A Hybrid Supercapacitor based on Porous Carbon and the Metal‐Organic Framework MIL‐100(Fe)
Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal–organic framework with iron(III) coordination centers [MIL‐100(Fe), MIL‐88B(Fe), or MIL‐53(Fe)] were prepared and tested with several aqueous electrolytes. A correlation between hydrated ion size and the electri...
Gespeichert in:
| Veröffentlicht in: | ChemElectroChem Jg. 1; H. 7; S. 1182 - 1188 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Weinheim
WILEY‐VCH Verlag
15.07.2014
John Wiley & Sons, Inc |
| Schlagworte: | |
| ISSN: | 2196-0216, 2196-0216 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal–organic framework with iron(III) coordination centers [MIL‐100(Fe), MIL‐88B(Fe), or MIL‐53(Fe)] were prepared and tested with several aqueous electrolytes. A correlation between hydrated ion size and the electric response of the electrodes was found, which sheds light on how these materials work as energy‐storage devices. MIL‐100(Fe) shows the most promising results, and the capacitance obtained with the samples in the solutions used is higher than that of a mixture of carbon and nanotubes in the same solution. Unfortunately, shortcomings due to reductive dissolution still hamper the long‐term cyclability of the electrodes.
Charged and ready: Composite supercapacitor electrodes based on metal–organic frameworks and carbon nanotubes are tested with environmentally friendly electrolytes. The energy‐storage mechanism followed by these materials is explored and explained, and promising results are obtained with the electrodes. |
|---|---|
| AbstractList | Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal–organic framework with iron(III) coordination centers [MIL‐100(Fe), MIL‐88B(Fe), or MIL‐53(Fe)] were prepared and tested with several aqueous electrolytes. A correlation between hydrated ion size and the electric response of the electrodes was found, which sheds light on how these materials work as energy‐storage devices. MIL‐100(Fe) shows the most promising results, and the capacitance obtained with the samples in the solutions used is higher than that of a mixture of carbon and nanotubes in the same solution. Unfortunately, shortcomings due to reductive dissolution still hamper the long‐term cyclability of the electrodes. Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal–organic framework with iron(III) coordination centers [MIL‐100(Fe), MIL‐88B(Fe), or MIL‐53(Fe)] were prepared and tested with several aqueous electrolytes. A correlation between hydrated ion size and the electric response of the electrodes was found, which sheds light on how these materials work as energy‐storage devices. MIL‐100(Fe) shows the most promising results, and the capacitance obtained with the samples in the solutions used is higher than that of a mixture of carbon and nanotubes in the same solution. Unfortunately, shortcomings due to reductive dissolution still hamper the long‐term cyclability of the electrodes. Charged and ready: Composite supercapacitor electrodes based on metal–organic frameworks and carbon nanotubes are tested with environmentally friendly electrolytes. The energy‐storage mechanism followed by these materials is explored and explained, and promising results are obtained with the electrodes. Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal-organic framework with iron(III) coordination centers [MIL-100(Fe), MIL-88B(Fe), or MIL-53(Fe)] were prepared and tested with several aqueous electrolytes. A correlation between hydrated ion size and the electric response of the electrodes was found, which sheds light on how these materials work as energy-storage devices. MIL-100(Fe) shows the most promising results, and the capacitance obtained with the samples in the solutions used is higher than that of a mixture of carbon and nanotubes in the same solution. Unfortunately, shortcomings due to reductive dissolution still hamper the long-term cyclability of the electrodes. Charged and ready: Composite supercapacitor electrodes based on metal-organic frameworks and carbon nanotubes are tested with environmentally friendly electrolytes. The energy-storage mechanism followed by these materials is explored and explained, and promising results are obtained with the electrodes. |
| Author | De Vos, Dirk E. Fransaer, Jan Campagnol, Nicolò Stappers, Linda Deleu, Willem Romero‐Vara, Ricardo Binnemans, Koen |
| Author_xml | – sequence: 1 givenname: Nicolò surname: Campagnol fullname: Campagnol, Nicolò – sequence: 2 givenname: Ricardo surname: Romero‐Vara fullname: Romero‐Vara, Ricardo – sequence: 3 givenname: Willem surname: Deleu fullname: Deleu, Willem – sequence: 4 givenname: Linda surname: Stappers fullname: Stappers, Linda – sequence: 5 givenname: Koen surname: Binnemans fullname: Binnemans, Koen – sequence: 6 givenname: Dirk E. surname: De Vos fullname: De Vos, Dirk E. – sequence: 7 givenname: Jan surname: Fransaer fullname: Fransaer, Jan email: Jan.Fransaer@mtm.kuleuven.be |
| BookMark | eNqFkMtKAzEUhoNU8Lp1HXBTF60nydyylMHawhQFdetwJpPR0emkJjOU7nwEn9EnMVJREcRVkpPvO_z8e2TQmlYTcsRgzAD4qdKNGnNgAXDgfIvsciajEXAWDX7cd8ihc48AwBiEIol2yd0Zna4LW5f0ul9qq3CJqu6MpQU6XVLT0itjTe9oirbwL2xL2j1oOtcdNm8vr5f2Htta0YnFhV4Z-0Tns8zPfajhRJ8ckO0KG6cPP899cjs5v0mno-zyYpaeZSMVhIKPQlmgKEXFkhAwlmHCiwQwLFgsARUvwP9WSokAhJCiqjSKImGRjoQsZeJH-2S42bu05rnXrssXtfOdNNhqnz5ncRDEIAMBHj3-hT6a3rY-nacg4jELIfBUsKGUNc5ZXeW-Fuxq03YW6yZnkH_0nn_0nn_17rXxL21p6wXa9d-C3AirutHrf-g8Pc_Sb_cd5amWTA |
| CitedBy_id | crossref_primary_10_1002_celc_202200036 crossref_primary_10_1016_j_jpowsour_2018_09_023 crossref_primary_10_1016_j_jcis_2020_08_091 crossref_primary_10_1016_j_nxmate_2024_100362 crossref_primary_10_3390_cryst11111425 crossref_primary_10_1016_j_cej_2022_140804 crossref_primary_10_1039_C7CS00205J crossref_primary_10_1002_ange_201600661 crossref_primary_10_1016_j_ccr_2022_214968 crossref_primary_10_1016_j_materresbull_2019_110587 crossref_primary_10_1007_s41918_019_00055_1 crossref_primary_10_1016_j_surfin_2025_107287 crossref_primary_10_1016_j_matpr_2022_10_137 crossref_primary_10_1016_j_est_2018_12_025 crossref_primary_10_3390_nano6010018 crossref_primary_10_1002_sstr_202100115 crossref_primary_10_1016_j_electacta_2016_02_145 crossref_primary_10_1016_j_cej_2018_12_173 crossref_primary_10_1016_j_est_2023_108961 crossref_primary_10_1016_j_matchemphys_2025_131147 crossref_primary_10_1038_s42004_019_0184_6 crossref_primary_10_1016_j_cej_2019_05_084 crossref_primary_10_1007_s10904_021_01935_0 crossref_primary_10_1016_j_ccr_2018_04_018 crossref_primary_10_1016_j_est_2023_107828 crossref_primary_10_3389_fmats_2021_777149 crossref_primary_10_1088_2632_959X_ad0446 crossref_primary_10_1002_slct_202100049 crossref_primary_10_3390_inorganics11040169 crossref_primary_10_1002_anie_201600661 crossref_primary_10_1039_D1RA00259G crossref_primary_10_1039_D3SE01062G crossref_primary_10_1016_j_cej_2024_157470 crossref_primary_10_1016_j_energy_2024_131127 crossref_primary_10_1016_j_ceramint_2022_10_029 crossref_primary_10_1016_j_est_2024_112459 crossref_primary_10_1016_j_jssc_2020_121409 crossref_primary_10_1016_j_cej_2021_132891 crossref_primary_10_1002_aoc_70001 crossref_primary_10_1007_s10854_024_12496_6 crossref_primary_10_1016_j_susmat_2024_e01045 crossref_primary_10_1016_j_matlet_2019_03_006 crossref_primary_10_1016_j_ccr_2024_215959 crossref_primary_10_1002_celc_201402429 crossref_primary_10_1002_ente_202300147 crossref_primary_10_1016_j_est_2023_107817 crossref_primary_10_1007_s10904_019_01119_x crossref_primary_10_1016_j_colsurfa_2021_127665 crossref_primary_10_1002_chem_201604071 crossref_primary_10_3390_nano11082141 crossref_primary_10_1016_j_ccr_2024_216004 crossref_primary_10_1016_j_jpowsour_2024_234471 crossref_primary_10_1016_j_est_2024_114523 crossref_primary_10_1007_s11581_021_03954_w crossref_primary_10_1016_j_electacta_2023_142989 crossref_primary_10_1016_j_materresbull_2025_113741 crossref_primary_10_1016_j_apmt_2020_100692 crossref_primary_10_1016_j_ccr_2017_07_002 crossref_primary_10_1002_est2_543 crossref_primary_10_1016_j_electacta_2020_136139 crossref_primary_10_1007_s10854_021_07030_x crossref_primary_10_1039_C5QI00187K crossref_primary_10_1007_s10853_024_09591_8 crossref_primary_10_1016_j_mattod_2016_10_003 crossref_primary_10_1016_j_est_2022_105420 crossref_primary_10_1002_slct_201900305 crossref_primary_10_1002_smll_201704435 crossref_primary_10_1016_j_est_2025_118189 crossref_primary_10_1016_j_jpowsour_2025_237578 crossref_primary_10_1016_j_mssp_2023_107383 crossref_primary_10_1016_j_jcis_2019_06_031 crossref_primary_10_1016_j_electacta_2020_137154 crossref_primary_10_1016_j_ccr_2019_05_006 crossref_primary_10_1016_j_electacta_2019_04_121 crossref_primary_10_1016_j_jallcom_2023_170412 crossref_primary_10_1016_j_synthmet_2021_116775 crossref_primary_10_1088_1361_6528_abdc8d crossref_primary_10_1016_j_ccr_2020_213438 crossref_primary_10_1016_j_compositesb_2020_107767 crossref_primary_10_1016_j_cej_2025_161555 crossref_primary_10_1016_j_chemosphere_2020_127389 crossref_primary_10_1007_s10800_016_0921_9 crossref_primary_10_1039_D5TC00411J crossref_primary_10_1016_j_est_2025_116694 crossref_primary_10_1002_eom2_12106 crossref_primary_10_1016_j_ccr_2021_214300 crossref_primary_10_1016_j_ccr_2022_214642 crossref_primary_10_1016_j_electacta_2020_137563 crossref_primary_10_1080_14658011_2021_1966247 crossref_primary_10_1186_s40824_023_00454_y crossref_primary_10_1002_celc_201800633 crossref_primary_10_1016_j_ceramint_2023_11_377 crossref_primary_10_1016_j_jssc_2018_06_019 crossref_primary_10_1016_j_cej_2023_145840 crossref_primary_10_1016_j_ccr_2015_09_002 crossref_primary_10_1016_j_jallcom_2025_181324 crossref_primary_10_1002_aenm_201602733 crossref_primary_10_1007_s10854_025_15022_4 crossref_primary_10_1016_j_gee_2021_08_003 crossref_primary_10_1007_s10008_018_4096_7 crossref_primary_10_1016_j_ccr_2020_213341 crossref_primary_10_1016_j_electacta_2025_146498 crossref_primary_10_1016_j_matlet_2018_03_087 crossref_primary_10_1016_j_cej_2019_04_065 crossref_primary_10_1002_celc_202001418 crossref_primary_10_1002_er_7491 crossref_primary_10_1016_j_matt_2019_06_022 crossref_primary_10_1002_smll_201701143 crossref_primary_10_1038_s41598_021_97932_x crossref_primary_10_1016_j_cej_2024_149365 crossref_primary_10_1016_j_ccr_2023_215335 crossref_primary_10_1016_j_cej_2025_164012 crossref_primary_10_1016_j_fuel_2024_133574 crossref_primary_10_1016_j_est_2022_105897 crossref_primary_10_1016_j_est_2023_109518 crossref_primary_10_1007_s11664_023_10766_3 crossref_primary_10_1016_j_micromeso_2015_11_060 crossref_primary_10_1002_cctc_202400622 crossref_primary_10_1002_slct_202304864 crossref_primary_10_1016_j_ccr_2025_216467 crossref_primary_10_1016_j_matchemphys_2021_125641 crossref_primary_10_1016_j_rechem_2025_102543 crossref_primary_10_1016_j_colsurfa_2025_137269 crossref_primary_10_1016_j_cej_2022_136269 crossref_primary_10_1007_s42765_023_00287_3 crossref_primary_10_1016_j_inoche_2023_111739 crossref_primary_10_1039_D0NR03549A crossref_primary_10_1007_s40820_022_00910_9 crossref_primary_10_1016_j_electacta_2015_11_123 |
| Cites_doi | 10.1351/PAC-CON-09-10-22 10.1002/fuce.201000087 10.1016/j.micromeso.2011.12.040 10.1021/ja2062659 10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z 10.1126/science.1132195 10.1016/j.electacta.2012.03.059 10.1149/1.1650835 10.1002/ange.200704894 10.1016/j.elecom.2010.02.017 10.1126/science.1116275 10.1039/c0ee00074d 10.1016/j.micromeso.2008.11.020 10.1039/C2TA00627H 10.1039/C1CS15092H 10.1002/ange.200605163 10.1016/j.matlet.2011.10.046 10.1002/ange.201001230 10.1016/0003-2670(91)87072-F 10.1016/j.jpowsour.2006.01.015 10.1021/cs300345b 10.1016/j.electacta.2011.02.116 10.1016/S0302-4598(96)05097-0 10.1016/S0378-7753(01)01012-6 10.1016/0301-4622(94)00051-4 10.1016/j.micromeso.2012.12.039 10.1002/anie.200704894 10.1021/cr020730k 10.1038/nchem.454 10.1039/c2ee22989g 10.1039/B704325B 10.1021/ja205827z 10.1002/anie.200605163 10.1016/j.foodchem.2010.12.073 10.1002/anie.201001230 |
| ContentType | Journal Article |
| Copyright | Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
| DOI | 10.1002/celc.201402022 |
| DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
| DatabaseTitleList | CrossRef Materials Research Database Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2196-0216 |
| EndPage | 1188 |
| ExternalDocumentID | 3786371941 10_1002_celc_201402022 CELC201402022 |
| Genre | article |
| GrantInformation_xml | – fundername: Instituut voor Innovatie door Wetenschap en Technologie – fundername: European Commission |
| GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU AZVAB BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAMMB AAYXX ABJNI AEFGJ AGXDD AIDQK AIDYY CITATION TUS 7SR 8BQ 8FD JG9 |
| ID | FETCH-LOGICAL-c4532-59ba3d3f1850a79582b80a5b1790ac2b0a3dfcc3403393ffea3b816e639d98393 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 178 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340523000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2196-0216 |
| IngestDate | Fri Sep 05 09:00:42 EDT 2025 Fri Jul 25 11:55:35 EDT 2025 Sat Nov 29 07:11:22 EST 2025 Tue Nov 18 22:20:15 EST 2025 Wed Jan 22 16:22:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4532-59ba3d3f1850a79582b80a5b1790ac2b0a3dfcc3403393ffea3b816e639d98393 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1706271504 |
| PQPubID | 2034587 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1744709430 proquest_journals_1706271504 crossref_citationtrail_10_1002_celc_201402022 crossref_primary_10_1002_celc_201402022 wiley_primary_10_1002_celc_201402022_CELC201402022 |
| PublicationCentury | 2000 |
| PublicationDate | July 15, 2014 |
| PublicationDateYYYYMMDD | 2014-07-15 |
| PublicationDate_xml | – month: 07 year: 2014 text: July 15, 2014 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim |
| PublicationTitle | ChemElectroChem |
| PublicationYear | 2014 |
| Publisher | WILEY‐VCH Verlag John Wiley & Sons, Inc |
| Publisher_xml | – name: WILEY‐VCH Verlag – name: John Wiley & Sons, Inc |
| References | 2010; 12 2010; 10 2004; 104 2013; 1 1997; 42 2007 2010 2010; 49 122 2011; 56 2008 2008; 47 120 2006; 313 2011; 133 2010; 82 1991; 242 2011; 126 2012; 153 2012; 2 2004; 151 2007 2007; 46 119 2005; 309 2002; 108 2006; 160 2009; 120 2010; 3 2012; 68 2009; 1 2001; 13 2012; 5 2013; 171 1994; 51 2012; 41 2012; 84 e_1_2_6_30_3 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_17_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_3 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_21_3 e_1_2_6_22_2 e_1_2_6_1_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
| References_xml | – volume: 313 start-page: 1760 year: 2006 end-page: 1763 publication-title: Science – volume: 10, start-page: 806 year: 2010 end-page: 818 publication-title: Fuel Cells – volume: 68 start-page: 126 year: 2012 end-page: 128 publication-title: Mater. Lett. – volume: 171 start-page: 53 year: 2013 end-page: 57 publication-title: Microporous Mesoporous Mater. – volume: 13 start-page: 813 year: 2001 end-page: 819 publication-title: Electroanalysis – volume: 42 start-page: 153 year: 1997 end-page: 160 publication-title: Bioelectrochem. Bioenerg. – volume: 1 start-page: 689 year: 2009 end-page: 690 publication-title: Nat. Chem. – volume: 120 start-page: 325 year: 2009 end-page: 330 publication-title: Microporous Mesoporous Mater. – volume: 133 start-page: 16154 year: 2011 end-page: 16160 publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 4849 year: 2011 end-page: 4857 publication-title: Electrochim. Acta – volume: 46 119 start-page: 3259 3323 year: 2007 2007 end-page: 3263 3327 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 309 start-page: 2040 year: 2005 end-page: 2042 publication-title: Science – volume: 41 start-page: 115 year: 2012 end-page: 147 publication-title: Chem. Soc. Rev. – volume: 49 122 start-page: 5949 6085 year: 2010 2010 end-page: 5952 6088 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 1294 year: 2010 end-page: 1301 publication-title: Energy Environ. Sci. – volume: 84 start-page: 165 year: 2012 end-page: 173 publication-title: Electrochim. Acta – start-page: 2820 year: 2007 end-page: 2822 publication-title: Chem. Commun. – volume: 151 start-page: 614 year: 2004 end-page: 622 publication-title: J. Electrochem. Soc. – volume: 160 start-page: 542 year: 2006 end-page: 547 publication-title: J. Power Sources – volume: 108 start-page: 15 year: 2002 end-page: 20 publication-title: J. Power Sources – volume: 104 start-page: 4245 year: 2004 end-page: 4269 publication-title: Chem. Rev. – volume: 82 start-page: 1901 year: 2010 end-page: 1917 publication-title: Pure Appl. Chem. – volume: 153 start-page: 163 year: 2012 end-page: 165 publication-title: Microporous Mesoporous Mater. – volume: 5 start-page: 9269 year: 2012 end-page: 9290 publication-title: Energy Environ. Sci. – volume: 12 start-page: 632 year: 2010 end-page: 635 publication-title: Electrochem. Commun. – volume: 47 120 start-page: 3392 3440 year: 2008 2008 end-page: 3395 3443 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 2941 year: 2013 end-page: 2954 publication-title: J. Mater. Chem. A – volume: 126 start-page: 2005 year: 2011 end-page: 2009 publication-title: Food Chem. – volume: 133 start-page: 14522 year: 2011 end-page: 14525 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 2060 year: 2012 end-page: 2065 publication-title: ACS Catal. – volume: 51 start-page: 111 year: 1994 end-page: 127 publication-title: Biophys. Chem. – volume: 242 start-page: 249 year: 1991 end-page: 257 publication-title: Anal. Chim. Acta – ident: e_1_2_6_27_2 doi: 10.1351/PAC-CON-09-10-22 – ident: e_1_2_6_3_2 doi: 10.1002/fuce.201000087 – ident: e_1_2_6_13_2 doi: 10.1016/j.micromeso.2011.12.040 – ident: e_1_2_6_12_2 doi: 10.1021/ja2062659 – ident: e_1_2_6_19_2 doi: 10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z – ident: e_1_2_6_24_2 doi: 10.1126/science.1132195 – ident: e_1_2_6_5_2 doi: 10.1016/j.electacta.2012.03.059 – ident: e_1_2_6_35_2 doi: 10.1149/1.1650835 – ident: e_1_2_6_30_3 doi: 10.1002/ange.200704894 – ident: e_1_2_6_15_2 doi: 10.1016/j.elecom.2010.02.017 – ident: e_1_2_6_25_2 doi: 10.1126/science.1116275 – ident: e_1_2_6_23_2 doi: 10.1039/c0ee00074d – ident: e_1_2_6_33_2 doi: 10.1016/j.micromeso.2008.11.020 – ident: e_1_2_6_2_2 doi: 10.1039/C2TA00627H – ident: e_1_2_6_6_2 doi: 10.1039/C1CS15092H – ident: e_1_2_6_9_3 doi: 10.1002/ange.200605163 – ident: e_1_2_6_14_2 doi: 10.1016/j.matlet.2011.10.046 – ident: e_1_2_6_21_3 doi: 10.1002/ange.201001230 – ident: e_1_2_6_31_2 doi: 10.1016/0003-2670(91)87072-F – ident: e_1_2_6_20_2 – ident: e_1_2_6_10_2 doi: 10.1016/j.jpowsour.2006.01.015 – ident: e_1_2_6_16_2 doi: 10.1021/cs300345b – ident: e_1_2_6_34_2 – ident: e_1_2_6_26_2 – ident: e_1_2_6_37_2 doi: 10.1016/j.electacta.2011.02.116 – ident: e_1_2_6_28_2 doi: 10.1016/S0302-4598(96)05097-0 – ident: e_1_2_6_36_2 doi: 10.1016/S0378-7753(01)01012-6 – ident: e_1_2_6_29_2 doi: 10.1016/0301-4622(94)00051-4 – ident: e_1_2_6_32_2 doi: 10.1016/j.micromeso.2012.12.039 – ident: e_1_2_6_30_2 doi: 10.1002/anie.200704894 – ident: e_1_2_6_4_2 doi: 10.1021/cr020730k – ident: e_1_2_6_11_2 doi: 10.1038/nchem.454 – ident: e_1_2_6_1_2 – ident: e_1_2_6_7_2 doi: 10.1039/c2ee22989g – ident: e_1_2_6_22_2 doi: 10.1039/B704325B – ident: e_1_2_6_8_2 doi: 10.1021/ja205827z – ident: e_1_2_6_9_2 doi: 10.1002/anie.200605163 – ident: e_1_2_6_17_2 – ident: e_1_2_6_18_2 doi: 10.1016/j.foodchem.2010.12.073 – ident: e_1_2_6_21_2 doi: 10.1002/anie.201001230 |
| SSID | ssj0001105386 |
| Score | 2.4059064 |
| Snippet | Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal–organic framework with iron(III) coordination centers [MIL‐100(Fe),... Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal-organic framework with iron(III) coordination centers [MIL-100(Fe),... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1182 |
| SubjectTerms | Aqueous electrolytes Capacitors Carbon Carbon nanotubes Electrodes Electrolytes Energy storage hybrid supercapacitors Metal-organic frameworks nanotubes organic–inorganic hybrid composites Supercapacitors |
| Title | A Hybrid Supercapacitor based on Porous Carbon and the Metal‐Organic Framework MIL‐100(Fe) |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201402022 https://www.proquest.com/docview/1706271504 https://www.proquest.com/docview/1744709430 |
| Volume | 1 |
| WOSCitedRecordID | wos000340523000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 2196-0216 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105386 issn: 2196-0216 databaseCode: DRFUL dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kFfTiW1xfRBDUQ7Hb9HmUukVhV0Rd8WRJ0hQE6UrXFbz5E_yN_hJn-lr3IILemiZNw0wm8yXtfANw4HHfkr5yDY_z1LAd30WTkp7hJhzXQpNzr0gGc9fzLi_9-_vg6lsUf8kP0Ry4kWUU6zUZuJCjkwlpqNJPREHYoQ2QhYvwrIVdOy2YPbuOBr3JOQsCCF4kfETbpP9tO27N3WhaJ9OdTPumCeD8DlsLvxMt_X_Ey7BYYU52Wk6SFZjR2SrMh3WqtzV4OGXnbxS6xW7GzzpX6EAVWnrOyMclbJixq2E-HI9YKHKJJZElDIEj62uE7p_vH2VAp2JR_acX61_08D6O6CjSx-swiLq34blRJV4wlO1w3JwGUvCEp-jLTeEFDqnTFI4kNi-hLGlibaoUt1GXAU9TLbj0O65GtJMEiLj4BrSyYaY3gbkphc4mZpJSBK7pBdiVTHHVcFXgYCdtMGqRx6piJafkGE9xyadsxSS1uJFaGw6b9s8lH8ePLXdqDcaVXY5iIguyPATBdhv2m2qUNn0mEZlGUWIbG2cp0dK3wSr0-cub4rDbC5vS1l8e2oYFuqZD446zA62XfKx3YU69vjyO8r1qTn8BGxbz8w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB7ECvXiW6zPFQT1EEyzeR4lGiqmRbQVT4ZkswFBUklbwZs_wd_oL3Emr9qDCOIxu5vNMjuz8-1m5xuAI4vbWmQLU7E4TxTdsE00qchSzJjjWqhybuXJYO59q9ezHx6cm_I2IcXCFPwQ9YEbWUa-XpOB04H02ZQ1VMhn4iBs0w5Iw1W4oaMuoZI3Lm69gT89aEEEwfOMj2icdOG2bVbkjap2NtvJrHOaIs7vuDV3PN7yPwx5BZZK1MnOCzVZhTmZrkHTrZK9rcPjOeu8UfAWu5u8yEygCxVo6xkjLxezYcpuhtlwMmJumEX4FKYxQ-jIuhLB--f7RxHSKZhX3fVi3Ssfy3FEJ5483YCBd9l3O0qZekERusFxe-pEIY95gt5cDS3HoAlVQyMiPq9QaJGKtYkQXMfZdHiSyJBHdtuUiHdiBzEX34T5dJjKLWBmQsGzsRonFIOrWg52FSW4bpjCMbCTFiiVzANR8pJTeoznoGBU1gKSWlBLrQXHdfuXgpHjx5a71RQGpWWOAqIL0iyEwXoLDutqlDb9KAlTiaLENjrqKRHTt0DLJ_SXLwXupe_WT9t_eekAmp1-1w_8q971DixSOR0ht41dmB9nE7kHC-J1_DTK9ksF_wLIMPfj |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5kFfXiW1yfEQT1UOw2fR6lWhTrsvjCk6VNExCku3RdwZs_wd_oL3Gmr9WDCOKxSZqGmUzmS5r5BmDP4a6RuMLWHM6VZlqujSaVOJqdclwLdc6dIhnMXeh0u-79vderbhNSLEzJD9EcuJFlFOs1GbgcpOpozBoq5BNxEHZoB2TgKjxpUiaZFkyeXAW34figBREELzI-onHShduOXZM36sbR906-O6cx4vyKWwvHE8z_w5AXYK5Cney4nCaLMCGzJZjx62Rvy_BwzM5eKXiLXY8GMhfoQgXaes7Iy6Wsn7FeP--PhsyP8wSf4ixlCB3ZpUTw_vH2XoZ0ChbUd73Y5XmI5Tiig0AersBtcHrjn2lV6gVNmBbH7amXxDzlCr25HjueRQrVYyshPq9YGImOtUoIbqI2Pa6UjHnidmyJeCf1EHPxVWhl_UyuAbMVBc-meqooBld3POwqUbhu2MKzsJM2aLXMI1HxklN6jKeoZFQ2IpJa1EitDftN-0HJyPFjy81ahVFlmcOI6IIMB2Gw2YbdphqlTT9K4kyiKLGNifOUiOnbYBQK_eVLkX8a-s3T-l9e2oHp3kkQhefdiw2YpWI6Qe5Ym9B6zkdyC6bEy_PjMN-u5vcnXFH3Xg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Supercapacitor+based+on+Porous+Carbon+and+the+Metal%E2%80%90Organic+Framework+MIL%E2%80%90100%28Fe%29&rft.jtitle=ChemElectroChem&rft.au=Campagnol%2C+Nicol%C3%B2&rft.au=Romero%E2%80%90Vara%2C+Ricardo&rft.au=Deleu%2C+Willem&rft.au=Stappers%2C+Linda&rft.date=2014-07-15&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=1&rft.issue=7&rft.spage=1182&rft.epage=1188&rft_id=info:doi/10.1002%2Fcelc.201402022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_celc_201402022 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |