Toward a Clearer Definition of Selection Bias When Estimating Causal Effects
Selection bias remains a subject of controversy. Existing definitions of selection bias are ambiguous. To improve communication and the conduct of epidemiologic research focused on estimating causal effects, we propose to unify the various existing definitions of selection bias in the literature by...
Uloženo v:
| Vydáno v: | Epidemiology (Cambridge, Mass.) Ročník 33; číslo 5; s. 699 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.09.2022
|
| Témata: | |
| ISSN: | 1531-5487, 1531-5487 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Selection bias remains a subject of controversy. Existing definitions of selection bias are ambiguous. To improve communication and the conduct of epidemiologic research focused on estimating causal effects, we propose to unify the various existing definitions of selection bias in the literature by considering any bias away from the true causal effect in the referent population (the population before the selection process), due to selecting the sample from the referent population, as selection bias. Given this unified definition, selection bias can be further categorized into two broad types: type 1 selection bias owing to restricting to one or more level(s) of a collider (or a descendant of a collider) and type 2 selection bias owing to restricting to one or more level(s) of an effect measure modifier. To aid in explaining these two types-which can co-occur-we start by reviewing the concepts of the target population, the study sample, and the analytic sample. Then, we illustrate both types of selection bias using causal diagrams. In addition, we explore the differences between these two types of selection bias, and describe methods to minimize selection bias. Finally, we use an example of "M-bias" to demonstrate the advantage of classifying selection bias into these two types. |
|---|---|
| AbstractList | Selection bias remains a subject of controversy. Existing definitions of selection bias are ambiguous. To improve communication and the conduct of epidemiologic research focused on estimating causal effects, we propose to unify the various existing definitions of selection bias in the literature by considering any bias away from the true causal effect in the referent population (the population before the selection process), due to selecting the sample from the referent population, as selection bias. Given this unified definition, selection bias can be further categorized into two broad types: type 1 selection bias owing to restricting to one or more level(s) of a collider (or a descendant of a collider) and type 2 selection bias owing to restricting to one or more level(s) of an effect measure modifier. To aid in explaining these two types-which can co-occur-we start by reviewing the concepts of the target population, the study sample, and the analytic sample. Then, we illustrate both types of selection bias using causal diagrams. In addition, we explore the differences between these two types of selection bias, and describe methods to minimize selection bias. Finally, we use an example of "M-bias" to demonstrate the advantage of classifying selection bias into these two types. Selection bias remains a subject of controversy. Existing definitions of selection bias are ambiguous. To improve communication and the conduct of epidemiologic research focused on estimating causal effects, we propose to unify the various existing definitions of selection bias in the literature by considering any bias away from the true causal effect in the referent population (the population before the selection process), due to selecting the sample from the referent population, as selection bias. Given this unified definition, selection bias can be further categorized into two broad types: type 1 selection bias owing to restricting to one or more level(s) of a collider (or a descendant of a collider) and type 2 selection bias owing to restricting to one or more level(s) of an effect measure modifier. To aid in explaining these two types-which can co-occur-we start by reviewing the concepts of the target population, the study sample, and the analytic sample. Then, we illustrate both types of selection bias using causal diagrams. In addition, we explore the differences between these two types of selection bias, and describe methods to minimize selection bias. Finally, we use an example of "M-bias" to demonstrate the advantage of classifying selection bias into these two types.Selection bias remains a subject of controversy. Existing definitions of selection bias are ambiguous. To improve communication and the conduct of epidemiologic research focused on estimating causal effects, we propose to unify the various existing definitions of selection bias in the literature by considering any bias away from the true causal effect in the referent population (the population before the selection process), due to selecting the sample from the referent population, as selection bias. Given this unified definition, selection bias can be further categorized into two broad types: type 1 selection bias owing to restricting to one or more level(s) of a collider (or a descendant of a collider) and type 2 selection bias owing to restricting to one or more level(s) of an effect measure modifier. To aid in explaining these two types-which can co-occur-we start by reviewing the concepts of the target population, the study sample, and the analytic sample. Then, we illustrate both types of selection bias using causal diagrams. In addition, we explore the differences between these two types of selection bias, and describe methods to minimize selection bias. Finally, we use an example of "M-bias" to demonstrate the advantage of classifying selection bias into these two types. |
| Author | Howe, Chanelle J Cole, Stephen R Westreich, Daniel Lu, Haidong |
| Author_xml | – sequence: 1 givenname: Haidong surname: Lu fullname: Lu, Haidong organization: From the Public Health Modeling Unit and Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT – sequence: 2 givenname: Stephen R surname: Cole fullname: Cole, Stephen R organization: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC – sequence: 3 givenname: Chanelle J surname: Howe fullname: Howe, Chanelle J organization: Department of Epidemiology, School of Public Health, Brown University, RI – sequence: 4 givenname: Daniel surname: Westreich fullname: Westreich, Daniel organization: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35700187$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxDAUhYOMOA_9ByJZuumYNEmTLrVTH1Bw4YjLctu50UgnHZsW8d9bdYQ5m3sOfFwOZ04mvvVIyDlnS85SfZWv8iU7EFc8OSIzrgSPlDR6cuCnZB7C-8howdUJmQqlx2D0jBTr9hO6DQWaNQgddnSF1nnXu9bT1tInbLD-DTcOAn15Q0_z0Lst9M6_0gyGAA3NrR2pcEqOLTQBz_Z3QZ5v83V2HxWPdw_ZdRHVUgkRyQriWtaVTSqdpmMnLYSJGXAwIFMpLausSTFNhDZMaaPQ8thY5FLxasNUvCCXf393XfsxYOjLrQs1Ng14bIdQxolOlJIJ_0Ev9uhQbXFT7rqxevdV_i8QfwNSpl3P |
| CitedBy_id | crossref_primary_10_1001_jamainternmed_2024_4428 crossref_primary_10_1016_j_healthplace_2024_103240 crossref_primary_10_1038_s41598_025_15641_1 crossref_primary_10_1177_00469580231220476 crossref_primary_10_1097_EDE_0000000000001658 crossref_primary_10_1093_ije_dyaf109 crossref_primary_10_1111_ppe_13102 crossref_primary_10_1212_WNL_0000000000210169 crossref_primary_10_1016_j_medj_2023_08_005 crossref_primary_10_3389_fpubh_2022_938156 crossref_primary_10_3389_fmed_2023_1059203 crossref_primary_10_1097_EDE_0000000000001660 crossref_primary_10_1038_s41405_024_00195_7 crossref_primary_10_1093_ije_dyae141 crossref_primary_10_1093_aje_kwae282 crossref_primary_10_1097_MD_0000000000038497 crossref_primary_10_1289_EHP12016 crossref_primary_10_1073_pnas_2513887122 crossref_primary_10_1515_em_2023_0042 crossref_primary_10_1093_aje_kwad203 crossref_primary_10_1097_EDE_0000000000001711 crossref_primary_10_1111_ppe_70044 crossref_primary_10_1016_j_jbi_2025_104853 crossref_primary_10_1093_ije_dyad102 crossref_primary_10_2147_JIR_S493145 crossref_primary_10_1007_s10654_024_01194_6 crossref_primary_10_1038_s41591_023_02519_w crossref_primary_10_1093_aje_kwae139 crossref_primary_10_1186_s12874_024_02302_6 crossref_primary_10_3390_jcm14031035 crossref_primary_10_1080_17437199_2024_2402809 crossref_primary_10_1093_ije_dyaf003 crossref_primary_10_1007_s40471_023_00325_z crossref_primary_10_1016_j_annepidem_2022_11_004 crossref_primary_10_3390_cancers15194674 crossref_primary_10_12688_wellcomeopenres_17975_2 crossref_primary_10_1515_em_2023_0015 crossref_primary_10_3390_encyclopedia5020056 crossref_primary_10_1111_cts_70093 crossref_primary_10_1371_journal_pone_0319796 crossref_primary_10_1097_EDE_0000000000001567 crossref_primary_10_1007_s11255_024_04311_2 crossref_primary_10_1016_j_chiabu_2023_106328 crossref_primary_10_1093_aje_kwad213 crossref_primary_10_1007_s13181_025_01083_8 crossref_primary_10_1177_00469580231166811 crossref_primary_10_1177_00491241251314037 crossref_primary_10_1093_aje_kwae145 crossref_primary_10_1089_ham_2024_0030 crossref_primary_10_1098_rsos_251099 crossref_primary_10_1097_EDE_0000000000001735 crossref_primary_10_1136_bmjopen_2022_071513 crossref_primary_10_1017_ehs_2023_17 crossref_primary_10_1093_aje_kwae234 crossref_primary_10_57264_cer_2024_0064 crossref_primary_10_1177_21925682241304335 crossref_primary_10_1093_ije_dyae054 crossref_primary_10_1186_s12966_024_01629_z crossref_primary_10_1371_journal_pmed_1004535 crossref_primary_10_1097_EDE_0000000000001864 crossref_primary_10_1136_bmj_2023_078226 crossref_primary_10_1136_bmjopen_2022_068974 crossref_primary_10_2196_58860 crossref_primary_10_1016_j_cjca_2024_12_022 crossref_primary_10_1093_aje_kwae367 crossref_primary_10_1289_EHP13824 crossref_primary_10_64780_jole_v1i2_64 crossref_primary_10_1177_25152459241260256 crossref_primary_10_1093_aje_kwae405 crossref_primary_10_3389_fnins_2022_1080066 crossref_primary_10_1093_aje_kwaf174 crossref_primary_10_1016_j_cjca_2024_02_005 crossref_primary_10_1093_jamia_ocae098 crossref_primary_10_1007_s10654_025_01211_2 crossref_primary_10_1136_bmjopen_2023_072178 crossref_primary_10_1016_j_canep_2024_102724 crossref_primary_10_1007_s11136_025_04007_9 crossref_primary_10_1016_j_cjcpc_2024_05_001 crossref_primary_10_1111_dom_16081 crossref_primary_10_1002_trc2_70036 crossref_primary_10_3390_admsci14060123 crossref_primary_10_1113_JP287038 crossref_primary_10_1016_j_envres_2025_122316 crossref_primary_10_1093_aje_kwae336 crossref_primary_10_1093_aje_kwae292 crossref_primary_10_1002_cam4_70159 crossref_primary_10_1080_2153599X_2024_2377545 crossref_primary_10_1136_bmj_2022_072148 crossref_primary_10_1136_bmj_2023_076365 crossref_primary_10_1088_1361_6498_ade68e crossref_primary_10_1016_j_ajog_2025_02_007 crossref_primary_10_1016_j_surg_2024_109007 crossref_primary_10_1001_jamanetworkopen_2024_49556 crossref_primary_10_1093_ije_dyac221 crossref_primary_10_3390_nursrep15050179 crossref_primary_10_1007_s00228_024_03662_0 crossref_primary_10_1016_j_semcancer_2023_06_001 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1097/EDE.0000000000001516 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 1531-5487 |
| ExternalDocumentID | 35700187 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NICHD NIH HHS grantid: DP2 HD084070 |
| GroupedDBID | --- .-D .Z2 01R 0R~ 1J1 40H 4Q1 4Q2 4Q3 5GY 5VS 71W 77Y 7O~ 8L- AAAAV AAAXR AACGO AAGIX AAHPQ AAIKC AAIQE AAMNW AAMOA AAMTA AANCE AAQKA AARTV AASCR AASOK AAXQO AAYEP ABASU ABBUW ABDIG ABJNI ABPLY ABTLG ABVCZ ABXVJ ABZAD ACDDN ACEWG ACGFO ACGFS ACHQT ACIJW ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ADGGA ADHPY AE3 AE6 AENEX AFDTB AFUWQ AGINI AHOMT AHQNM AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM BOYCO BQLVK C45 CGR CS3 CUY CVF DIWNM DU5 E.X EBS ECM EEVPB EIF ERAAH EX3 F2M F2N F5P FCALG FL- GNXGY GQDEL H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JK3 JK8 JLS JSG K8S KD2 L-C N9A NPM N~7 N~B O9- OAG OAH ODA OJAPA OLG OLH OLU OLW OLY OPUJH OVD OVDNE OVIDH OVLEI OWV OWW OWY OWZ OXXIT P2P RIG RLZ S4R S4S TEORI TSPGW V2I VVN W3M WOQ WOW X3V X3W XYM YCJ YOC ZFV 7X8 AAFWJ ABPXF ABZZY ACBKD ACZKN ADKSD ADSXY AFBFQ AOQMC |
| ID | FETCH-LOGICAL-c4533-4ba2c4cbf6b799173733820a1a8a4944f0bf89e9637805785ef128fe1451bd052 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 108 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=00001648-202209000-00013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1531-5487 |
| IngestDate | Sun Nov 09 13:52:41 EST 2025 Wed Feb 19 02:25:46 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4533-4ba2c4cbf6b799173733820a1a8a4944f0bf89e9637805785ef128fe1451bd052 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9378569 |
| PMID | 35700187 |
| PQID | 2676554615 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2676554615 pubmed_primary_35700187 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-September-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-September-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Epidemiology (Cambridge, Mass.) |
| PublicationTitleAlternate | Epidemiology |
| PublicationYear | 2022 |
| SSID | ssj0017315 |
| Score | 2.6612718 |
| SecondaryResourceType | review_article |
| Snippet | Selection bias remains a subject of controversy. Existing definitions of selection bias are ambiguous. To improve communication and the conduct of... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 699 |
| SubjectTerms | Bias Causality Humans Selection Bias |
| Title | Toward a Clearer Definition of Selection Bias When Estimating Causal Effects |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35700187 https://www.proquest.com/docview/2676554615 |
| Volume | 33 |
| WOSCitedRecordID | wos00001648-202209000-00013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qfBDE-2XeiOBrsUvTJn0S3Tp80DFwwt5K0iYykHZa5-_3nKRjT4JgHwJ9KC3hXL6enPN9hNwICICRVTwAJ5SwGBbokiFtJZKRx6FOQi82IUYjOZ2m47bg1rRtlcuY6AJ1WRdYI79liUiwo6oX380_AlSNwtPVVkJjnXQigDJo1WK6OkUQXsEAnLoXIDJfjs6l4jYbZJ66sL0g8SW_g0yXbIa7__3MPbLTwkx67-1in6yZ6oBs-xod9aNHh-Rp4npmqaL9d6drTQfGzirXxEVrS1-cRg7ePMxUQyFuVzSDkIAgt3qjfbVo4B2e_7g5Iq_DbNJ_DFp1haDggPECrhUreKFtogWARBEJ-FtloeopqXjKuQ21lakBB0XZAyFjYyGXWYPSvroMY3ZMNqq6MqeEWlYi1JCpkoLrCIyThSYsAMsgl0_CuuR6uVk5WC8eSajK1IsmX21Xl5z4Hc_nnmYjj5B6vyfF2R-ePidbDOcSXPPXBelY8F1zSTaL769Z83nlzALW0fj5B0hdvQ4 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+a+Clearer+Definition+of+Selection+Bias+When+Estimating+Causal+Effects&rft.jtitle=Epidemiology+%28Cambridge%2C+Mass.%29&rft.au=Lu%2C+Haidong&rft.au=Cole%2C+Stephen+R&rft.au=Howe%2C+Chanelle+J&rft.au=Westreich%2C+Daniel&rft.date=2022-09-01&rft.issn=1531-5487&rft.eissn=1531-5487&rft.volume=33&rft.issue=5&rft.spage=699&rft_id=info:doi/10.1097%2FEDE.0000000000001516&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1531-5487&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1531-5487&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1531-5487&client=summon |