mining and ore processing. It would be an inconsistency if the increased production of lithium for a more sustainable society would be associated with non-sustainable mining practices. Currently 2/3 of the world production of lithium is extracted from brines, a practice that evaporates on average half a million litres of brine per ton of lithium carbonate. Furthermore, the extraction is chemical intensive, extremely slow, and delivers large volumes of waste. This technology is heavily dependent on the geological structure of the deposits, brine chemical composition and both climate and weather conditions. Therefore, it is difficult to adapt from one successful exploitation to new deposits. A few years of simulations and piloting are needed before large scale production is achieved. Consequently, this technology is struggling with the current surge in demand. At time of writing, only 5 industrial scale facilities are in operation worldwide, highlighting the shortcomings in this technology. Both mining companies and academics are intensively searching for new technologies for lithium recovery from brines. However, focus on the chemistry of brine processing has left unattended the analysis of the sustainability of the overall process. Here we review both the current available technology and new proposed methodologies. We make a special focus on an overall sustainability analysis, with particular emphasis to the geological characteristics of deposits and water usage in relation to mining processes. [Display omitted] •A strong increase in lithium mining is expected because of the battery industry.•Energy storage is vital for electric mobility and intermittent energy sources.•The largest lithium deposits are found in continental brines in desertic areas.•Current mining practices are water intensive and produce large volumes of waste.•Future technologies should analyse chemistry and geology of the individual deposits. |
| Author | Flexer, Victoria Galli, Claudia Inés Baspineiro, Celso Fernando |
| Author_xml | – sequence: 1 givenname: Victoria orcidid: 0000-0002-4385-8846 surname: Flexer fullname: Flexer, Victoria email: vflexer@unju.edu.ar organization: Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Manuel Savio, Palpalá, Jujuy, Argentina – sequence: 2 givenname: Celso Fernando surname: Baspineiro fullname: Baspineiro, Celso Fernando organization: Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Manuel Savio, Palpalá, Jujuy, Argentina – sequence: 3 givenname: Claudia Inés surname: Galli fullname: Galli, Claudia Inés organization: Instituto de Ecoregiones Andinas - INECOA-CONICET, Av. Bolivia 1661, S.S. de Jujuy, Argentina |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29929287$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u3CAUhVGVqpkkfYWWZTd2ABsbV-piFPUn0kjZNGuE8fX0jmyYAjNR3qCPXaxJuugmYYOO9J37dy7ImfMOCPnIWckZb653ZbSYfAJ3LAXjqmSyFKJ6Q1ZctV3BmWjOyIqxWhVd07Xn5CLGHcuvVfwdORddJzqh2hX5s8H0Cw8zDWD9EcIjHYOfaR_QQfxM1_SIyUw0mAc6mwQBsxh9oNsA4Cg4CFuESB9yFWrofpkoLUweDIN3c5ZZ4bw3NlF0FFOkMzp0W2rcQPfBW4gxyyvydjRThPdP_yW5__b1582PYnP3_fZmvSlsLatU8Jb1neRVq0DWfOyVHaSwqrZ5SzZwMUrJeW_rkUPTcNsoANNDVQ9G1b1htrokn051c-vfB4hJzxgtTJNx4A9RC6Zq1rSct69ApZJM1kxk9MMTeuhnGPQ-4GzCo34-dAa-nAAbfIwBRp3zMwm9S8HgpDnTS7B6p_8Fq5dgNZM6B5v97X_-5xYvO9cnJ-SrHhHCwoGzMGDOPOnB44s1_gIRiMVi |
| CitedBy_id | crossref_primary_10_1515_zpch_2019_1550 crossref_primary_10_1186_s40659_022_00382_6 crossref_primary_10_1038_s41598_020_71596_5 crossref_primary_10_1007_s40831_021_00488_3 crossref_primary_10_1016_j_jwpe_2025_108356 crossref_primary_10_1002_celc_202400160 crossref_primary_10_1016_j_cjche_2024_01_013 crossref_primary_10_1016_j_hydromet_2019_105166 crossref_primary_10_1016_j_seppur_2022_120789 crossref_primary_10_1021_acs_iecr_5c00735 crossref_primary_10_1016_j_cherd_2025_06_011 crossref_primary_10_1016_j_jclepro_2020_124528 crossref_primary_10_52363_2522_1892_2025_1_3 crossref_primary_10_1016_j_jhazmat_2025_137420 crossref_primary_10_1038_s44286_025_00250_6 crossref_primary_10_1016_j_seppur_2025_134428 crossref_primary_10_1016_j_exis_2024_101509 crossref_primary_10_1016_j_actaastro_2021_05_021 crossref_primary_10_1016_j_jallcom_2021_159402 crossref_primary_10_1016_j_jes_2021_02_001 crossref_primary_10_1038_s41598_024_68072_9 crossref_primary_10_1016_j_cherd_2025_06_020 crossref_primary_10_1039_D4SC03760J crossref_primary_10_1016_j_desal_2025_118960 crossref_primary_10_1016_j_exis_2021_100927 crossref_primary_10_1002_aenm_202100771 crossref_primary_10_1016_j_exis_2021_100928 crossref_primary_10_1016_j_cej_2021_134391 crossref_primary_10_1016_j_coelec_2021_100778 crossref_primary_10_3390_membranes11030175 crossref_primary_10_1016_j_ces_2023_119400 crossref_primary_10_1016_j_gexplo_2023_107383 crossref_primary_10_1149_1945_7111_ae00f9 crossref_primary_10_1016_j_colsurfa_2025_137354 crossref_primary_10_1016_j_erss_2024_103862 crossref_primary_10_1016_j_dwt_2025_101128 crossref_primary_10_1016_j_fluid_2019_04_015 crossref_primary_10_1016_j_cej_2020_125386 crossref_primary_10_3390_asi6040061 crossref_primary_10_1016_j_exis_2021_100932 crossref_primary_10_1016_j_mineng_2019_105868 crossref_primary_10_1080_21622515_2021_1995786 crossref_primary_10_1016_j_hydromet_2019_105193 crossref_primary_10_3390_su17010160 crossref_primary_10_1016_j_cscee_2024_100761 crossref_primary_10_1007_s13204_021_01832_5 crossref_primary_10_1016_j_desal_2022_115611 crossref_primary_10_1016_j_rser_2024_114642 crossref_primary_10_1002_cssc_201802431 crossref_primary_10_1016_j_geoen_2024_213189 crossref_primary_10_1016_j_exis_2024_101567 crossref_primary_10_1016_j_exis_2023_101326 crossref_primary_10_1016_j_cej_2025_159990 crossref_primary_10_15446_cuad_econ_v43n92_103077 crossref_primary_10_1016_j_seppur_2023_126162 crossref_primary_10_3389_fmicb_2021_688929 crossref_primary_10_1016_j_jece_2022_107622 crossref_primary_10_1016_j_resconrec_2021_105514 crossref_primary_10_1016_j_erss_2023_103043 crossref_primary_10_1016_j_cej_2025_159637 crossref_primary_10_1002_hyp_15031 crossref_primary_10_5004_dwt_2022_28432 crossref_primary_10_1016_j_desal_2024_118016 crossref_primary_10_1016_j_desal_2021_115269 crossref_primary_10_1002_pol_20200500 crossref_primary_10_1007_s40831_022_00602_z crossref_primary_10_1016_j_jece_2025_117398 crossref_primary_10_3390_en18164323 crossref_primary_10_1016_j_jenvman_2024_120758 crossref_primary_10_1016_j_cep_2024_110079 crossref_primary_10_1016_j_cej_2025_168234 crossref_primary_10_1016_j_seppur_2021_119177 crossref_primary_10_4000_poldev_5284 crossref_primary_10_1080_03067319_2023_2198643 crossref_primary_10_1002_fee_2624 crossref_primary_10_1007_s11242_024_02071_2 crossref_primary_10_1016_j_desal_2022_115887 crossref_primary_10_1016_j_jct_2022_106814 crossref_primary_10_1007_s43979_025_00131_0 crossref_primary_10_3390_en18123146 crossref_primary_10_1016_j_jssc_2019_121157 crossref_primary_10_1080_07366299_2025_2452890 crossref_primary_10_1016_j_seppur_2021_120055 crossref_primary_10_1016_j_enconman_2025_119873 crossref_primary_10_1038_s43017_022_00387_5 crossref_primary_10_1016_j_cej_2021_130713 crossref_primary_10_1016_j_ccr_2023_215054 crossref_primary_10_1016_j_jclepro_2020_121152 crossref_primary_10_1002_adfm_202400416 crossref_primary_10_1016_j_mineng_2024_108586 crossref_primary_10_1038_s43017_021_00211_6 crossref_primary_10_1080_07366299_2024_2441930 crossref_primary_10_1016_j_jechem_2020_11_012 crossref_primary_10_1016_j_rineng_2025_107352 crossref_primary_10_1016_j_seppur_2019_01_027 crossref_primary_10_1016_j_desal_2022_115652 crossref_primary_10_1016_j_memsci_2020_117832 crossref_primary_10_3390_membranes12040373 crossref_primary_10_1016_j_geoforum_2021_01_001 crossref_primary_10_1002_smll_202406607 crossref_primary_10_1002_advs_202404887 crossref_primary_10_1016_j_exis_2024_101485 crossref_primary_10_1016_j_hydromet_2023_106025 crossref_primary_10_1016_j_inoche_2025_115169 crossref_primary_10_1016_j_jclepro_2024_142108 crossref_primary_10_1002_cnma_202200324 crossref_primary_10_1016_j_cej_2020_127715 crossref_primary_10_1007_s40831_024_00933_z crossref_primary_10_1016_j_memsci_2019_117683 crossref_primary_10_1007_s13563_025_00517_7 crossref_primary_10_1016_j_renene_2023_05_090 crossref_primary_10_1016_j_memsci_2020_118416 crossref_primary_10_1016_j_resourpol_2022_103288 crossref_primary_10_1016_j_jclepro_2024_144635 crossref_primary_10_3390_met10070893 crossref_primary_10_1007_s11027_020_09911_8 crossref_primary_10_31643_2026_6445_21 crossref_primary_10_1126_sciadv_adx3242 crossref_primary_10_1016_j_jclepro_2020_124244 crossref_primary_10_1016_j_jwpe_2025_108181 crossref_primary_10_1016_j_resourpol_2023_103572 crossref_primary_10_1016_j_desal_2023_116944 crossref_primary_10_3390_jmse10101394 crossref_primary_10_4028_www_scientific_net_MSF_964_228 crossref_primary_10_1007_s10008_022_05219_6 crossref_primary_10_1039_D4RA03986F crossref_primary_10_1016_j_resconrec_2024_107554 crossref_primary_10_1016_j_seppur_2020_118042 crossref_primary_10_1016_j_exis_2024_101463 crossref_primary_10_1126_science_adm7034 crossref_primary_10_1016_j_jwpe_2024_105743 crossref_primary_10_1016_j_heliyon_2025_e42523 crossref_primary_10_1016_j_exis_2025_101625 crossref_primary_10_1016_j_cej_2024_154640 crossref_primary_10_1016_j_chemosphere_2023_137902 crossref_primary_10_3390_en14206805 crossref_primary_10_3390_met13071213 crossref_primary_10_1002_cjce_25537 crossref_primary_10_1016_j_cej_2022_134955 crossref_primary_10_1016_j_watres_2025_123451 crossref_primary_10_1016_j_hydromet_2019_105222 crossref_primary_10_1016_j_seppur_2020_118154 crossref_primary_10_1016_j_coche_2024_101081 crossref_primary_10_1016_j_seppur_2025_134005 crossref_primary_10_1007_s10668_023_03279_w crossref_primary_10_1016_j_memsci_2022_121251 crossref_primary_10_1007_s10311_025_01871_2 crossref_primary_10_1016_j_seppur_2022_120715 crossref_primary_10_1016_j_susmat_2024_e00923 crossref_primary_10_1016_j_cej_2023_144532 crossref_primary_10_1016_j_hydromet_2023_106102 crossref_primary_10_1002_wat2_1748 crossref_primary_10_1016_j_scitotenv_2023_168639 crossref_primary_10_1002_adma_201905440 crossref_primary_10_1016_j_jece_2025_119162 crossref_primary_10_1016_j_biortech_2020_123078 crossref_primary_10_3389_frwa_2023_1075139 crossref_primary_10_1002_celc_201901728 crossref_primary_10_1016_j_cej_2025_162886 crossref_primary_10_1016_j_jag_2019_04_016 crossref_primary_10_5382_econgeo_5154 crossref_primary_10_1080_08827508_2025_2507873 crossref_primary_10_1007_s10853_020_05019_1 crossref_primary_10_1021_acs_iecr_4c03046 crossref_primary_10_3390_membranes10120371 crossref_primary_10_1016_j_seppur_2024_126675 crossref_primary_10_1002_cjce_25604 crossref_primary_10_1002_aoc_6631 crossref_primary_10_1016_j_molliq_2025_127193 crossref_primary_10_1016_j_jallcom_2020_156234 crossref_primary_10_1016_j_erss_2025_104029 crossref_primary_10_1016_j_chemosphere_2019_03_138 crossref_primary_10_1016_j_seppur_2025_134214 crossref_primary_10_1016_j_chemer_2024_126132 crossref_primary_10_3390_w14060880 crossref_primary_10_1073_pnas_2410033121 crossref_primary_10_1016_j_cej_2025_159219 crossref_primary_10_1051_e3sconf_202128008016 crossref_primary_10_1016_j_hydromet_2023_106131 crossref_primary_10_3390_toxics13070567 crossref_primary_10_1016_j_partic_2024_05_012 crossref_primary_10_1007_s00767_022_00522_5 crossref_primary_10_1016_j_desal_2023_116891 crossref_primary_10_1016_j_desal_2025_119166 crossref_primary_10_1016_j_exis_2024_101498 crossref_primary_10_1016_j_matt_2021_02_005 crossref_primary_10_1016_j_nxmate_2024_100231 crossref_primary_10_1007_s40831_025_01220_1 crossref_primary_10_3390_rs14061383 crossref_primary_10_1007_s44169_023_00054_w crossref_primary_10_3390_min9090528 crossref_primary_10_1016_j_cej_2023_145957 crossref_primary_10_1557_s43581_023_00066_y crossref_primary_10_1016_j_cej_2025_159220 crossref_primary_10_1007_s13369_020_05006_3 crossref_primary_10_1016_j_rser_2025_116180 crossref_primary_10_1016_j_procir_2022_02_112 crossref_primary_10_1016_j_electacta_2023_143519 crossref_primary_10_1016_j_desal_2023_116525 crossref_primary_10_1016_j_resourpol_2019_101510 crossref_primary_10_1016_j_erss_2020_101902 crossref_primary_10_1016_j_cej_2025_165433 crossref_primary_10_1016_j_desal_2025_119156 crossref_primary_10_1002_adsu_202300460 crossref_primary_10_3390_resources13110148 crossref_primary_10_1016_j_snb_2021_130799 crossref_primary_10_1016_j_cej_2022_140416 crossref_primary_10_1016_j_memsci_2023_122133 crossref_primary_10_1016_j_desal_2021_114935 crossref_primary_10_1016_j_susmat_2025_e01420 crossref_primary_10_1111_1755_6724_14675 crossref_primary_10_3389_fceng_2022_741281 crossref_primary_10_1016_j_jenvrad_2019_106070 crossref_primary_10_1016_j_memsci_2019_117724 crossref_primary_10_1016_j_jclepro_2020_120719 crossref_primary_10_1016_j_matt_2024_07_014 crossref_primary_10_1016_j_cej_2023_144287 crossref_primary_10_1016_j_desal_2025_119026 crossref_primary_10_1016_j_chemosphere_2020_127500 crossref_primary_10_1088_1361_6528_acb15c crossref_primary_10_57634_RCR5074 crossref_primary_10_3390_su13031273 crossref_primary_10_1016_j_cej_2021_131423 crossref_primary_10_1016_j_marpetgeo_2024_107261 crossref_primary_10_1016_j_desal_2019_114192 crossref_primary_10_4000_cal_14501 crossref_primary_10_1016_j_seppur_2021_118995 crossref_primary_10_1007_s40831_025_01114_2 crossref_primary_10_1016_j_nxener_2024_100160 crossref_primary_10_1016_j_coelec_2019_04_010 crossref_primary_10_3390_nano13050895 crossref_primary_10_1038_s43247_025_02130_6 crossref_primary_10_1016_j_cej_2024_155349 crossref_primary_10_1002_joom_70010 crossref_primary_10_1002_cssc_202401600 crossref_primary_10_1016_j_apmt_2020_100638 crossref_primary_10_1016_j_cherd_2025_02_003 crossref_primary_10_1016_j_scitotenv_2020_137523 crossref_primary_10_1016_j_resourpol_2025_105599 crossref_primary_10_1080_08827508_2023_2295849 crossref_primary_10_1016_j_mineng_2020_106743 crossref_primary_10_1016_j_ccr_2024_215968 crossref_primary_10_3390_molecules28217356 crossref_primary_10_1002_anie_202216549 crossref_primary_10_1002_mde_4324 crossref_primary_10_1016_j_memsci_2023_122351 crossref_primary_10_3390_su15021736 crossref_primary_10_1016_j_desal_2024_117826 crossref_primary_10_1016_j_jallcom_2024_176058 crossref_primary_10_1080_00084433_2025_2540724 crossref_primary_10_1016_j_seppur_2023_124643 crossref_primary_10_1016_j_earscirev_2025_105241 crossref_primary_10_1016_j_micromeso_2024_113403 crossref_primary_10_1016_j_chemosphere_2021_130196 crossref_primary_10_1016_j_seppur_2025_134086 crossref_primary_10_3390_membranes12020233 crossref_primary_10_1016_j_jsames_2020_102742 crossref_primary_10_1016_j_hydromet_2020_105386 crossref_primary_10_1016_j_resourpol_2020_101912 crossref_primary_10_1016_j_surfin_2024_105697 crossref_primary_10_3390_pr12071453 crossref_primary_10_1016_j_seppur_2021_118613 crossref_primary_10_1016_j_jenvrad_2020_106300 crossref_primary_10_1590_0001_3765202320211199 crossref_primary_10_1016_j_jwpe_2024_106322 crossref_primary_10_1016_j_apgeochem_2024_106126 crossref_primary_10_1016_j_envpol_2020_115458 crossref_primary_10_1016_j_microc_2024_110291 crossref_primary_10_1016_j_nxener_2025_100414 crossref_primary_10_1016_j_cej_2023_144136 crossref_primary_10_1016_j_jclepro_2020_120510 crossref_primary_10_1016_j_desal_2025_119232 crossref_primary_10_3390_en15155569 crossref_primary_10_1039_D5SU00552C crossref_primary_10_1016_j_jclepro_2025_145254 crossref_primary_10_1039_D5YA00092K crossref_primary_10_1016_j_yofte_2025_104187 crossref_primary_10_1016_j_desal_2020_114850 crossref_primary_10_1016_j_jpowsour_2023_233888 crossref_primary_10_2174_0118741231373719250430111944 crossref_primary_10_3390_batteries10110377 crossref_primary_10_3390_batteries10110379 crossref_primary_10_1016_j_desal_2022_116093 crossref_primary_10_3390_su17135903 crossref_primary_10_1016_j_seppur_2021_118796 crossref_primary_10_3390_app15179248 crossref_primary_10_5004_dwt_2023_29963 crossref_primary_10_1080_27658511_2025_2505288 crossref_primary_10_3390_membranes15090260 crossref_primary_10_1021_acs_est_5c06546 crossref_primary_10_1002_adfm_202404562 crossref_primary_10_1016_j_nxsust_2024_100055 crossref_primary_10_1155_2022_6884947 crossref_primary_10_1039_D5MA00467E crossref_primary_10_1016_j_desal_2022_116186 crossref_primary_10_1016_j_saa_2021_120543 crossref_primary_10_1016_j_mtener_2025_101848 crossref_primary_10_1002_est2_339 crossref_primary_10_1016_j_desal_2024_117741 crossref_primary_10_23818_limn_45_09 crossref_primary_10_1016_j_jallcom_2025_181972 crossref_primary_10_1007_s11356_023_29672_6 crossref_primary_10_1038_s41598_021_88006_z crossref_primary_10_1016_j_est_2025_116511 crossref_primary_10_1016_j_jwpe_2025_108600 crossref_primary_10_1016_j_desal_2020_114883 crossref_primary_10_3390_en15239069 crossref_primary_10_1016_j_resourpol_2021_102261 crossref_primary_10_1016_j_resourpol_2019_101473 crossref_primary_10_46652_rgn_v9i42_1285 crossref_primary_10_1039_D0EE02511A crossref_primary_10_1016_j_desal_2025_119311 crossref_primary_10_3390_batteries8120287 crossref_primary_10_3390_atoms13060056 crossref_primary_10_1016_j_seppur_2020_116682 crossref_primary_10_1016_j_seppur_2020_117410 crossref_primary_10_1016_j_seppur_2020_117653 crossref_primary_10_1007_s10668_023_03271_4 crossref_primary_10_1016_j_gce_2025_03_005 crossref_primary_10_1016_j_pmatsci_2024_101424 crossref_primary_10_1016_j_coelec_2022_101087 crossref_primary_10_3390_en18061359 crossref_primary_10_1016_j_envpol_2023_121416 crossref_primary_10_3390_su152216016 crossref_primary_10_1016_j_desal_2023_117249 crossref_primary_10_1016_j_resconrec_2020_105034 crossref_primary_10_1038_s43017_025_00683_w crossref_primary_10_1016_j_jelechem_2022_116623 crossref_primary_10_1073_pnas_2022197118 crossref_primary_10_1016_j_mineng_2022_107905 crossref_primary_10_1016_j_desal_2023_116395 crossref_primary_10_1016_j_enconman_2023_117396 crossref_primary_10_1093_bulcsj_uoaf002 crossref_primary_10_1021_acssuschemeng_5c05254 crossref_primary_10_1038_s44296_025_00069_5 crossref_primary_10_1016_j_electacta_2024_144686 crossref_primary_10_1039_D4EW00422A crossref_primary_10_1016_j_procir_2021_05_012 crossref_primary_10_1002_adfm_202408685 crossref_primary_10_1016_j_jiec_2020_09_014 crossref_primary_10_1002_advs_202002213 crossref_primary_10_1002_adfm_202418358 crossref_primary_10_3390_batteries8110225 crossref_primary_10_1016_j_desal_2024_117659 crossref_primary_10_1016_j_desal_2024_117895 crossref_primary_10_1016_j_apgeochem_2020_104566 crossref_primary_10_3390_en13102638 crossref_primary_10_1016_j_jece_2023_110490 crossref_primary_10_1007_s11273_022_09872_6 crossref_primary_10_1002_advs_202201380 crossref_primary_10_1016_j_renene_2025_122643 crossref_primary_10_1016_j_gexplo_2021_106937 crossref_primary_10_1007_s10040_022_02499_0 crossref_primary_10_1016_j_desal_2024_118519 crossref_primary_10_1016_j_resconrec_2024_108081 crossref_primary_10_1021_acsami_5c06231 crossref_primary_10_1016_j_inoche_2022_109693 crossref_primary_10_1016_j_resourpol_2025_105600 crossref_primary_10_1108_BIJ_01_2021_0017 crossref_primary_10_1016_j_watres_2019_01_050 crossref_primary_10_1007_s10163_024_02146_8 crossref_primary_10_1080_08827508_2022_2047041 crossref_primary_10_24857_rgsa_v18n10_251 crossref_primary_10_3390_resources14020027 crossref_primary_10_1016_j_jclepro_2025_146535 crossref_primary_10_1016_j_scitotenv_2019_135605 crossref_primary_10_1016_j_scitotenv_2025_178992 crossref_primary_10_1016_j_jtice_2021_05_041 crossref_primary_10_1007_s12613_023_2750_2 crossref_primary_10_1007_s43615_022_00171_z crossref_primary_10_1002_cssc_202400931 crossref_primary_10_1016_j_apgeochem_2020_104588 crossref_primary_10_1016_j_envsci_2025_104155 crossref_primary_10_1002_adfm_202105991 crossref_primary_10_1007_s11053_022_10070_7 crossref_primary_10_1016_j_seppur_2025_131643 crossref_primary_10_1080_07366299_2021_1876443 crossref_primary_10_1016_j_seppur_2025_133823 crossref_primary_10_1016_j_desal_2022_115822 crossref_primary_10_1016_j_desal_2022_115827 crossref_primary_10_1016_j_susmat_2025_e01341 crossref_primary_10_1016_j_desal_2022_115704 crossref_primary_10_3390_ma17174389 crossref_primary_10_1016_j_desal_2025_118658 crossref_primary_10_1088_1755_1315_882_1_012003 crossref_primary_10_1016_j_desal_2025_118899 crossref_primary_10_1016_j_desal_2024_117446 crossref_primary_10_1016_j_envsci_2021_05_002 crossref_primary_10_1016_j_est_2022_106362 crossref_primary_10_1016_j_cej_2022_138662 crossref_primary_10_3390_pr13041116 crossref_primary_10_1007_s43546_023_00486_5 crossref_primary_10_3389_fmicb_2023_1233221 crossref_primary_10_3390_min11060649 crossref_primary_10_1557_s43578_025_01533_7 crossref_primary_10_1002_aesr_202400070 crossref_primary_10_1016_j_scitotenv_2022_159374 crossref_primary_10_1016_j_apgeochem_2021_104985 crossref_primary_10_1016_j_reseneeco_2023_101389 crossref_primary_10_3390_su142114429 crossref_primary_10_1007_s41101_025_00365_0 crossref_primary_10_1016_j_resconrec_2022_106611 crossref_primary_10_1016_j_resconrec_2025_108574 crossref_primary_10_1016_j_colsurfa_2024_134833 crossref_primary_10_1016_j_erss_2024_103672 crossref_primary_10_3390_pr9020398 crossref_primary_10_1016_j_desal_2022_115951 crossref_primary_10_1016_j_desal_2025_118766 crossref_primary_10_1016_j_scitotenv_2021_148192 crossref_primary_10_1002_ange_202216549 crossref_primary_10_1016_j_etap_2023_104197 crossref_primary_10_1016_j_susmat_2025_e01339 crossref_primary_10_1002_celc_202101652 crossref_primary_10_1088_2516_1083_ada199 crossref_primary_10_1039_D5LC00387C crossref_primary_10_3390_pr11020418 crossref_primary_10_1016_j_jclepro_2019_119178 crossref_primary_10_1134_S2517751622040059 crossref_primary_10_1016_j_jece_2025_116471 crossref_primary_10_3390_en16114400 crossref_primary_10_3390_su17104469 crossref_primary_10_1029_2025GB008513 crossref_primary_10_1016_j_jwpe_2021_102063 crossref_primary_10_1016_j_memsci_2025_124662 crossref_primary_10_1002_celc_202400035 crossref_primary_10_3390_membranes11090697 crossref_primary_10_1021_acs_est_4c12619 crossref_primary_10_3390_en16073149 crossref_primary_10_3390_inorganics11020088 crossref_primary_10_1071_EN24031 crossref_primary_10_1016_j_desal_2024_118449 crossref_primary_10_1016_j_resconrec_2022_106634 crossref_primary_10_3390_ma17246269 |
| Cites_doi | 10.1016/j.mineng.2016.01.010 10.1016/j.oregeorev.2012.11.001 10.1039/C6TA05985F 10.1021/cr020730k 10.1039/C4DT00467A 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 10.1016/j.cej.2016.09.133 10.1016/j.seppur.2016.08.031 10.1016/j.molliq.2016.01.025 10.1016/j.desal.2013.03.009 10.1149/2.0591609jes 10.1002/chem.201403535 10.1029/2000TC900031 10.1021/acs.est.5b00032 10.1016/S0895-9811(01)00058-X 10.1039/C4TA01101E 10.1081/SS-100102353 10.1016/S0895-9811(99)00012-7 10.1021/es1010384 10.1007/s00792-013-0617-6 10.1016/j.apenergy.2015.09.090 10.1039/b002465l 10.1002/2016GL070076 10.1371/journal.pone.0053497 10.1016/j.scitotenv.2017.12.003 10.1016/j.scitotenv.2014.06.097 10.1246/cl.2012.1647 10.1029/TC008i003p00517 10.1016/j.mineng.2013.10.026 10.1016/j.hydromet.2012.02.008 10.1149/2.0181801jes 10.1016/0895-9811(91)90007-8 10.1016/j.desal.2016.11.018 10.1371/journal.pone.0185922 10.2113/econgeo.108.7.1691 10.1039/C4EE04041D 10.1021/cm0000191 10.1039/c3cp50919b 10.1039/C5TA02540K 10.1002/ijch.196300021 10.1039/c2ee22977c 10.1002/cssc.201500368 10.1038/nmat3191 10.1016/0304-386X(91)90056-R 10.1038/507026a 10.1016/j.scitotenv.2013.05.042 10.1007/s10498-008-9056-x 10.1080/01496399308018042 10.2118/9925-PA 10.1016/j.desal.2015.08.013 10.1029/2004TC001762 10.1029/1999TC001102 10.1039/C4EE03051F 10.1016/j.apgeochem.2013.09.002 10.1130/0091-7613(1991)019<0401:GEBOTN>2.3.CO;2 10.1021/ie000911h 10.1016/j.rser.2011.11.023 10.1016/j.apenergy.2013.04.005 10.1007/s00126-016-0656-x 10.1002/celc.201600509 10.1016/j.hydromet.2014.10.012 10.1021/ie404334s 10.1021/acs.jpcc.5b11722 10.2113/econgeo.106.7.1225 10.1016/0304-386X(87)90045-4 10.1016/j.oregeorev.2012.05.006 10.1109/MIE.2013.2250351 10.1016/S0012-8252(03)00037-0 10.1039/C7EW00020K 10.1016/0304-386X(78)90004-X 10.1007/s11837-013-0666-4 10.1007/s00382-016-3127-2 10.1016/j.hydromet.2015.03.002 10.1038/35002501 10.1016/j.scitotenv.2017.12.134 10.1016/j.rser.2016.10.019 10.1016/0039-9140(73)80275-9 10.1130/B25602.1 10.1080/07366299.2011.573435 10.1149/2.1531714jes 10.1016/j.jvolgeores.2012.09.009 10.1016/S1364-6826(03)00084-1 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.scitotenv.2018.05.223 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health Biology Environmental Sciences |
| EISSN | 1879-1026 |
| EndPage | 1204 |
| ExternalDocumentID | 29929287 10_1016_j_scitotenv_2018_05_223 S0048969718318746 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G 9DU AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ XPP ZXP ZY4 ~HD NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c453t-170b951378e541fb8cd52c84c6970d12f5511bc4f1e661c68eeabe34da84ba0c3 |
| ISICitedReferencesCount | 510 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436806200117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0048-9697 1879-1026 |
| IngestDate | Sun Sep 28 08:04:22 EDT 2025 Sun Nov 09 12:51:59 EST 2025 Wed Feb 19 02:41:46 EST 2025 Sat Nov 29 07:29:55 EST 2025 Tue Nov 18 22:39:56 EST 2025 Fri Feb 23 02:46:16 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sustainable mining Lithium Magnesium Batteries Aquifer Brine deposits |
| Language | English |
| License | Copyright © 2018 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c453t-170b951378e541fb8cd52c84c6970d12f5511bc4f1e661c68eeabe34da84ba0c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-4385-8846 |
| OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S0048969718318746-fx1_lrg.jpg |
| PMID | 29929287 |
| PQID | 2058505402 |
| PQPubID | 23479 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2084067117 proquest_miscellaneous_2058505402 pubmed_primary_29929287 crossref_citationtrail_10_1016_j_scitotenv_2018_05_223 crossref_primary_10_1016_j_scitotenv_2018_05_223 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_05_223 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-15 |
| PublicationDateYYYYMMDD | 2018-10-15 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | The Science of the total environment |
| PublicationTitleAlternate | Sci Total Environ |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | (bb0060) 2017 Ahumada (bb0010) 2014 Habashi (bb0275) 1997 Roskill's Information Services Ltd. (bb0545) 2016 Du, Guan, Li, Jagadale, Ma, Wang, Hao, Abudula (bb0195) 2016; 4 Swain (bb0590) 2017; 172 Van Noorden (bb0635) 2014; 507 Gabra, Torma (bb0240) 1978; 3 Kim, Lee, Choi, Shin, Dinh, Choi (bb0395) 2015; 49 Jochens, Munk (bb0370) 2011 Palagonia, Brogioli, La Mantia (bb0495) 2017; 164 Zhang, Shen, Gao, Wang, Guo, Deng (bb0660) 2012 Albarracín, Kurth, Ordoñez, Belfiore, Luccini, Salum, Piacentini, Farías (bb0020) 2015; 6 Chitrakar, Kanoh, Miyai, Ooi (bb0145) 2001; 40 Bazán, Rieradevall, Gabarrell, Vázquez-Rowe (bb0055) 2018; 622-623 Marrett, Strecker (bb0450) 2000; 19 Risacher, Fritz (bb0530) 2009; 15 Arias, Tesio, Flexer (bb0045) 2018; 165 Trócoli, Battistel, La Mantia (bb0615) 2014; 20 Chitrakar, Kanoh, Makita, Miyai, Ooi (bb0135) 2000; 10 Corenthal, Boutt, Hynek, Munk (bb0185) 2016; 43 Boualleg, M., F.A.P. Burdet, and R.C.J.R. Soulairol. Process for preparing an adsorbent material in the absence of binder comprising a hydrothermal treatment step and process for extracting lithium from saline solutions using said material. PATENT EP20150720043. ERAMET. Carrapa, Adelmann, Hilley, Mortimer, Sobel, Strecker (bb0120) 2005; 24 Chen, Shen (bb0130) 2017; 12 Harrison, S., C.V.K. Sharma, B.E. Viani, and D. Peykova. Lithium extraction composition and method of preparation thereof. PATENT US 12/972,728. Geothermal Energy Project. Shi, Jing, Jia (bb0555) 2016; 215 Chitrakar, Kanoh, Miyai, Ooi (bb0140) 2000; 12 Myers, Mittermeler, Mittermeler, Da Fonseca, Kent (bb0475) 2000; 403 Brouwer, van den Broek, Zappa, Turkenburg, Faaij (bb0095) 2016; 161 Hien-Dinh, Luong, Gieré, Tran (bb0295) 2015; 153 Shin, Kim, Noh, Byun, Chung, Kim, Cho (bb0560) 2015; 3 Castino, Bookhagen, Strecker (bb0125) 2017; 48 Evans (bb0215) 2010; 96 Olson, Dinerstein, Wikramanayake, Burgess, Powell, Underwood, D'Amico, Itoua, Strand, Morrison, Loucks, Allnutt, Ricketts, Kura, Lamoreux, Wettengel, Hedao, Kassem (bb0485) 2001; 51 Hofstra, Todorov, Mercer, Adams, Marsh (bb0305) 2013; 108 Coutand, Cobbold, De Urreiztieta, Gautier, Chauvin, Gapais, Rossello, López-Gamundí (bb0190) 2001; 20 Farías, Contreras, Rasuk, Kurth, Flores, Poiré, Novoa, Visscher (bb0225) 2014; 18 Lee, J.M. and W.C. Bauman. Recovery of lithium from brines. PATENT US 05/812,534. FMC Corporation. Kaplan, Mamrosh, Salih, Dastgheib (bb0385) 2017; 404 bb0340 Goodenough, R.D. Recovery of lithium. PATENT US 2,964,381. Zbranek, V., S. Bertolli, and P. Vargas. Production of lithium and potassium compounds. PATENT US8431005B1. Western Lithium Corp. Jiang, Wang, Wang, Feng, Xu (bb0365) 2014; 53 Chon, U., I.C. Lee, K.Y. Kim, G.C. Han, C.H. Song, and S.R. Jung. Method for manufacturing lithium hydroxide and method using same for manufacturing lithium carbonate. PATENT US 14/389,860. POSCO. bb0335 An, Kang, Tran, Kim, Lim, Tran (bb0040) 2012; 117–118 bb0330 Intaranont, Garcia-Araez, Hector, Milton, Owen (bb0350) 2014; 2 Bukowsky, Uhlemann (bb0105) 1993; 28 Ericksen, Salas (bb0205) 1990 Lee (bb0420) 2015; 5 Alurralde, P. and V. Mehta. Recovery of Li values from sodium saturate brine. PATENT US 13/288,389. FMC Corporation. Risacher, Alonso, Salazar (bb0535) 2003; 63 Barbosa, Valente, Orosco, González (bb0050) 2014; 56 Ide, Kunasz (bb0345) 1989; vol. 11 Herrera, Gamboa, Custodio, Jordan, Godfrey, Jódar, Luque, Vargas, Sáez (bb0290) 2018; 624 Yu, Gao, Cheng, Liu, Zhang, He (bb0650) 2013; 50 Vikström, Davidsson, Höök (bb0640) 2013; 110 Prior, Wäger, Stamp, Widmer, Giurco (bb0520) 2013; 461-462 Steinmetz (bb0575) 2017; 52 Ma, Chen, Hossain (bb0440) 2000; 35 Border, Sawyer (bb0065) 2014; 123 Choubey, Kim, Srivastava, Lee, Lee (bb0165) 2016; 89 Fernandez, Rasuk, Visscher, Contreras, Novoa, Poire, Patterson, Ventosa, Farias (bb0230) 2016; 7 Food and Agriculture Organization of the United Nations (bb0235) Opitz, Badami, Shen, Vignarooban, Kannan (bb0490) 2017; 68 Grier, Salfity, Allmendinger (bb0265) 1991; 4 Horne (bb0310) 1982; 34 Kaplan (bb0380) 1963; 1 Schaller, Headley, Prigent, Breuer (bb0550) 2014; 493 Izquierdo, Grau, Carilla, Casagranda (bb0355) 2015; 12 Meshram, Pandey, Mankhand (bb0460) 2014; 150 Bruce, Freunberger, Hardwick, Tarascon (bb0100) 2012; 11 British Geological Service (bb0090) 2016 Munk, Hynek, Bradley, Boutt, Labay, Jochens (bb0470) 2016 Kunasz (bb0410) 2006 Sternberg, Bardow (bb0580) 2015; 8 Piacentini, Cede, Bárcena (bb0510) 2003; 65 Marchini, Rubi, Del Pozo, Williams, Calvo (bb0445) 2016; 120 Concha, Broberg, Grandér, Cardozo, Palm, Vahter (bb0180) 2010; 44 Chitrakar, Makita, Ooi, Sonoda (bb0150) 2012; 41 U.S. Geological Survey (bb0630) 2018 Grosjean, Miranda, Perrin, Poggi (bb0270) 2012; 16 Pellow, Emmott, Barnhart, Benson (bb0505) 2015; 8 Rahimi-Eichi, Ojha, Baronti, Chow (bb0525) 2013; 7 Nishihama, Onishi, Yoshizuka (bb0480) 2011; 29 Rona, Schmuckler (bb0540) 1973; 20 Missoni, Marchini, Pozo, Calvo (bb0465) 2016; 163 Winter, Brodd (bb0645) 2004; 104 King, Kellye, Abbey (bb0400) 2012 Liu, Chen, He, Zhao (bb0435) 2015; 376 Chitrakar, Makita, Ooi, Sonoda (bb0155) 2014; 43 Trócoli, Erinmwingbovo, La Mantia (bb0625) 2017; 4 Horton (bb0315) 2012 Eugster, Hardie, Lerman (bb0210) 1978 Kesler, Gruber, Medina, Keoleian, Everson, Wallington (bb0390) 2012; 48 (bb0605) 2016 Lee, Yu, Kim, Sung, Yoon (bb0430) 2013; 15 Price, Lechler, Lear, Giles, J.G. (bb0515) 2000 Alonso, Bookhagen, Carrapa, Coutand, Haschke, Hilley, Schoenbohm, Sobel, Strecker, Trauth, Villanueva (bb0030) 2006 Bradley, Munk, Jochens, Hynek, Labay (bb0085) 2013 Giordano, Pinton, Cianfarra, Baez, Chiodi, Viramonte, Norini, Groppelli (bb0250) 2013; 249 Bukowsky, Uhlemann, Steinborn (bb0110) 1991; 27 Chung, Torrejos, Park, Vivas, Limjuco, Lawagon, Parohinog, Lee, Shon, Kim, Nisola (bb0170) 2017; 309 Kraemer, Adelmann, Alten, Schnurr, Erpenstein, Kiefer, Van Den Bogaard, Görler (bb0405) 1999; 12 Somrani, Hamzaoui, Pontie (bb0565) 2013; 317 Farías, Rascovan, Toneatti, Albarracín, Flores, Poiré, Collavino, Aguilar, Vazquez, Polerecky (bb0220) 2013; 8 Taylor, McLennan (bb0600) 1985 Abe, Chitrakar (bb0005) 1987; 19 Coira (bb0175) 1995 Haynes (bb0285) 2012 Hilley, Strecker (bb0300) 2005; 117 Pasta, Battistel, La Mantia (bb0500) 2012; 5 (bb0325) May 2014 Song, Nghiem, Li, He (bb0570) 2017; 3 Trócoli, Battistel, La Mantia (bb0620) 2015; 8 Bossi, Georgieff, Gavriloff, Ibañez, Muruaga (bb0070) 2001; 14 Godfrey, Chan, Alonso, Lowenstein, McDonough, Houston, Li, Bobst, Jordan (bb0255) 2013; 38 Alonso, Jordan, Tabbutt, Vandervoort (bb0025) 1991; 19 Boualleg, M., F.A.P. Burdet, and R.C.J.R. Soulairol. Method of preparing a shaped adsorbent material comprising a shaping step in the presence of an organic binder, and method of extracting lithium from saline solutions using said material. PATENT PCT/EP2014/079121. ERAMET. ERAMET (bb0200) Jaskula (bb0360) 2017 Houston, Butcher, Ehren, Evans, Godfrey (bb0320) 2011; 106 Burba, J.L. Crystalline lithium aluminates. PATENT US 06/217,614. The Dow Chemical Company. Strecker, Cerveny, Bloom, Malizia (bb0585) 1989; 8 Talens Peiró, Villalba Méndez, Ayres (bb0595) 2013; 65 Garrett (bb0245) 2004 Jordan, Alonso (bb0375) 1987; 71 Langbein (bb0415) 1961; vol. 412 Toneatti, Albarracín, Flores, Polerecky, Farías (bb0610) 2017; 8 Mason, Moore (bb0455) 1982 Kaplan (10.1016/j.scitotenv.2018.05.223_bb0385) 2017; 404 Kesler (10.1016/j.scitotenv.2018.05.223_bb0390) 2012; 48 Risacher (10.1016/j.scitotenv.2018.05.223_bb0535) 2003; 63 Horton (10.1016/j.scitotenv.2018.05.223_bb0315) 2012 Lee (10.1016/j.scitotenv.2018.05.223_bb0420) 2015; 5 10.1016/j.scitotenv.2018.05.223_bb0035 Corenthal (10.1016/j.scitotenv.2018.05.223_bb0185) 2016; 43 Intaranont (10.1016/j.scitotenv.2018.05.223_bb0350) 2014; 2 Ma (10.1016/j.scitotenv.2018.05.223_bb0440) 2000; 35 Strecker (10.1016/j.scitotenv.2018.05.223_bb0585) 1989; 8 Opitz (10.1016/j.scitotenv.2018.05.223_bb0490) 2017; 68 Jordan (10.1016/j.scitotenv.2018.05.223_bb0375) 1987; 71 Bukowsky (10.1016/j.scitotenv.2018.05.223_bb0110) 1991; 27 Vikström (10.1016/j.scitotenv.2018.05.223_bb0640) 2013; 110 Du (10.1016/j.scitotenv.2018.05.223_bb0195) 2016; 4 Marchini (10.1016/j.scitotenv.2018.05.223_bb0445) 2016; 120 10.1016/j.scitotenv.2018.05.223_bb0160 Farías (10.1016/j.scitotenv.2018.05.223_bb0220) 2013; 8 Liu (10.1016/j.scitotenv.2018.05.223_bb0435) 2015; 376 Munk (10.1016/j.scitotenv.2018.05.223_bb0470) 2016 Carrapa (10.1016/j.scitotenv.2018.05.223_bb0120) 2005; 24 Jiang (10.1016/j.scitotenv.2018.05.223_bb0365) 2014; 53 Myers (10.1016/j.scitotenv.2018.05.223_bb0475) 2000; 403 Steinmetz (10.1016/j.scitotenv.2018.05.223_bb0575) 2017; 52 10.1016/j.scitotenv.2018.05.223_bb0280 Evans (10.1016/j.scitotenv.2018.05.223_bb0215) 2010; 96 Price (10.1016/j.scitotenv.2018.05.223_bb0515) 2000 Arias (10.1016/j.scitotenv.2018.05.223_bb0045) 2018; 165 Somrani (10.1016/j.scitotenv.2018.05.223_bb0565) 2013; 317 Zhang (10.1016/j.scitotenv.2018.05.223_bb0660) 2012 Herrera (10.1016/j.scitotenv.2018.05.223_bb0290) 2018; 624 Grosjean (10.1016/j.scitotenv.2018.05.223_bb0270) 2012; 16 Jaskula (10.1016/j.scitotenv.2018.05.223_bb0360) Kim (10.1016/j.scitotenv.2018.05.223_bb0395) 2015; 49 (10.1016/j.scitotenv.2018.05.223_bb0060) 2017 Chitrakar (10.1016/j.scitotenv.2018.05.223_bb0140) 2000; 12 Mason (10.1016/j.scitotenv.2018.05.223_bb0455) 1982 Van Noorden (10.1016/j.scitotenv.2018.05.223_bb0635) 2014; 507 Schaller (10.1016/j.scitotenv.2018.05.223_bb0550) 2014; 493 Nishihama (10.1016/j.scitotenv.2018.05.223_bb0480) 2011; 29 King (10.1016/j.scitotenv.2018.05.223_bb0400) 2012 Marrett (10.1016/j.scitotenv.2018.05.223_bb0450) 2000; 19 Winter (10.1016/j.scitotenv.2018.05.223_bb0645) 2004; 104 Choubey (10.1016/j.scitotenv.2018.05.223_bb0165) 2016; 89 Rona (10.1016/j.scitotenv.2018.05.223_bb0540) 1973; 20 Barbosa (10.1016/j.scitotenv.2018.05.223_bb0050) 2014; 56 Song (10.1016/j.scitotenv.2018.05.223_bb0570) 2017; 3 Risacher (10.1016/j.scitotenv.2018.05.223_bb0530) 2009; 15 Rahimi-Eichi (10.1016/j.scitotenv.2018.05.223_bb0525) 2013; 7 British Geological Service (10.1016/j.scitotenv.2018.05.223_bb0090) Jochens (10.1016/j.scitotenv.2018.05.223_bb0370) 2011 Chitrakar (10.1016/j.scitotenv.2018.05.223_bb0135) 2000; 10 Kunasz (10.1016/j.scitotenv.2018.05.223_bb0410) 2006 Roskill's Information Services Ltd. (10.1016/j.scitotenv.2018.05.223_bb0545) 2016 Concha (10.1016/j.scitotenv.2018.05.223_bb0180) 2010; 44 Chitrakar (10.1016/j.scitotenv.2018.05.223_bb0145) 2001; 40 Olson (10.1016/j.scitotenv.2018.05.223_bb0485) 2001; 51 Fernandez (10.1016/j.scitotenv.2018.05.223_bb0230) 2016; 7 Toneatti (10.1016/j.scitotenv.2018.05.223_bb0610) 2017; 8 Coira (10.1016/j.scitotenv.2018.05.223_bb0175) 1995 Bukowsky (10.1016/j.scitotenv.2018.05.223_bb0105) 1993; 28 Chitrakar (10.1016/j.scitotenv.2018.05.223_bb0155) 2014; 43 Garrett (10.1016/j.scitotenv.2018.05.223_bb0245) 2004 Meshram (10.1016/j.scitotenv.2018.05.223_bb0460) 2014; 150 Habashi (10.1016/j.scitotenv.2018.05.223_bb0275) 1997 Houston (10.1016/j.scitotenv.2018.05.223_bb0320) 2011; 106 ERAMET (10.1016/j.scitotenv.2018.05.223_bb0200) Prior (10.1016/j.scitotenv.2018.05.223_bb0520) 2013; 461-462 Ahumada (10.1016/j.scitotenv.2018.05.223_bb0010) 2014 Palagonia (10.1016/j.scitotenv.2018.05.223_bb0495) 2017; 164 Alonso (10.1016/j.scitotenv.2018.05.223_bb0030) 2006 Bossi (10.1016/j.scitotenv.2018.05.223_bb0070) 2001; 14 10.1016/j.scitotenv.2018.05.223_bb0075 Kraemer (10.1016/j.scitotenv.2018.05.223_bb0405) 1999; 12 Talens Peiró (10.1016/j.scitotenv.2018.05.223_bb0595) 2013; 65 Hilley (10.1016/j.scitotenv.2018.05.223_bb0300) 2005; 117 Hien-Dinh (10.1016/j.scitotenv.2018.05.223_bb0295) 2015; 153 Chen (10.1016/j.scitotenv.2018.05.223_bb0130) 2017; 12 Swain (10.1016/j.scitotenv.2018.05.223_bb0590) 2017; 172 Sternberg (10.1016/j.scitotenv.2018.05.223_bb0580) 2015; 8 An (10.1016/j.scitotenv.2018.05.223_bb0040) 2012; 117–118 Hofstra (10.1016/j.scitotenv.2018.05.223_bb0305) 2013; 108 Alonso (10.1016/j.scitotenv.2018.05.223_bb0025) 1991; 19 Langbein (10.1016/j.scitotenv.2018.05.223_bb0415) 1961; vol. 412 10.1016/j.scitotenv.2018.05.223_bb0115 Piacentini (10.1016/j.scitotenv.2018.05.223_bb0510) 2003; 65 Bazán (10.1016/j.scitotenv.2018.05.223_bb0055) 2018; 622-623 Bradley (10.1016/j.scitotenv.2018.05.223_bb0085) 2013 Yu (10.1016/j.scitotenv.2018.05.223_bb0650) 2013; 50 Lee (10.1016/j.scitotenv.2018.05.223_bb0430) 2013; 15 Ide (10.1016/j.scitotenv.2018.05.223_bb0345) 1989; vol. 11 Food and Agriculture Organization of the United Nations (10.1016/j.scitotenv.2018.05.223_bb0235) Gabra (10.1016/j.scitotenv.2018.05.223_bb0240) 1978; 3 10.1016/j.scitotenv.2018.05.223_bb0080 Chitrakar (10.1016/j.scitotenv.2018.05.223_bb0150) 2012; 41 Brouwer (10.1016/j.scitotenv.2018.05.223_bb0095) 2016; 161 Taylor (10.1016/j.scitotenv.2018.05.223_bb0600) 1985 Shi (10.1016/j.scitotenv.2018.05.223_bb0555) 2016; 215 Izquierdo (10.1016/j.scitotenv.2018.05.223_bb0355) 2015; 12 Coutand (10.1016/j.scitotenv.2018.05.223_bb0190) 2001; 20 Shin (10.1016/j.scitotenv.2018.05.223_bb0560) 2015; 3 Horne (10.1016/j.scitotenv.2018.05.223_bb0310) 1982; 34 Godfrey (10.1016/j.scitotenv.2018.05.223_bb0255) 2013; 38 Castino (10.1016/j.scitotenv.2018.05.223_bb0125) 2017; 48 Trócoli (10.1016/j.scitotenv.2018.05.223_bb0625) 2017; 4 Pasta (10.1016/j.scitotenv.2018.05.223_bb0500) 2012; 5 Abe (10.1016/j.scitotenv.2018.05.223_bb0005) 1987; 19 Haynes (10.1016/j.scitotenv.2018.05.223_bb0285) 2012 Albarracín (10.1016/j.scitotenv.2018.05.223_bb0020) 2015; 6 Pellow (10.1016/j.scitotenv.2018.05.223_bb0505) 2015; 8 Border (10.1016/j.scitotenv.2018.05.223_bb0065) 2014; 123 Eugster (10.1016/j.scitotenv.2018.05.223_bb0210) 1978 Ericksen (10.1016/j.scitotenv.2018.05.223_bb0205) 1990 U.S. Geological Survey (10.1016/j.scitotenv.2018.05.223_bb0630) Farías (10.1016/j.scitotenv.2018.05.223_bb0225) 2014; 18 Missoni (10.1016/j.scitotenv.2018.05.223_bb0465) 2016; 163 10.1016/j.scitotenv.2018.05.223_bb0655 Giordano (10.1016/j.scitotenv.2018.05.223_bb0250) 2013; 249 10.1016/j.scitotenv.2018.05.223_bb0260 Kaplan (10.1016/j.scitotenv.2018.05.223_bb0380) 1963; 1 Trócoli (10.1016/j.scitotenv.2018.05.223_bb0615) 2014; 20 Chung (10.1016/j.scitotenv.2018.05.223_bb0170) 2017; 309 Grier (10.1016/j.scitotenv.2018.05.223_bb0265) 1991; 4 Trócoli (10.1016/j.scitotenv.2018.05.223_bb0620) 2015; 8 10.1016/j.scitotenv.2018.05.223_bb0425 Bruce (10.1016/j.scitotenv.2018.05.223_bb0100) 2012; 11 |
| References_xml | – reference: Chon, U., I.C. Lee, K.Y. Kim, G.C. Han, C.H. Song, and S.R. Jung. Method for manufacturing lithium hydroxide and method using same for manufacturing lithium carbonate. PATENT US 14/389,860. POSCO. – reference: Boualleg, M., F.A.P. Burdet, and R.C.J.R. Soulairol. Method of preparing a shaped adsorbent material comprising a shaping step in the presence of an organic binder, and method of extracting lithium from saline solutions using said material. PATENT PCT/EP2014/079121. ERAMET. – volume: vol. 11 start-page: 165 year: 1989 end-page: 172 ident: bb0345 article-title: Origin of lithium in Salar de Atacama, northern Chile publication-title: Geology of the Andes and Its Relation to Hydrocarbon and Mineral Resources – reference: Boualleg, M., F.A.P. Burdet, and R.C.J.R. Soulairol. Process for preparing an adsorbent material in the absence of binder comprising a hydrothermal treatment step and process for extracting lithium from saline solutions using said material. PATENT EP20150720043. ERAMET. – volume: 44 start-page: 6875 year: 2010 end-page: 6880 ident: bb0180 article-title: High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of Northern Argentina publication-title: Environ. Sci. Technol. – volume: 110 start-page: 252 year: 2013 end-page: 266 ident: bb0640 article-title: Lithium availability and future production outlooks publication-title: Appl. Energy – volume: 15 start-page: 123 year: 2009 end-page: 157 ident: bb0530 article-title: Origin of salts and brine evolution of Bolivian and Chilean salars publication-title: Aquat. Geochem. – volume: 172 start-page: 388 year: 2017 end-page: 403 ident: bb0590 article-title: Recovery and recycling of lithium: a review publication-title: Sep. Purif. Technol. – year: 1990 ident: bb0205 article-title: Geology and resources of salars in the central Andes publication-title: Geology of the Andes and Its Relation to Hydrocarbon and Mineral Resources – volume: 317 start-page: 184 year: 2013 end-page: 192 ident: bb0565 article-title: Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO) publication-title: Desalination – volume: 48 start-page: 55 year: 2012 end-page: 69 ident: bb0390 article-title: Global lithium resources: relative importance of pegmatite, brine and other deposits publication-title: Ore Geol. Rev. – start-page: 101 year: 2014 ident: bb0010 article-title: Caracterización hidrogeológica e hidroquímica del sector sur del Salar de Atacama, II° región de Antofagasta, Chile – reference: Alurralde, P. and V. Mehta. Recovery of Li values from sodium saturate brine. PATENT US 13/288,389. FMC Corporation. – volume: 376 start-page: 35 year: 2015 end-page: 40 ident: bb0435 article-title: Study on extraction of lithium from salt lake brine by membrane electrolysis publication-title: Desalination – volume: 8 start-page: 517 year: 1989 end-page: 534 ident: bb0585 article-title: Late Cenozoic tectonism and landscape development in the foreland of the Andes: Northern Sierras Pampeanas (26°–28°S), Argentina publication-title: Tectonics – volume: 16 start-page: 1735 year: 2012 end-page: 1744 ident: bb0270 article-title: Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry publication-title: Renew. Sust. Energ. Rev. – volume: 3 start-page: 593 year: 2017 end-page: 597 ident: bb0570 article-title: Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook publication-title: Environ. Sci. Water Res. Technol. – volume: 10 start-page: 2325 year: 2000 end-page: 2329 ident: bb0135 article-title: Synthesis of spinel-type lithium antimony manganese oxides and their Li+ extraction/ion insertion reactions publication-title: J. Mater. Chem. – volume: 4 start-page: 13989 year: 2016 end-page: 13996 ident: bb0195 article-title: A novel electroactive [small lambda]-MnO2/PPy/PSS core-shell nanorod coated electrode for selective recovery of lithium ions at low concentration publication-title: J. Mater. Chem. A – ident: bb0340 article-title: Lithium: Orocobre operations hit by Puna snowfall – volume: 8 start-page: 2514 year: 2015 end-page: 2519 ident: bb0620 article-title: Nickel hexacyanoferrate as suitable alternative to ag for electrochemical lithium recovery publication-title: ChemSusChem – volume: vol. 412 year: 1961 ident: bb0415 article-title: Salinity and hydrology of closed lakes publication-title: U.S. Geological Survey Professional Paper – volume: 8 start-page: 389 year: 2015 end-page: 400 ident: bb0580 article-title: Power-to-What?-environmental assessment of energy storage systems publication-title: Energy Environ. Sci. – volume: 117–118 start-page: 64 year: 2012 end-page: 70 ident: bb0040 article-title: Recovery of lithium from Uyuni salar brine publication-title: Hydrometallurgy – volume: 20 start-page: 237 year: 1973 end-page: 240 ident: bb0540 article-title: Separation of lithium from dead sea brines by gel permeation chromatography publication-title: Talanta – volume: 19 start-page: 117 year: 1987 end-page: 128 ident: bb0005 article-title: Synthetic inorganic ion-exchange materials. XLV. Recovery of lithium from seawater and hydrothermal water by titanium (iv) antimonate cation exchanger publication-title: Hydrometallurgy – volume: 215 start-page: 640 year: 2016 end-page: 646 ident: bb0555 article-title: Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid publication-title: J. Mol. Liq. – volume: 161 start-page: 48 year: 2016 end-page: 74 ident: bb0095 article-title: Least-cost options for integrating intermittent renewables in low-carbon power systems publication-title: Appl. Energy – volume: 19 start-page: 401 year: 1991 end-page: 404 ident: bb0025 article-title: Giant evaporite belts of the Neogene central Andes publication-title: Geology – volume: 12 year: 2017 ident: bb0130 article-title: A degradation-based sorting method for lithium-ion battery reuse publication-title: PLoS One – volume: 52 start-page: 35 year: 2017 end-page: 50 ident: bb0575 article-title: Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30′S publication-title: Mineral. Deposita – year: 2011 ident: bb0370 article-title: Experimental weathering of lithium bearing source rocks, Clayton Valley, Nevada, USA publication-title: 11th SGA Biennial Meeting – year: May 2014 ident: bb0325 article-title: Report on Critical raw materials for the EU. Report of the Ad hoc Working Group on defining critical raw materials – year: 2016 ident: bb0605 article-title: An increasingly precious metal – volume: 104 start-page: 4245 year: 2004 end-page: 4269 ident: bb0645 article-title: What are batteries, fuel cells, and supercapacitors? publication-title: Chem. Rev. – volume: 4 start-page: 351 year: 1991 end-page: 372 ident: bb0265 article-title: Andean reactivation of the Cretaceous Salta rift, northwestern Argentina publication-title: J. S. Am. Earth Sci. – start-page: 9 year: 2013 ident: bb0085 article-title: A preliminary deposit model for lithium brines publication-title: Open-File Report – volume: 8 year: 2017 ident: bb0610 article-title: Stratified bacterial diversity along physico-chemical gradients in high-altitude modern stromatolites publication-title: Front. Microbiol. – volume: 28 start-page: 1357 year: 1993 end-page: 1360 ident: bb0105 article-title: Selective extraction of lithium chloride from brines publication-title: Sep. Sci. Technol. – reference: Goodenough, R.D. Recovery of lithium. PATENT US 2,964,381. – volume: 11 start-page: 19 year: 2012 end-page: 29 ident: bb0100 article-title: Li-O2 and Li-S batteries with high energy storage publication-title: Nat. Mater. – year: 1982 ident: bb0455 article-title: Principles of Geochemistry – year: 2006 ident: bb0410 article-title: Lithium resources publication-title: Industrial Minerals and Rocks - Commodities, Markets, and Uses – volume: 3 start-page: 23 year: 1978 end-page: 33 ident: bb0240 article-title: Lithium chloride extraction by n-butanol publication-title: Hydrometallurgy – volume: 53 start-page: 6103 year: 2014 end-page: 6112 ident: bb0365 article-title: Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM) publication-title: Ind. Eng. Chem. Res. – volume: 19 start-page: 452 year: 2000 end-page: 467 ident: bb0450 article-title: Response of intracontinental deformation in the central Andes to late Cenozoic reorganization of South American Plate motions publication-title: Tectonics – volume: 404 start-page: 87 year: 2017 end-page: 101 ident: bb0385 article-title: Assessment of desalination technologies for treatment of a highly saline brine from a potential CO2 storage site publication-title: Desalination – volume: 493 start-page: 910 year: 2014 end-page: 913 ident: bb0550 article-title: Potential mining of lithium, beryllium and strontium from oilfield wastewater after enrichment in constructed wetlands and ponds publication-title: Sci. Total Environ. – volume: 20 start-page: 9888 year: 2014 end-page: 9891 ident: bb0615 article-title: Selectivity of a lithium-recovery process based on LiFePO4 publication-title: Chem. Eur. J. – volume: 35 start-page: 2513 year: 2000 end-page: 2533 ident: bb0440 article-title: Lithium extraction from a multicomponent mixture using supported liquid membranes publication-title: Sep. Sci. Technol. – volume: 153 start-page: 154 year: 2015 end-page: 159 ident: bb0295 article-title: Extraction of lithium from lepidolite via iron sulphide roasting and water leaching publication-title: Hydrometallurgy – year: 2012 ident: bb0400 article-title: Feasibility Study. Reserve Estimation and Lithium Carbonate and Potash Production at the Cauchari-Olaroz Salars, Jujuy Province, Argentina. Lithium of Americas NI 43-101 Technical Report, Effective Date: July 11th 2012 – volume: 123 start-page: 95 year: 2014 end-page: 106 ident: bb0065 article-title: Evaporites and brines – geological, hydrological and chemical aspects of resource estimation publication-title: Trans. Inst. Min. Metall. Sect. B Appl. Earth Sci. – volume: 7 start-page: 4 year: 2013 end-page: 16 ident: bb0525 article-title: Battery management system: an overview of its application in the smart grid and electric vehicles publication-title: IEEE Ind. Electron. Mag. – volume: 7 year: 2016 ident: bb0230 article-title: Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile publication-title: Front. Microbiol. – volume: 108 start-page: 1691 year: 2013 end-page: 1701 ident: bb0305 article-title: Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the Western United States: implications for the origin of lithium-rich brines publication-title: Econ. Geol. – volume: 15 start-page: 7690 year: 2013 end-page: 7695 ident: bb0430 article-title: Highly selective lithium recovery from brine using a λ-MnO 2-Ag battery publication-title: Phys. Chem. Chem. Phys. – volume: 5 start-page: 737 year: 2015 end-page: 743 ident: bb0420 article-title: Extraction of lithium from lepidolite using mixed grinding with sodium sulfide followed by water leaching publication-title: Fortschr. Mineral. – volume: 63 start-page: 249 year: 2003 end-page: 293 ident: bb0535 article-title: The origin of brines and salts in Chilean salars: a hydrochemical review publication-title: Earth Sci. Rev. – ident: bb0200 article-title: Infographic: ERAMET's lithium direct extraction process – volume: 120 start-page: 15875 year: 2016 end-page: 15883 ident: bb0445 article-title: Surface chemistry and lithium-ion exchange in LiMnO4 for the electrochemical selective extraction of LiCl from natural salt lake brines publication-title: J. Phys. Chem. C – reference: Burba, J.L. Crystalline lithium aluminates. PATENT US 06/217,614. The Dow Chemical Company. – volume: 12 start-page: 157 year: 1999 end-page: 182 ident: bb0405 article-title: Incorporation of the Paleogene foreland into the Neogene Puna plateau: the Salar de Antofalla area, NW Argentina publication-title: J. S. Am. Earth Sci. – year: 2018 ident: bb0630 article-title: Mineral commodity summaries – reference: Harrison, S., C.V.K. Sharma, B.E. Viani, and D. Peykova. Lithium extraction composition and method of preparation thereof. PATENT US 12/972,728. Geothermal Energy Project. – volume: 1 start-page: 115 year: 1963 end-page: 120 ident: bb0380 article-title: Process for the extraction of lithium from Dead Sea solutions publication-title: Isr. J. Chem. – volume: 507 start-page: 26 year: 2014 end-page: 28 ident: bb0635 article-title: The rechargeable revolution: a better battery publication-title: Nature – year: 1997 ident: bb0275 article-title: Handbook of Extractive Metallurgy – volume: 106 start-page: 1125 year: 2011 end-page: 1239 ident: bb0320 article-title: The evaluation of brine prospects and the requirement for modifications to filing standards publication-title: Econ. Geol. – year: 2016 ident: bb0470 article-title: Lithium Brines: A Global Perspective – volume: 164 start-page: E586 year: 2017 end-page: E595 ident: bb0495 article-title: Influence of hydrodynamics on the lithium recovery efficiency in an electrochemical ion pumping separation process publication-title: J. Electrochem. Soc. – start-page: 241 year: 2000 end-page: 248 ident: bb0515 article-title: Possible volcanic sources of lithium in brines in Clayton Valley, Nevada publication-title: Geology and Ore Deposits 2000: The Great Basin and Beyond: Geological Society of Nevada Symposium Proceedings – volume: 41 start-page: 1647 year: 2012 end-page: 1649 ident: bb0150 article-title: Selective uptake of lithium ion from brine by H1.33Mn 1.67O4 and H1.6Mn1.6O4 publication-title: Chem. Lett. – volume: 51 start-page: 933 year: 2001 end-page: 938 ident: bb0485 article-title: Terrestrial ecoregions of the world: a new map of life on Earth publication-title: Bioscience – year: 1995 ident: bb0175 article-title: Cerro Tuzgle geothermal prospect, Jujuy, Argentina publication-title: Proceedings of the World Geothermal Congress – volume: 622-623 start-page: 1448 year: 2018 end-page: 1462 ident: bb0055 article-title: Low-carbon electricity production through the implementation of photovoltaic panels in rooftops in urban environments: a case study for three cities in Peru publication-title: Sci. Total Environ. – volume: 24 start-page: 1 year: 2005 end-page: 19 ident: bb0120 article-title: Oligocene range uplift and development of plateau morphology in the southern central Andes publication-title: Tectonics – start-page: 265 year: 2006 end-page: 286 ident: bb0030 article-title: Tectonics, climate, and landscape evolution of the southern Central Andes: the Argentine Puna Plateau and adjacent regions between 22 and 28°S lat publication-title: The Andes: Active Subduction Orogeny – volume: 56 start-page: 29 year: 2014 end-page: 34 ident: bb0050 article-title: Lithium extraction from β-spodumene through chlorination with chlorine gas publication-title: Miner. Eng. – volume: 309 start-page: 49 year: 2017 end-page: 62 ident: bb0170 article-title: Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves publication-title: Chem. Eng. J. – volume: 71 start-page: 49 year: 1987 end-page: 64 ident: bb0375 article-title: Cenozoic stratigraphy and basin tectonics of the Andes Mountains, 20–28 south latitude publication-title: AAPG Bull. – volume: 8 start-page: 1938 year: 2015 end-page: 1952 ident: bb0505 article-title: Hydrogen or batteries for grid storage? A net energy analysis publication-title: Energy Environ. Sci. – volume: 43 start-page: 8933 year: 2014 end-page: 8939 ident: bb0155 article-title: Lithium recovery from salt lake brine by H2TiO3 publication-title: Dalton Trans. – start-page: 528 year: 2012 end-page: 531 ident: bb0660 article-title: Lithium recovery techniques from solid and liquid mineral resources publication-title: Adv. Mater. Res. – reference: Zbranek, V., S. Bertolli, and P. Vargas. Production of lithium and potassium compounds. PATENT US8431005B1. Western Lithium Corp. – volume: 29 start-page: 421 year: 2011 end-page: 431 ident: bb0480 article-title: Selective recovery process of lithium from seawater using integrated ion exchange methods publication-title: Solvent Extr. Ion Exch. – ident: bb0330 article-title: Pure energy minerals – ident: bb0235 article-title: Water uses – volume: 48 start-page: 1049 year: 2017 end-page: 1067 ident: bb0125 article-title: Rainfall variability and trends of the past six decades (1950–2014) in the subtropical NW Argentine Andes publication-title: Clim. Dyn. – volume: 249 start-page: 77 year: 2013 end-page: 94 ident: bb0250 article-title: Structural control on geothermal circulation in the Cerro Tuzgle–Tocomar geothermal volcanic area (Puna plateau, Argentina) publication-title: J. Volcanol. Geotherm. Res. – volume: 165 start-page: A6119 year: 2018 end-page: A6135 ident: bb0045 article-title: Review - non-carbonaceous materials as cathodes for lithium-sulfur batteries publication-title: J. Electrochem. Soc. – ident: bb0335 article-title: Brisbane firm wins $250m to mine lithium to power world's phones – start-page: 273 year: 1978 end-page: 293 ident: bb0210 article-title: Saline lakes publication-title: Chemistry, Geology and Physics of Lakes – volume: 18 start-page: 311 year: 2014 end-page: 329 ident: bb0225 article-title: Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile publication-title: Extremophiles – volume: 3 start-page: 11493 year: 2015 end-page: 11502 ident: bb0560 article-title: A green recycling process designed for LiFePO4; cathode materials for Li-ion batteries publication-title: J. Mater. Chem. A – volume: 461-462 start-page: 785 year: 2013 end-page: 791 ident: bb0520 article-title: Sustainable governance of scarce metals: the case of lithium publication-title: Sci. Total Environ. – year: 2016 ident: bb0090 article-title: Lithium – reference: Lee, J.M. and W.C. Bauman. Recovery of lithium from brines. PATENT US 05/812,534. FMC Corporation. – year: 1985 ident: bb0600 article-title: The Continental Crust: Its Composition and Evolution – volume: 8 year: 2013 ident: bb0220 article-title: The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic Lake Socompa, Argentinean Andes publication-title: PLoS One – volume: 2 start-page: 6374 year: 2014 end-page: 6377 ident: bb0350 article-title: Selective lithium extraction from brines by chemical reaction with battery materials publication-title: J. Mater. Chem. A – volume: 50 start-page: 171 year: 2013 end-page: 183 ident: bb0650 article-title: Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern Tibetan Plateau, China publication-title: Ore Geol. Rev. – volume: 38 start-page: 92 year: 2013 end-page: 102 ident: bb0255 article-title: The role of climate in the accumulation of lithium-rich brine in the Central Andes publication-title: Appl. Geochem. – volume: 12 start-page: 3151 year: 2000 end-page: 3157 ident: bb0140 article-title: A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties publication-title: Chem. Mater. – volume: 14 start-page: 725 year: 2001 end-page: 734 ident: bb0070 article-title: Cenozoic evolution of the intramontane Santa María basin, Pampean Ranges, northwestern Argentina publication-title: J. S. Am. Earth Sci. – volume: 12 start-page: 53 year: 2015 end-page: 56 ident: bb0355 article-title: Side effects of green technologies: the potential environmental costs of lithium mining on high elevation Andean wetlands in the context of climate change publication-title: GLP News Newsletter of the Global Land Project – year: 2012 ident: bb0285 article-title: CRC Handbook of Chemistry and Physics – year: 2016 ident: bb0545 article-title: Roskill's Lithium: Global Industry, Markets & Outlook – volume: 34 start-page: 495 year: 1982 end-page: 503 ident: bb0310 article-title: Geothermal reinjection experience in Japan publication-title: JPT J. Pet. Technol. – year: 2017 ident: bb0060 publication-title: Book of Abstracts 3rd International Workshop on Lithium, Industrial Minerals and Energy (IWLiME) – year: 2017 ident: bb0360 article-title: USGS: 2015 Minerals Yearbook: lithium [advanced released] – volume: 117 start-page: 887 year: 2005 end-page: 901 ident: bb0300 article-title: Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina publication-title: Geol. Soc. Am. Bull. – volume: 65 start-page: 727 year: 2003 end-page: 731 ident: bb0510 article-title: Extreme solar total and UV irradiances due to cloud effect measured near the summer solstice at the high-altitude desertic plateau Puna of Atacama (Argentina) publication-title: J. Atmos. Sol. Terr. Phys. – volume: 96 start-page: 11 year: 2010 end-page: 12 ident: bb0215 article-title: Lithium's future supply, demand publication-title: North. Miner. – volume: 163 start-page: A1898 year: 2016 end-page: A1902 ident: bb0465 article-title: A LiMn2O4-polypyrrole system for the extraction of LiCl from natural brine publication-title: J. Electrochem. Soc. – volume: 43 start-page: 8017 year: 2016 end-page: 8025 ident: bb0185 article-title: Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano publication-title: Geophys. Res. Lett. – volume: 150 start-page: 192 year: 2014 end-page: 208 ident: bb0460 article-title: Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review publication-title: Hydrometallurgy – volume: 4 start-page: 143 year: 2017 end-page: 149 ident: bb0625 article-title: Optimized lithium recovery from brines by using an electrochemical ion-pumping process based on λ-MnO2 and nickel hexacyanoferrate publication-title: ChemElectroChem – volume: 20 start-page: 210 year: 2001 end-page: 234 ident: bb0190 article-title: Style and history of Andean deformation, Puna plateau, northwestern Argentina publication-title: Tectonics – volume: 89 start-page: 119 year: 2016 end-page: 137 ident: bb0165 article-title: Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: from mineral and brine resources publication-title: Miner. Eng. – volume: 403 start-page: 853 year: 2000 end-page: 858 ident: bb0475 article-title: Biodiversity hotspots for conservation priorities publication-title: Nature – volume: 68 start-page: 685 year: 2017 end-page: 692 ident: bb0490 article-title: Can Li-Ion batteries be the panacea for automotive applications? publication-title: Renew. Sust. Energ. Rev. – volume: 40 start-page: 2054 year: 2001 end-page: 2058 ident: bb0145 article-title: Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4 publication-title: Ind. Eng. Chem. Res. – volume: 624 start-page: 114 year: 2018 end-page: 132 ident: bb0290 article-title: Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile publication-title: Sci. Total Environ. – volume: 49 start-page: 9415 year: 2015 end-page: 9422 ident: bb0395 article-title: An electrochemical cell for selective lithium capture from seawater publication-title: Environ. Sci. Technol. – volume: 65 start-page: 986 year: 2013 end-page: 996 ident: bb0595 article-title: Lithium: sources, production, uses, and recovery outlook publication-title: JOM – volume: 27 start-page: 317 year: 1991 end-page: 325 ident: bb0110 article-title: The recovery of pure lithium chloride from “brines” containing higher contents of calcium chloride and magnesium chloride publication-title: Hydrometallurgy – volume: 5 start-page: 9487 year: 2012 end-page: 9491 ident: bb0500 article-title: Batteries for lithium recovery from brines publication-title: Energy Environ. Sci. – volume: 6 year: 2015 ident: bb0020 article-title: High-up: a remote reservoir of microbial extremophiles in central Andean wetlands publication-title: Front. Microbiol. – start-page: 427 year: 2012 end-page: 444 ident: bb0315 article-title: Cenozoic evolution of hinterland basins in the Andes and Tibet publication-title: Tectonics of Sedimentary Basins: Recent Advances – year: 2004 ident: bb0245 article-title: Handbook of Lithium and Natural Calcium Chloride – year: 2011 ident: 10.1016/j.scitotenv.2018.05.223_bb0370 article-title: Experimental weathering of lithium bearing source rocks, Clayton Valley, Nevada, USA – ident: 10.1016/j.scitotenv.2018.05.223_bb0360 – volume: 89 start-page: 119 year: 2016 ident: 10.1016/j.scitotenv.2018.05.223_bb0165 article-title: Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: from mineral and brine resources publication-title: Miner. Eng. doi: 10.1016/j.mineng.2016.01.010 – volume: 50 start-page: 171 year: 2013 ident: 10.1016/j.scitotenv.2018.05.223_bb0650 article-title: Geomorphic, hydroclimatic and hydrothermal controls on the formation of lithium brine deposits in the Qaidam Basin, northern Tibetan Plateau, China publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2012.11.001 – volume: 4 start-page: 13989 issue: 36 year: 2016 ident: 10.1016/j.scitotenv.2018.05.223_bb0195 article-title: A novel electroactive [small lambda]-MnO2/PPy/PSS core-shell nanorod coated electrode for selective recovery of lithium ions at low concentration publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05985F – volume: 104 start-page: 4245 issue: 10 year: 2004 ident: 10.1016/j.scitotenv.2018.05.223_bb0645 article-title: What are batteries, fuel cells, and supercapacitors? publication-title: Chem. Rev. doi: 10.1021/cr020730k – volume: 43 start-page: 8933 issue: 23 year: 2014 ident: 10.1016/j.scitotenv.2018.05.223_bb0155 article-title: Lithium recovery from salt lake brine by H2TiO3 publication-title: Dalton Trans. doi: 10.1039/C4DT00467A – volume: 51 start-page: 933 issue: 11 year: 2001 ident: 10.1016/j.scitotenv.2018.05.223_bb0485 article-title: Terrestrial ecoregions of the world: a new map of life on Earth publication-title: Bioscience doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 – volume: 309 start-page: 49 year: 2017 ident: 10.1016/j.scitotenv.2018.05.223_bb0170 article-title: Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.133 – volume: 172 start-page: 388 year: 2017 ident: 10.1016/j.scitotenv.2018.05.223_bb0590 article-title: Recovery and recycling of lithium: a review publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2016.08.031 – volume: 215 start-page: 640 year: 2016 ident: 10.1016/j.scitotenv.2018.05.223_bb0555 article-title: Solvent extraction of lithium ions by tri-n-butyl phosphate using a room temperature ionic liquid publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.01.025 – volume: 317 start-page: 184 year: 2013 ident: 10.1016/j.scitotenv.2018.05.223_bb0565 article-title: Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO) publication-title: Desalination doi: 10.1016/j.desal.2013.03.009 – volume: 163 start-page: A1898 issue: 9 year: 2016 ident: 10.1016/j.scitotenv.2018.05.223_bb0465 article-title: A LiMn2O4-polypyrrole system for the extraction of LiCl from natural brine publication-title: J. Electrochem. Soc. doi: 10.1149/2.0591609jes – volume: 20 start-page: 9888 issue: 32 year: 2014 ident: 10.1016/j.scitotenv.2018.05.223_bb0615 article-title: Selectivity of a lithium-recovery process based on LiFePO4 publication-title: Chem. Eur. J. doi: 10.1002/chem.201403535 – volume: vol. 11 start-page: 165 year: 1989 ident: 10.1016/j.scitotenv.2018.05.223_bb0345 article-title: Origin of lithium in Salar de Atacama, northern Chile – year: 2016 ident: 10.1016/j.scitotenv.2018.05.223_bb0470 – volume: 20 start-page: 210 issue: 2 year: 2001 ident: 10.1016/j.scitotenv.2018.05.223_bb0190 article-title: Style and history of Andean deformation, Puna plateau, northwestern Argentina publication-title: Tectonics doi: 10.1029/2000TC900031 – year: 2006 ident: 10.1016/j.scitotenv.2018.05.223_bb0410 article-title: Lithium resources – start-page: 241 year: 2000 ident: 10.1016/j.scitotenv.2018.05.223_bb0515 article-title: Possible volcanic sources of lithium in brines in Clayton Valley, Nevada – volume: 123 start-page: 95 issue: 2 year: 2014 ident: 10.1016/j.scitotenv.2018.05.223_bb0065 article-title: Evaporites and brines – geological, hydrological and chemical aspects of resource estimation publication-title: Trans. Inst. Min. Metall. Sect. B Appl. Earth Sci. – volume: 49 start-page: 9415 issue: 16 year: 2015 ident: 10.1016/j.scitotenv.2018.05.223_bb0395 article-title: An electrochemical cell for selective lithium capture from seawater publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00032 – year: 1985 ident: 10.1016/j.scitotenv.2018.05.223_bb0600 – volume: 14 start-page: 725 issue: 7 year: 2001 ident: 10.1016/j.scitotenv.2018.05.223_bb0070 article-title: Cenozoic evolution of the intramontane Santa María basin, Pampean Ranges, northwestern Argentina publication-title: J. S. Am. Earth Sci. doi: 10.1016/S0895-9811(01)00058-X – volume: 5 start-page: 737 issue: 4 year: 2015 ident: 10.1016/j.scitotenv.2018.05.223_bb0420 article-title: Extraction of lithium from lepidolite using mixed grinding with sodium sulfide followed by water leaching publication-title: Fortschr. Mineral. – volume: 71 start-page: 49 issue: 1 year: 1987 ident: 10.1016/j.scitotenv.2018.05.223_bb0375 article-title: Cenozoic stratigraphy and basin tectonics of the Andes Mountains, 20–28 south latitude publication-title: AAPG Bull. – volume: 2 start-page: 6374 issue: 18 year: 2014 ident: 10.1016/j.scitotenv.2018.05.223_bb0350 article-title: Selective lithium extraction from brines by chemical reaction with battery materials publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01101E – volume: 35 start-page: 2513 issue: 15 year: 2000 ident: 10.1016/j.scitotenv.2018.05.223_bb0440 article-title: Lithium extraction from a multicomponent mixture using supported liquid membranes publication-title: Sep. Sci. Technol. doi: 10.1081/SS-100102353 – volume: 12 start-page: 157 issue: 2 year: 1999 ident: 10.1016/j.scitotenv.2018.05.223_bb0405 article-title: Incorporation of the Paleogene foreland into the Neogene Puna plateau: the Salar de Antofalla area, NW Argentina publication-title: J. S. Am. Earth Sci. doi: 10.1016/S0895-9811(99)00012-7 – volume: 44 start-page: 6875 issue: 17 year: 2010 ident: 10.1016/j.scitotenv.2018.05.223_bb0180 article-title: High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of Northern Argentina publication-title: Environ. Sci. Technol. doi: 10.1021/es1010384 – volume: 18 start-page: 311 issue: 2 year: 2014 ident: 10.1016/j.scitotenv.2018.05.223_bb0225 article-title: Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile publication-title: Extremophiles doi: 10.1007/s00792-013-0617-6 – volume: 161 start-page: 48 year: 2016 ident: 10.1016/j.scitotenv.2018.05.223_bb0095 article-title: Least-cost options for integrating intermittent renewables in low-carbon power systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.09.090 – volume: 10 start-page: 2325 issue: 10 year: 2000 ident: 10.1016/j.scitotenv.2018.05.223_bb0135 article-title: Synthesis of spinel-type lithium antimony manganese oxides and their Li+ extraction/ion insertion reactions publication-title: J. Mater. Chem. doi: 10.1039/b002465l – ident: 10.1016/j.scitotenv.2018.05.223_bb0200 – start-page: 427 year: 2012 ident: 10.1016/j.scitotenv.2018.05.223_bb0315 article-title: Cenozoic evolution of hinterland basins in the Andes and Tibet – ident: 10.1016/j.scitotenv.2018.05.223_bb0090 – ident: 10.1016/j.scitotenv.2018.05.223_bb0115 – volume: 43 start-page: 8017 issue: 15 year: 2016 ident: 10.1016/j.scitotenv.2018.05.223_bb0185 article-title: Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL070076 – volume: 8 issue: 1 year: 2013 ident: 10.1016/j.scitotenv.2018.05.223_bb0220 article-title: The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic Lake Socompa, Argentinean Andes publication-title: PLoS One doi: 10.1371/journal.pone.0053497 – start-page: 101 year: 2014 ident: 10.1016/j.scitotenv.2018.05.223_bb0010 – volume: 622-623 start-page: 1448 year: 2018 ident: 10.1016/j.scitotenv.2018.05.223_bb0055 article-title: Low-carbon electricity production through the implementation of photovoltaic panels in rooftops in urban environments: a case study for three cities in Peru publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.003 – ident: 10.1016/j.scitotenv.2018.05.223_bb0160 – volume: 493 start-page: 910 year: 2014 ident: 10.1016/j.scitotenv.2018.05.223_bb0550 article-title: Potential mining of lithium, beryllium and strontium from oilfield wastewater after enrichment in constructed wetlands and ponds publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.06.097 – volume: 41 start-page: 1647 issue: 12 year: 2012 ident: 10.1016/j.scitotenv.2018.05.223_bb0150 article-title: Selective uptake of lithium ion from brine by H1.33Mn 1.67O4 and H1.6Mn1.6O4 publication-title: Chem. Lett. doi: 10.1246/cl.2012.1647 – volume: 8 start-page: 517 issue: 3 year: 1989 ident: 10.1016/j.scitotenv.2018.05.223_bb0585 article-title: Late Cenozoic tectonism and landscape development in the foreland of the Andes: Northern Sierras Pampeanas (26°–28°S), Argentina publication-title: Tectonics doi: 10.1029/TC008i003p00517 – volume: 56 start-page: 29 year: 2014 ident: 10.1016/j.scitotenv.2018.05.223_bb0050 article-title: Lithium extraction from β-spodumene through chlorination with chlorine gas publication-title: Miner. Eng. doi: 10.1016/j.mineng.2013.10.026 – ident: 10.1016/j.scitotenv.2018.05.223_bb0630 – volume: 117–118 start-page: 64 year: 2012 ident: 10.1016/j.scitotenv.2018.05.223_bb0040 article-title: Recovery of lithium from Uyuni salar brine publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2012.02.008 – volume: 165 start-page: A6119 issue: 1 year: 2018 ident: 10.1016/j.scitotenv.2018.05.223_bb0045 article-title: Review - non-carbonaceous materials as cathodes for lithium-sulfur batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.0181801jes – volume: 96 start-page: 11 issue: 35 year: 2010 ident: 10.1016/j.scitotenv.2018.05.223_bb0215 article-title: Lithium's future supply, demand publication-title: North. Miner. – volume: 4 start-page: 351 issue: 4 year: 1991 ident: 10.1016/j.scitotenv.2018.05.223_bb0265 article-title: Andean reactivation of the Cretaceous Salta rift, northwestern Argentina publication-title: J. S. Am. Earth Sci. doi: 10.1016/0895-9811(91)90007-8 – ident: 10.1016/j.scitotenv.2018.05.223_bb0075 – volume: 404 start-page: 87 year: 2017 ident: 10.1016/j.scitotenv.2018.05.223_bb0385 article-title: Assessment of desalination technologies for treatment of a highly saline brine from a potential CO2 storage site publication-title: Desalination doi: 10.1016/j.desal.2016.11.018 – year: 2012 ident: 10.1016/j.scitotenv.2018.05.223_bb0400 – volume: 12 issue: 10 year: 2017 ident: 10.1016/j.scitotenv.2018.05.223_bb0130 article-title: A degradation-based sorting method for lithium-ion battery reuse publication-title: PLoS One doi: 10.1371/journal.pone.0185922 – volume: 12 start-page: 53 year: 2015 ident: 10.1016/j.scitotenv.2018.05.223_bb0355 article-title: Side effects of green technologies: the potential environmental costs of lithium mining on high elevation Andean wetlands in the context of climate change publication-title: GLP News Newsletter of the Global Land Project – volume: 108 start-page: 1691 issue: 7 year: 2013 ident: 10.1016/j.scitotenv.2018.05.223_bb0305 article-title: Silicate melt inclusion evidence for extreme pre-eruptive enrichment and post-eruptive depletion of lithium in silicic volcanic rocks of the Western United States: implications for the origin of lithium-rich brines publication-title: Econ. Geol. doi: 10.2113/econgeo.108.7.1691 – volume: 8 start-page: 1938 issue: 7 year: 2015 ident: 10.1016/j.scitotenv.2018.05.223_bb0505 article-title: Hydrogen or batteries for grid storage? A net energy analysis publication-title: Energy Environ. Sci. doi: 10.1039/C4EE04041D – volume: 12 start-page: 3151 issue: 10 year: 2000 ident: 10.1016/j.scitotenv.2018.05.223_bb0140 article-title: A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties publication-title: Chem. Mater. doi: 10.1021/cm0000191 – volume: 15 start-page: 7690 issue: 20 year: 2013 ident: 10.1016/j.scitotenv.2018.05.223_bb0430 article-title: Highly selective lithium recovery from brine using a λ-MnO 2-Ag battery publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp50919b – volume: 3 start-page: 11493 issue: 21 year: 2015 ident: 10.1016/j.scitotenv.2018.05.223_bb0560 article-title: A green recycling process designed for LiFePO4; cathode materials for Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02540K – volume: 1 start-page: 115 issue: 2 year: 1963 ident: 10.1016/j.scitotenv.2018.05.223_bb0380 article-title: Process for the extraction of lithium from Dead Sea solutions publication-title: Isr. J. Chem. doi: 10.1002/ijch.196300021 – volume: 5 start-page: 9487 issue: 11 year: 2012 ident: 10.1016/j.scitotenv.2018.05.223_bb0500 article-title: Batteries for lithium recovery from brines publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22977c – volume: 8 start-page: 2514 issue: 15 year: 2015 ident: 10.1016/j.scitotenv.2018.05.223_bb0620 article-title: Nickel hexacyanoferrate as suitable alternative to ag for electrochemical lithium recovery publication-title: ChemSusChem doi: 10.1002/cssc.201500368 – start-page: 528 year: 2012 ident: 10.1016/j.scitotenv.2018.05.223_bb0660 article-title: Lithium recovery techniques from solid and liquid mineral resources publication-title: Adv. Mater. Res. – volume: 11 start-page: 19 issue: 1 year: 2012 ident: 10.1016/j.scitotenv.2018.05.223_bb0100 article-title: Li-O2 and Li-S batteries with high energy storage publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 27 start-page: 317 issue: 3 year: 1991 ident: 10.1016/j.scitotenv.2018.05.223_bb0110 article-title: The recovery of pure lithium chloride from “brines” containing higher contents of calcium chloride and magnesium chloride publication-title: Hydrometallurgy doi: 10.1016/0304-386X(91)90056-R – ident: 10.1016/j.scitotenv.2018.05.223_bb0425 – ident: 10.1016/j.scitotenv.2018.05.223_bb0280 – volume: 8 issue: APR year: 2017 ident: 10.1016/j.scitotenv.2018.05.223_bb0610 article-title: Stratified bacterial diversity along physico-chemical gradients in high-altitude modern stromatolites publication-title: Front. Microbiol. – start-page: 9 year: 2013 ident: 10.1016/j.scitotenv.2018.05.223_bb0085 article-title: A preliminary deposit model for lithium brines – year: 2012 ident: 10.1016/j.scitotenv.2018.05.223_bb0285 – volume: 507 start-page: 26 year: 2014 ident: 10.1016/j.scitotenv.2018.05.223_bb0635 article-title: The rechargeable revolution: a better battery publication-title: Nature doi: 10.1038/507026a – volume: 461-462 start-page: 785 year: 2013 ident: 10.1016/j.scitotenv.2018.05.223_bb0520 article-title: Sustainable governance of scarce metals: the case of lithium publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.05.042 – volume: 15 start-page: 123 issue: 1–2 year: 2009 ident: 10.1016/j.scitotenv.2018.05.223_bb0530 article-title: Origin of salts and brine evolution of Bolivian and Chilean salars publication-title: Aquat. Geochem. doi: 10.1007/s10498-008-9056-x – volume: 28 start-page: 1357 issue: 6 year: 1993 ident: 10.1016/j.scitotenv.2018.05.223_bb0105 article-title: Selective extraction of lithium chloride from brines publication-title: Sep. Sci. Technol. doi: 10.1080/01496399308018042 – volume: 34 start-page: 495 issue: 3 year: 1982 ident: 10.1016/j.scitotenv.2018.05.223_bb0310 article-title: Geothermal reinjection experience in Japan publication-title: JPT J. Pet. Technol. doi: 10.2118/9925-PA – volume: 376 start-page: 35 year: 2015 ident: 10.1016/j.scitotenv.2018.05.223_bb0435 article-title: Study on extraction of lithium from salt lake brine by membrane electrolysis publication-title: Desalination doi: 10.1016/j.desal.2015.08.013 – volume: 24 start-page: 1 issue: 4 year: 2005 ident: 10.1016/j.scitotenv.2018.05.223_bb0120 article-title: Oligocene range uplift and development of plateau morphology in the southern central Andes publication-title: Tectonics doi: 10.1029/2004TC001762 – volume: 19 start-page: 452 issue: 3 year: 2000 ident: 10.1016/j.scitotenv.2018.05.223_bb0450 article-title: Response of intracontinental deformation in the central Andes to late Cenozoic reorganization of South American Plate motions publication-title: Tectonics doi: 10.1029/1999TC001102 – year: 2017 ident: 10.1016/j.scitotenv.2018.05.223_bb0060 – volume: 8 start-page: 389 issue: 2 year: 2015 ident: 10.1016/j.scitotenv.2018.05.223_bb0580 article-title: Power-to-What?-environmental assessment of energy storage systems publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03051F – ident: 10.1016/j.scitotenv.2018.05.223_bb0260 – year: 2004 ident: 10.1016/j.scitotenv.2018.05.223_bb0245 – volume: 38 start-page: 92 year: 2013 ident: 10.1016/j.scitotenv.2018.05.223_bb0255 article-title: The role of climate in the accumulation of lithium-rich brine in the Central Andes publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2013.09.002 – volume: 19 start-page: 401 issue: 4 year: 1991 ident: 10.1016/j.scitotenv.2018.05.223_bb0025 article-title: Giant evaporite belts of the Neogene central Andes publication-title: Geology doi: 10.1130/0091-7613(1991)019<0401:GEBOTN>2.3.CO;2 – volume: 40 start-page: 2054 issue: 9 year: 2001 ident: 10.1016/j.scitotenv.2018.05.223_bb0145 article-title: Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie000911h – start-page: 273 year: 1978 ident: 10.1016/j.scitotenv.2018.05.223_bb0210 article-title: Saline lakes – volume: 6 issue: 1404 year: 2015 ident: 10.1016/j.scitotenv.2018.05.223_bb0020 article-title: High-up: a remote reservoir of microbial extremophiles in central Andean wetlands publication-title: Front. Microbiol. – year: 1995 ident: 10.1016/j.scitotenv.2018.05.223_bb0175 article-title: Cerro Tuzgle geothermal prospect, Jujuy, Argentina – volume: 16 start-page: 1735 issue: 3 year: 2012 ident: 10.1016/j.scitotenv.2018.05.223_bb0270 article-title: Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2011.11.023 – ident: 10.1016/j.scitotenv.2018.05.223_bb0655 – volume: 110 start-page: 252 year: 2013 ident: 10.1016/j.scitotenv.2018.05.223_bb0640 article-title: Lithium availability and future production outlooks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.04.005 – volume: 52 start-page: 35 issue: 1 year: 2017 ident: 10.1016/j.scitotenv.2018.05.223_bb0575 article-title: Lithium- and boron-bearing brines in the Central Andes: exploring hydrofacies on the eastern Puna plateau between 23° and 23°30′S publication-title: Mineral. Deposita doi: 10.1007/s00126-016-0656-x – ident: 10.1016/j.scitotenv.2018.05.223_bb0235 – volume: 4 start-page: 143 issue: 1 year: 2017 ident: 10.1016/j.scitotenv.2018.05.223_bb0625 article-title: Optimized lithium recovery from brines by using an electrochemical ion-pumping process based on λ-MnO2 and nickel hexacyanoferrate publication-title: ChemElectroChem doi: 10.1002/celc.201600509 – ident: 10.1016/j.scitotenv.2018.05.223_bb0035 – volume: 150 start-page: 192 year: 2014 ident: 10.1016/j.scitotenv.2018.05.223_bb0460 article-title: Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2014.10.012 – volume: 53 start-page: 6103 issue: 14 year: 2014 ident: 10.1016/j.scitotenv.2018.05.223_bb0365 article-title: Production of lithium hydroxide from lake brines through electro-electrodialysis with bipolar membranes (EEDBM) publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie404334s – volume: 120 start-page: 15875 issue: 29 year: 2016 ident: 10.1016/j.scitotenv.2018.05.223_bb0445 article-title: Surface chemistry and lithium-ion exchange in LiMnO4 for the electrochemical selective extraction of LiCl from natural salt lake brines publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b11722 – ident: 10.1016/j.scitotenv.2018.05.223_bb0080 – volume: 106 start-page: 1125 issue: 7 year: 2011 ident: 10.1016/j.scitotenv.2018.05.223_bb0320 article-title: The evaluation of brine prospects and the requirement for modifications to filing standards publication-title: Econ. Geol. doi: 10.2113/econgeo.106.7.1225 – volume: 19 start-page: 117 issue: 1 year: 1987 ident: 10.1016/j.scitotenv.2018.05.223_bb0005 article-title: Synthetic inorganic ion-exchange materials. XLV. Recovery of lithium from seawater and hydrothermal water by titanium (iv) antimonate cation exchanger publication-title: Hydrometallurgy doi: 10.1016/0304-386X(87)90045-4 – volume: 48 start-page: 55 year: 2012 ident: 10.1016/j.scitotenv.2018.05.223_bb0390 article-title: Global lithium resources: relative importance of pegmatite, brine and other deposits publication-title: Ore Geol. Rev. doi: 10.1016/j.oregeorev.2012.05.006 – year: 1982 ident: 10.1016/j.scitotenv.2018.05.223_bb0455 – volume: 7 start-page: 4 issue: 2 year: 2013 ident: 10.1016/j.scitotenv.2018.05.223_bb0525 article-title: Battery management system: an overview of its application in the smart grid and electric vehicles publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2013.2250351 – volume: 63 start-page: 249 issue: 3–4 year: 2003 ident: 10.1016/j.scitotenv.2018.05.223_bb0535 article-title: The origin of brines and salts in Chilean salars: a hydrochemical review publication-title: Earth Sci. Rev. doi: 10.1016/S0012-8252(03)00037-0 – volume: 3 start-page: 593 issue: 4 year: 2017 ident: 10.1016/j.scitotenv.2018.05.223_bb0570 article-title: Lithium extraction from Chinese salt-lake brines: opportunities, challenges, and future outlook publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C7EW00020K – year: 1997 ident: 10.1016/j.scitotenv.2018.05.223_bb0275 – volume: 3 start-page: 23 issue: 1 year: 1978 ident: 10.1016/j.scitotenv.2018.05.223_bb0240 article-title: Lithium chloride extraction by n-butanol publication-title: Hydrometallurgy doi: 10.1016/0304-386X(78)90004-X – volume: 65 start-page: 986 issue: 8 year: 2013 ident: 10.1016/j.scitotenv.2018.05.223_bb0595 article-title: Lithium: sources, production, uses, and recovery outlook publication-title: JOM doi: 10.1007/s11837-013-0666-4 – start-page: 265 year: 2006 ident: 10.1016/j.scitotenv.2018.05.223_bb0030 article-title: Tectonics, climate, and landscape evolution of the southern Central Andes: the Argentine Puna Plateau and adjacent regions between 22 and 28°S lat – year: 1990 ident: 10.1016/j.scitotenv.2018.05.223_bb0205 article-title: Geology and resources of salars in the central Andes – volume: 48 start-page: 1049 issue: 3–4 year: 2017 ident: 10.1016/j.scitotenv.2018.05.223_bb0125 article-title: Rainfall variability and trends of the past six decades (1950–2014) in the subtropical NW Argentine Andes publication-title: Clim. Dyn. doi: 10.1007/s00382-016-3127-2 – volume: 153 start-page: 154 year: 2015 ident: 10.1016/j.scitotenv.2018.05.223_bb0295 article-title: Extraction of lithium from lepidolite via iron sulphide roasting and water leaching publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.03.002 – volume: 403 start-page: 853 issue: 6772 year: 2000 ident: 10.1016/j.scitotenv.2018.05.223_bb0475 article-title: Biodiversity hotspots for conservation priorities publication-title: Nature doi: 10.1038/35002501 – year: 2016 ident: 10.1016/j.scitotenv.2018.05.223_bb0545 – volume: 624 start-page: 114 year: 2018 ident: 10.1016/j.scitotenv.2018.05.223_bb0290 article-title: Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.134 – volume: vol. 412 year: 1961 ident: 10.1016/j.scitotenv.2018.05.223_bb0415 article-title: Salinity and hydrology of closed lakes – volume: 68 start-page: 685 year: 2017 ident: 10.1016/j.scitotenv.2018.05.223_bb0490 article-title: Can Li-Ion batteries be the panacea for automotive applications? publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2016.10.019 – volume: 20 start-page: 237 issue: 2 year: 1973 ident: 10.1016/j.scitotenv.2018.05.223_bb0540 article-title: Separation of lithium from dead sea brines by gel permeation chromatography publication-title: Talanta doi: 10.1016/0039-9140(73)80275-9 – volume: 117 start-page: 887 issue: 7 year: 2005 ident: 10.1016/j.scitotenv.2018.05.223_bb0300 article-title: Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro Basin, NW Argentina publication-title: Geol. Soc. Am. Bull. doi: 10.1130/B25602.1 – volume: 29 start-page: 421 issue: 3 year: 2011 ident: 10.1016/j.scitotenv.2018.05.223_bb0480 article-title: Selective recovery process of lithium from seawater using integrated ion exchange methods publication-title: Solvent Extr. Ion Exch. doi: 10.1080/07366299.2011.573435 – volume: 7 issue: AUG year: 2016 ident: 10.1016/j.scitotenv.2018.05.223_bb0230 article-title: Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile publication-title: Front. Microbiol. – volume: 164 start-page: E586 issue: 14 year: 2017 ident: 10.1016/j.scitotenv.2018.05.223_bb0495 article-title: Influence of hydrodynamics on the lithium recovery efficiency in an electrochemical ion pumping separation process publication-title: J. Electrochem. Soc. doi: 10.1149/2.1531714jes – volume: 249 start-page: 77 year: 2013 ident: 10.1016/j.scitotenv.2018.05.223_bb0250 article-title: Structural control on geothermal circulation in the Cerro Tuzgle–Tocomar geothermal volcanic area (Puna plateau, Argentina) publication-title: J. Volcanol. Geotherm. Res. doi: 10.1016/j.jvolgeores.2012.09.009 – volume: 65 start-page: 727 issue: 6 year: 2003 ident: 10.1016/j.scitotenv.2018.05.223_bb0510 article-title: Extreme solar total and UV irradiances due to cloud effect measured near the summer solstice at the high-altitude desertic plateau Puna of Atacama (Argentina) publication-title: J. Atmos. Sol. Terr. Phys. doi: 10.1016/S1364-6826(03)00084-1 |
| SSID | ssj0000781 |
| Score | 2.6957889 |
| SecondaryResourceType | review_article |
| Snippet | The electrification of our world is driving a strong increase in demand for lithium. Energy storage is paramount in electric and hybrid vehicles, in green but... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1188 |
| SubjectTerms | Aquifer Batteries Brine deposits chemical composition climate energy environmental impact Lithium lithium batteries Magnesium mining raw materials sulfur sustainable communities Sustainable mining technology vehicles (equipment) wastes water utilization weather |
| Title | Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing |
| URI | https://dx.doi.org/10.1016/j.scitotenv.2018.05.223 https://www.ncbi.nlm.nih.gov/pubmed/29929287 https://www.proquest.com/docview/2058505402 https://www.proquest.com/docview/2084067117 |
| Volume | 639 |
| WOSCitedRecordID | wos000436806200117&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000781 issn: 0048-9697 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELa6DiQkhGAwKC-TkfhWdUqcFzv7VlVFgKYJiTH1W-Q47kjVJdWalu4f8Pf4R5xzTtoyxkCIL1EVxekl9-R8Z99zR8gbJ5Ip2N6wx8MEAhQW8Z4MZWAqYXLFUpnqqm7B2TE_ORGjUfSx1fpec2GWU57nYrWKZv9V1XAOlG2os3-h7uamcAJ-g9LhCGqH4x8p_jgrv2SLi64JdUH4K2SQJIblN0ce-jKryvnLr11wVyuRqmTDc5OC0zVlqE3pCMt6686K0iQUwTUbnDhTqQPplVlebT1cVH0mbNWBinpQT4mTNRxrO2LTEsqi3L7rBpZWiKSzzOwpZOtFAzmfwXNkSM4ZwLxedO1KeNFkEskpUr4HU7kA9IMJxGyArRUOtyo3ixxPXHa7Rr1BU-6DpQ4xufdQo_UWPILBSMGvzXuIxZKsgYZ4SmxM9i7D5sfXJhJc05gcgh9Smve8NFmAwhR5ZciP_qlK9ycjjxEHTKRpcxjukF3Gg0i0yW7__XD0Ye0ecIFtHK38W0mHv_y7m1ymm0KiyjU6fUge2JiG9hGLj0hL53vkLnY5vdoj-8NN4FCLgvkeuY9rxhSpcI_JNwtdWkOXGuhShO4R7dMKuBSAS2vgUgAurYBLa-BSA1wqaQNcugVcisClWU4BuBSBSwFAdA3cJ-Tz2-Hp4F3PdgrpKT_wSrAsTgKhgseFDnx3nAiVBkwJX8H7dVKXjSEucBPlj10N_qgKhdYy0Z6fSuEn0lHePmnnRa6fEaohBmBhpMauUr5MUtMxxPeUp9lYcuXIDglrZcTKltE33VymcZ0vOYkbLcZGi7ETxKDFDnGagTOsJHP7kKNa27F1iNHRjQGmtw9-XeMjhinD7APKXBeLOVwUiMCEaux31whw9bnr8g55iuBqpAYPlkVM8Of_It4Lcm_9rb8k7fJyoV-RO2pZZvPLA7LDR-LAfjo_AL2JCA0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lithium+recovery+from+brines%3A+A+vital+raw+material+for+green+energies+with+a+potential+environmental+impact+in+its+mining+and+processing&rft.jtitle=The+Science+of+the+total+environment&rft.au=Flexer%2C+Victoria&rft.au=Baspineiro%2C+Celso+Fernando&rft.au=Galli%2C+Claudia+In%C3%A9s&rft.date=2018-10-15&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=639&rft.spage=1188&rft.epage=1204&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.05.223&rft.externalDocID=S0048969718318746 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |