Toward a Clearer Definition of Selection Bias When Estimating Causal Effects

Selection bias remains a subject of controversy. Existing definitions of selection bias are ambiguous. To improve communication and the conduct of epidemiologic research focused on estimating causal effects, we propose to unify the various existing definitions of selection bias in the literature by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Epidemiology (Cambridge, Mass.) Ročník 33; číslo 5; s. 699
Hlavní autoři: Lu, Haidong, Cole, Stephen R, Howe, Chanelle J, Westreich, Daniel
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.09.2022
Témata:
ISSN:1531-5487, 1531-5487
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Selection bias remains a subject of controversy. Existing definitions of selection bias are ambiguous. To improve communication and the conduct of epidemiologic research focused on estimating causal effects, we propose to unify the various existing definitions of selection bias in the literature by considering any bias away from the true causal effect in the referent population (the population before the selection process), due to selecting the sample from the referent population, as selection bias. Given this unified definition, selection bias can be further categorized into two broad types: type 1 selection bias owing to restricting to one or more level(s) of a collider (or a descendant of a collider) and type 2 selection bias owing to restricting to one or more level(s) of an effect measure modifier. To aid in explaining these two types-which can co-occur-we start by reviewing the concepts of the target population, the study sample, and the analytic sample. Then, we illustrate both types of selection bias using causal diagrams. In addition, we explore the differences between these two types of selection bias, and describe methods to minimize selection bias. Finally, we use an example of "M-bias" to demonstrate the advantage of classifying selection bias into these two types.
AbstractList Selection bias remains a subject of controversy. Existing definitions of selection bias are ambiguous. To improve communication and the conduct of epidemiologic research focused on estimating causal effects, we propose to unify the various existing definitions of selection bias in the literature by considering any bias away from the true causal effect in the referent population (the population before the selection process), due to selecting the sample from the referent population, as selection bias. Given this unified definition, selection bias can be further categorized into two broad types: type 1 selection bias owing to restricting to one or more level(s) of a collider (or a descendant of a collider) and type 2 selection bias owing to restricting to one or more level(s) of an effect measure modifier. To aid in explaining these two types-which can co-occur-we start by reviewing the concepts of the target population, the study sample, and the analytic sample. Then, we illustrate both types of selection bias using causal diagrams. In addition, we explore the differences between these two types of selection bias, and describe methods to minimize selection bias. Finally, we use an example of "M-bias" to demonstrate the advantage of classifying selection bias into these two types.
Selection bias remains a subject of controversy. Existing definitions of selection bias are ambiguous. To improve communication and the conduct of epidemiologic research focused on estimating causal effects, we propose to unify the various existing definitions of selection bias in the literature by considering any bias away from the true causal effect in the referent population (the population before the selection process), due to selecting the sample from the referent population, as selection bias. Given this unified definition, selection bias can be further categorized into two broad types: type 1 selection bias owing to restricting to one or more level(s) of a collider (or a descendant of a collider) and type 2 selection bias owing to restricting to one or more level(s) of an effect measure modifier. To aid in explaining these two types-which can co-occur-we start by reviewing the concepts of the target population, the study sample, and the analytic sample. Then, we illustrate both types of selection bias using causal diagrams. In addition, we explore the differences between these two types of selection bias, and describe methods to minimize selection bias. Finally, we use an example of "M-bias" to demonstrate the advantage of classifying selection bias into these two types.Selection bias remains a subject of controversy. Existing definitions of selection bias are ambiguous. To improve communication and the conduct of epidemiologic research focused on estimating causal effects, we propose to unify the various existing definitions of selection bias in the literature by considering any bias away from the true causal effect in the referent population (the population before the selection process), due to selecting the sample from the referent population, as selection bias. Given this unified definition, selection bias can be further categorized into two broad types: type 1 selection bias owing to restricting to one or more level(s) of a collider (or a descendant of a collider) and type 2 selection bias owing to restricting to one or more level(s) of an effect measure modifier. To aid in explaining these two types-which can co-occur-we start by reviewing the concepts of the target population, the study sample, and the analytic sample. Then, we illustrate both types of selection bias using causal diagrams. In addition, we explore the differences between these two types of selection bias, and describe methods to minimize selection bias. Finally, we use an example of "M-bias" to demonstrate the advantage of classifying selection bias into these two types.
Author Howe, Chanelle J
Cole, Stephen R
Westreich, Daniel
Lu, Haidong
Author_xml – sequence: 1
  givenname: Haidong
  surname: Lu
  fullname: Lu, Haidong
  organization: From the Public Health Modeling Unit and Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
– sequence: 2
  givenname: Stephen R
  surname: Cole
  fullname: Cole, Stephen R
  organization: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
– sequence: 3
  givenname: Chanelle J
  surname: Howe
  fullname: Howe, Chanelle J
  organization: Department of Epidemiology, School of Public Health, Brown University, RI
– sequence: 4
  givenname: Daniel
  surname: Westreich
  fullname: Westreich, Daniel
  organization: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35700187$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAUhYOMOA_9ByJZuumYNEmTLrVTH1Bw4YjLctu50UgnHZsW8d9bdYQ5m3sOfFwOZ04mvvVIyDlnS85SfZWv8iU7EFc8OSIzrgSPlDR6cuCnZB7C-8howdUJmQqlx2D0jBTr9hO6DQWaNQgddnSF1nnXu9bT1tInbLD-DTcOAn15Q0_z0Lst9M6_0gyGAA3NrR2pcEqOLTQBz_Z3QZ5v83V2HxWPdw_ZdRHVUgkRyQriWtaVTSqdpmMnLYSJGXAwIFMpLausSTFNhDZMaaPQ8thY5FLxasNUvCCXf393XfsxYOjLrQs1Ng14bIdQxolOlJIJ_0Ev9uhQbXFT7rqxevdV_i8QfwNSpl3P
CitedBy_id crossref_primary_10_1001_jamainternmed_2024_4428
crossref_primary_10_1016_j_healthplace_2024_103240
crossref_primary_10_1038_s41598_025_15641_1
crossref_primary_10_1177_00469580231220476
crossref_primary_10_1097_EDE_0000000000001658
crossref_primary_10_1093_ije_dyaf109
crossref_primary_10_1111_ppe_13102
crossref_primary_10_1212_WNL_0000000000210169
crossref_primary_10_1016_j_medj_2023_08_005
crossref_primary_10_3389_fpubh_2022_938156
crossref_primary_10_3389_fmed_2023_1059203
crossref_primary_10_1097_EDE_0000000000001660
crossref_primary_10_1038_s41405_024_00195_7
crossref_primary_10_1093_ije_dyae141
crossref_primary_10_1093_aje_kwae282
crossref_primary_10_1097_MD_0000000000038497
crossref_primary_10_1289_EHP12016
crossref_primary_10_1073_pnas_2513887122
crossref_primary_10_1515_em_2023_0042
crossref_primary_10_1093_aje_kwad203
crossref_primary_10_1097_EDE_0000000000001711
crossref_primary_10_1111_ppe_70044
crossref_primary_10_1016_j_jbi_2025_104853
crossref_primary_10_1093_ije_dyad102
crossref_primary_10_2147_JIR_S493145
crossref_primary_10_1007_s10654_024_01194_6
crossref_primary_10_1038_s41591_023_02519_w
crossref_primary_10_1093_aje_kwae139
crossref_primary_10_1186_s12874_024_02302_6
crossref_primary_10_3390_jcm14031035
crossref_primary_10_1080_17437199_2024_2402809
crossref_primary_10_1093_ije_dyaf003
crossref_primary_10_1007_s40471_023_00325_z
crossref_primary_10_1016_j_annepidem_2022_11_004
crossref_primary_10_3390_cancers15194674
crossref_primary_10_12688_wellcomeopenres_17975_2
crossref_primary_10_1515_em_2023_0015
crossref_primary_10_3390_encyclopedia5020056
crossref_primary_10_1111_cts_70093
crossref_primary_10_1371_journal_pone_0319796
crossref_primary_10_1097_EDE_0000000000001567
crossref_primary_10_1007_s11255_024_04311_2
crossref_primary_10_1016_j_chiabu_2023_106328
crossref_primary_10_1093_aje_kwad213
crossref_primary_10_1007_s13181_025_01083_8
crossref_primary_10_1177_00469580231166811
crossref_primary_10_1177_00491241251314037
crossref_primary_10_1093_aje_kwae145
crossref_primary_10_1089_ham_2024_0030
crossref_primary_10_1098_rsos_251099
crossref_primary_10_1097_EDE_0000000000001735
crossref_primary_10_1136_bmjopen_2022_071513
crossref_primary_10_1017_ehs_2023_17
crossref_primary_10_1093_aje_kwae234
crossref_primary_10_57264_cer_2024_0064
crossref_primary_10_1177_21925682241304335
crossref_primary_10_1093_ije_dyae054
crossref_primary_10_1186_s12966_024_01629_z
crossref_primary_10_1371_journal_pmed_1004535
crossref_primary_10_1097_EDE_0000000000001864
crossref_primary_10_1136_bmj_2023_078226
crossref_primary_10_1136_bmjopen_2022_068974
crossref_primary_10_2196_58860
crossref_primary_10_1016_j_cjca_2024_12_022
crossref_primary_10_1093_aje_kwae367
crossref_primary_10_1289_EHP13824
crossref_primary_10_64780_jole_v1i2_64
crossref_primary_10_1177_25152459241260256
crossref_primary_10_1093_aje_kwae405
crossref_primary_10_3389_fnins_2022_1080066
crossref_primary_10_1093_aje_kwaf174
crossref_primary_10_1016_j_cjca_2024_02_005
crossref_primary_10_1093_jamia_ocae098
crossref_primary_10_1007_s10654_025_01211_2
crossref_primary_10_1136_bmjopen_2023_072178
crossref_primary_10_1016_j_canep_2024_102724
crossref_primary_10_1007_s11136_025_04007_9
crossref_primary_10_1016_j_cjcpc_2024_05_001
crossref_primary_10_1111_dom_16081
crossref_primary_10_1002_trc2_70036
crossref_primary_10_3390_admsci14060123
crossref_primary_10_1113_JP287038
crossref_primary_10_1016_j_envres_2025_122316
crossref_primary_10_1093_aje_kwae336
crossref_primary_10_1093_aje_kwae292
crossref_primary_10_1002_cam4_70159
crossref_primary_10_1080_2153599X_2024_2377545
crossref_primary_10_1136_bmj_2022_072148
crossref_primary_10_1136_bmj_2023_076365
crossref_primary_10_1088_1361_6498_ade68e
crossref_primary_10_1016_j_ajog_2025_02_007
crossref_primary_10_1016_j_surg_2024_109007
crossref_primary_10_1001_jamanetworkopen_2024_49556
crossref_primary_10_1093_ije_dyac221
crossref_primary_10_3390_nursrep15050179
crossref_primary_10_1007_s00228_024_03662_0
crossref_primary_10_1016_j_semcancer_2023_06_001
ContentType Journal Article
Copyright Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1097/EDE.0000000000001516
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Public Health
EISSN 1531-5487
ExternalDocumentID 35700187
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: DP2 HD084070
GroupedDBID ---
.-D
.Z2
01R
0R~
1J1
40H
4Q1
4Q2
4Q3
5GY
5VS
71W
77Y
7O~
8L-
AAAAV
AAAXR
AACGO
AAGIX
AAHPQ
AAIKC
AAIQE
AAMNW
AAMOA
AAMTA
AANCE
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABPLY
ABTLG
ABVCZ
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFO
ACGFS
ACHQT
ACIJW
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ADGGA
ADHPY
AE3
AE6
AENEX
AFDTB
AFUWQ
AGINI
AHOMT
AHQNM
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
BOYCO
BQLVK
C45
CGR
CS3
CUY
CVF
DIWNM
DU5
E.X
EBS
ECM
EEVPB
EIF
ERAAH
EX3
F2M
F2N
F5P
FCALG
FL-
GNXGY
GQDEL
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JK3
JK8
JLS
JSG
K8S
KD2
L-C
N9A
NPM
N~7
N~B
O9-
OAG
OAH
ODA
OJAPA
OLG
OLH
OLU
OLW
OLY
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OWV
OWW
OWY
OWZ
OXXIT
P2P
RIG
RLZ
S4R
S4S
TEORI
TSPGW
V2I
VVN
W3M
WOQ
WOW
X3V
X3W
XYM
YCJ
YOC
ZFV
7X8
AAFWJ
ABPXF
ABZZY
ACBKD
ACZKN
ADKSD
ADSXY
AFBFQ
AOQMC
ID FETCH-LOGICAL-c4533-4ba2c4cbf6b799173733820a1a8a4944f0bf89e9637805785ef128fe1451bd052
IEDL.DBID 7X8
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=00001648-202209000-00013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1531-5487
IngestDate Sun Nov 09 13:52:41 EST 2025
Wed Feb 19 02:25:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4533-4ba2c4cbf6b799173733820a1a8a4944f0bf89e9637805785ef128fe1451bd052
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9378569
PMID 35700187
PQID 2676554615
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2676554615
pubmed_primary_35700187
PublicationCentury 2000
PublicationDate 2022-September-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-September-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Epidemiology (Cambridge, Mass.)
PublicationTitleAlternate Epidemiology
PublicationYear 2022
SSID ssj0017315
Score 2.6612718
SecondaryResourceType review_article
Snippet Selection bias remains a subject of controversy. Existing definitions of selection bias are ambiguous. To improve communication and the conduct of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 699
SubjectTerms Bias
Causality
Humans
Selection Bias
Title Toward a Clearer Definition of Selection Bias When Estimating Causal Effects
URI https://www.ncbi.nlm.nih.gov/pubmed/35700187
https://www.proquest.com/docview/2676554615
Volume 33
WOSCitedRecordID wos00001648-202209000-00013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UehDEfakbI3gNbSaznkTbFA-1FKzSW5gZZ6QgSTXW3-8sKT0JgjkEAgkJj7d8edsHwI2mwuCMmUQwRRJsuB9WpiQhBhHNeaZQ6M15GbLRiE-nYtwk3OqmrXLpE4Ojfq20z5F3EGXUd1Sl5Hb-kXjWKF9dbSg01kErc1DGazWbrqoILDIYOKNOE4_Ml6NzgnXyfh5XFzaHC3z0d5AZgs1g97-fuQd2GpgJ76Je7IM1Ux6A7Zijg3H06BAMJ6FnFkrYew-81rBv7KwMTVywsvApcOT4i_uZrKHz2yXMnUvwILd8gz25qN074v7j-gg8D_JJ7yFp2BUSjR3GS7CSSGOtLFXMgUSWMfe3iroylVxigbHtKsuFcQbqaQ8YJ8a6WGaNp_ZVr12CjsFGWZXmFEBtU0OVYZh0LTaZdndRpASSRmDJCGuD66WwCqe9viQhS1Mt6mIlrjY4iRIv5nHNRpH51fspZ2d_ePocbCE_lxCavy5AyzrbNZdgU39_zerPq6AW7jwaP_4ACdO-hg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+Clearer+Definition+of+Selection+Bias+When+Estimating+Causal+Effects&rft.jtitle=Epidemiology+%28Cambridge%2C+Mass.%29&rft.au=Lu%2C+Haidong&rft.au=Cole%2C+Stephen+R&rft.au=Howe%2C+Chanelle+J&rft.au=Westreich%2C+Daniel&rft.date=2022-09-01&rft.eissn=1531-5487&rft.volume=33&rft.issue=5&rft.spage=699&rft_id=info:doi/10.1097%2FEDE.0000000000001516&rft_id=info%3Apmid%2F35700187&rft_id=info%3Apmid%2F35700187&rft.externalDocID=35700187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-5487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-5487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-5487&client=summon