Novel strategy for applying hierarchical density-based spatial clustering of applications with noise towards spectroscopic analysis and detection of melanocytic lesions

Advancements in dermoscopy techniques have elucidated identifiable characteristics of melanoma which revolve around the asymmetrical constitution of melanocytic lesions consequent of unfettered proliferative growth as a malignant lesion. This study explores the applications of hierarchical density-b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Melanoma research Ročník 31; číslo 6; s. 526
Hlavní autoři: Ye, Jason Yuan, Yu, Christopher, Husman, Tiffany, Chen, Bryan, Trikala, Aryaman
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.12.2021
Témata:
ISSN:1473-5636, 1473-5636
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Advancements in dermoscopy techniques have elucidated identifiable characteristics of melanoma which revolve around the asymmetrical constitution of melanocytic lesions consequent of unfettered proliferative growth as a malignant lesion. This study explores the applications of hierarchical density-based spatial clustering of applications with noise (HDBSCAN) in terms of the direct diagnostic implications of applying agglomerative clustering in the spectroscopic analysis of malignant melanocytic lesions and benign dermatologic spots. 100 images of benign (n = 50) and malignant moles (n = 50) were sampled from the International Skin Imaging Collaboration Archive and processed through two separate Python algorithms. The first of which deconvolutes the three-digit tupled integer identifiers of pixel color in image composition into three separate matrices corresponding to the red, green and blue color channel. Statistical characterization of integer variance was utilized to determine the optimal channel for comparative analysis between malignant and benign image groups. The second applies HDBSCAN to the matrices, identifying agglomerative clustering in the dataset. The results indicate the potential diagnostic applications of HDBSCAN analysis in fast-processing dermoscopy, as optimization of clustering parameters according to a binary search strategy produced an accuracy of 85% in the classification of malignant and benign melanocytic lesions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1473-5636
1473-5636
DOI:10.1097/CMR.0000000000000771