A Hybrid Supercapacitor based on Porous Carbon and the Metal‐Organic Framework MIL‐100(Fe)

Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal–organic framework with iron(III) coordination centers [MIL‐100(Fe), MIL‐88B(Fe), or MIL‐53(Fe)] were prepared and tested with several aqueous electrolytes. A correlation between hydrated ion size and the electri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem Jg. 1; H. 7; S. 1182 - 1188
Hauptverfasser: Campagnol, Nicolò, Romero‐Vara, Ricardo, Deleu, Willem, Stappers, Linda, Binnemans, Koen, De Vos, Dirk E., Fransaer, Jan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Weinheim WILEY‐VCH Verlag 15.07.2014
John Wiley & Sons, Inc
Schlagworte:
ISSN:2196-0216, 2196-0216
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal–organic framework with iron(III) coordination centers [MIL‐100(Fe), MIL‐88B(Fe), or MIL‐53(Fe)] were prepared and tested with several aqueous electrolytes. A correlation between hydrated ion size and the electric response of the electrodes was found, which sheds light on how these materials work as energy‐storage devices. MIL‐100(Fe) shows the most promising results, and the capacitance obtained with the samples in the solutions used is higher than that of a mixture of carbon and nanotubes in the same solution. Unfortunately, shortcomings due to reductive dissolution still hamper the long‐term cyclability of the electrodes. Charged and ready: Composite supercapacitor electrodes based on metal–organic frameworks and carbon nanotubes are tested with environmentally friendly electrolytes. The energy‐storage mechanism followed by these materials is explored and explained, and promising results are obtained with the electrodes.
AbstractList Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal–organic framework with iron(III) coordination centers [MIL‐100(Fe), MIL‐88B(Fe), or MIL‐53(Fe)] were prepared and tested with several aqueous electrolytes. A correlation between hydrated ion size and the electric response of the electrodes was found, which sheds light on how these materials work as energy‐storage devices. MIL‐100(Fe) shows the most promising results, and the capacitance obtained with the samples in the solutions used is higher than that of a mixture of carbon and nanotubes in the same solution. Unfortunately, shortcomings due to reductive dissolution still hamper the long‐term cyclability of the electrodes.
Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal–organic framework with iron(III) coordination centers [MIL‐100(Fe), MIL‐88B(Fe), or MIL‐53(Fe)] were prepared and tested with several aqueous electrolytes. A correlation between hydrated ion size and the electric response of the electrodes was found, which sheds light on how these materials work as energy‐storage devices. MIL‐100(Fe) shows the most promising results, and the capacitance obtained with the samples in the solutions used is higher than that of a mixture of carbon and nanotubes in the same solution. Unfortunately, shortcomings due to reductive dissolution still hamper the long‐term cyclability of the electrodes. Charged and ready: Composite supercapacitor electrodes based on metal–organic frameworks and carbon nanotubes are tested with environmentally friendly electrolytes. The energy‐storage mechanism followed by these materials is explored and explained, and promising results are obtained with the electrodes.
Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal-organic framework with iron(III) coordination centers [MIL-100(Fe), MIL-88B(Fe), or MIL-53(Fe)] were prepared and tested with several aqueous electrolytes. A correlation between hydrated ion size and the electric response of the electrodes was found, which sheds light on how these materials work as energy-storage devices. MIL-100(Fe) shows the most promising results, and the capacitance obtained with the samples in the solutions used is higher than that of a mixture of carbon and nanotubes in the same solution. Unfortunately, shortcomings due to reductive dissolution still hamper the long-term cyclability of the electrodes. Charged and ready: Composite supercapacitor electrodes based on metal-organic frameworks and carbon nanotubes are tested with environmentally friendly electrolytes. The energy-storage mechanism followed by these materials is explored and explained, and promising results are obtained with the electrodes.
Author De Vos, Dirk E.
Fransaer, Jan
Campagnol, Nicolò
Stappers, Linda
Deleu, Willem
Romero‐Vara, Ricardo
Binnemans, Koen
Author_xml – sequence: 1
  givenname: Nicolò
  surname: Campagnol
  fullname: Campagnol, Nicolò
– sequence: 2
  givenname: Ricardo
  surname: Romero‐Vara
  fullname: Romero‐Vara, Ricardo
– sequence: 3
  givenname: Willem
  surname: Deleu
  fullname: Deleu, Willem
– sequence: 4
  givenname: Linda
  surname: Stappers
  fullname: Stappers, Linda
– sequence: 5
  givenname: Koen
  surname: Binnemans
  fullname: Binnemans, Koen
– sequence: 6
  givenname: Dirk E.
  surname: De Vos
  fullname: De Vos, Dirk E.
– sequence: 7
  givenname: Jan
  surname: Fransaer
  fullname: Fransaer, Jan
  email: Jan.Fransaer@mtm.kuleuven.be
BookMark eNqFkMtKAzEUhoNU8Lp1HXBTF60nydyylMHawhQFdetwJpPR0emkJjOU7nwEn9EnMVJREcRVkpPvO_z8e2TQmlYTcsRgzAD4qdKNGnNgAXDgfIvsciajEXAWDX7cd8ihc48AwBiEIol2yd0Zna4LW5f0ul9qq3CJqu6MpQU6XVLT0itjTe9oirbwL2xL2j1oOtcdNm8vr5f2Htta0YnFhV4Z-0Tns8zPfajhRJ8ckO0KG6cPP899cjs5v0mno-zyYpaeZSMVhIKPQlmgKEXFkhAwlmHCiwQwLFgsARUvwP9WSokAhJCiqjSKImGRjoQsZeJH-2S42bu05rnXrssXtfOdNNhqnz5ncRDEIAMBHj3-hT6a3rY-nacg4jELIfBUsKGUNc5ZXeW-Fuxq03YW6yZnkH_0nn_0nn_17rXxL21p6wXa9d-C3AirutHrf-g8Pc_Sb_cd5amWTA
CitedBy_id crossref_primary_10_1002_celc_202200036
crossref_primary_10_1016_j_jpowsour_2018_09_023
crossref_primary_10_1016_j_jcis_2020_08_091
crossref_primary_10_1016_j_nxmate_2024_100362
crossref_primary_10_3390_cryst11111425
crossref_primary_10_1016_j_cej_2022_140804
crossref_primary_10_1039_C7CS00205J
crossref_primary_10_1002_ange_201600661
crossref_primary_10_1016_j_ccr_2022_214968
crossref_primary_10_1016_j_materresbull_2019_110587
crossref_primary_10_1007_s41918_019_00055_1
crossref_primary_10_1016_j_surfin_2025_107287
crossref_primary_10_1016_j_matpr_2022_10_137
crossref_primary_10_1016_j_est_2018_12_025
crossref_primary_10_3390_nano6010018
crossref_primary_10_1002_sstr_202100115
crossref_primary_10_1016_j_electacta_2016_02_145
crossref_primary_10_1016_j_cej_2018_12_173
crossref_primary_10_1016_j_est_2023_108961
crossref_primary_10_1016_j_matchemphys_2025_131147
crossref_primary_10_1038_s42004_019_0184_6
crossref_primary_10_1016_j_cej_2019_05_084
crossref_primary_10_1007_s10904_021_01935_0
crossref_primary_10_1016_j_ccr_2018_04_018
crossref_primary_10_1016_j_est_2023_107828
crossref_primary_10_3389_fmats_2021_777149
crossref_primary_10_1088_2632_959X_ad0446
crossref_primary_10_1002_slct_202100049
crossref_primary_10_3390_inorganics11040169
crossref_primary_10_1002_anie_201600661
crossref_primary_10_1039_D1RA00259G
crossref_primary_10_1039_D3SE01062G
crossref_primary_10_1016_j_cej_2024_157470
crossref_primary_10_1016_j_energy_2024_131127
crossref_primary_10_1016_j_ceramint_2022_10_029
crossref_primary_10_1016_j_est_2024_112459
crossref_primary_10_1016_j_jssc_2020_121409
crossref_primary_10_1016_j_cej_2021_132891
crossref_primary_10_1002_aoc_70001
crossref_primary_10_1007_s10854_024_12496_6
crossref_primary_10_1016_j_susmat_2024_e01045
crossref_primary_10_1016_j_matlet_2019_03_006
crossref_primary_10_1016_j_ccr_2024_215959
crossref_primary_10_1002_celc_201402429
crossref_primary_10_1002_ente_202300147
crossref_primary_10_1016_j_est_2023_107817
crossref_primary_10_1007_s10904_019_01119_x
crossref_primary_10_1016_j_colsurfa_2021_127665
crossref_primary_10_1002_chem_201604071
crossref_primary_10_3390_nano11082141
crossref_primary_10_1016_j_ccr_2024_216004
crossref_primary_10_1016_j_jpowsour_2024_234471
crossref_primary_10_1016_j_est_2024_114523
crossref_primary_10_1007_s11581_021_03954_w
crossref_primary_10_1016_j_electacta_2023_142989
crossref_primary_10_1016_j_materresbull_2025_113741
crossref_primary_10_1016_j_apmt_2020_100692
crossref_primary_10_1016_j_ccr_2017_07_002
crossref_primary_10_1002_est2_543
crossref_primary_10_1016_j_electacta_2020_136139
crossref_primary_10_1007_s10854_021_07030_x
crossref_primary_10_1039_C5QI00187K
crossref_primary_10_1007_s10853_024_09591_8
crossref_primary_10_1016_j_mattod_2016_10_003
crossref_primary_10_1016_j_est_2022_105420
crossref_primary_10_1002_slct_201900305
crossref_primary_10_1002_smll_201704435
crossref_primary_10_1016_j_est_2025_118189
crossref_primary_10_1016_j_jpowsour_2025_237578
crossref_primary_10_1016_j_mssp_2023_107383
crossref_primary_10_1016_j_jcis_2019_06_031
crossref_primary_10_1016_j_electacta_2020_137154
crossref_primary_10_1016_j_ccr_2019_05_006
crossref_primary_10_1016_j_electacta_2019_04_121
crossref_primary_10_1016_j_jallcom_2023_170412
crossref_primary_10_1016_j_synthmet_2021_116775
crossref_primary_10_1088_1361_6528_abdc8d
crossref_primary_10_1016_j_ccr_2020_213438
crossref_primary_10_1016_j_compositesb_2020_107767
crossref_primary_10_1016_j_cej_2025_161555
crossref_primary_10_1016_j_chemosphere_2020_127389
crossref_primary_10_1007_s10800_016_0921_9
crossref_primary_10_1039_D5TC00411J
crossref_primary_10_1016_j_est_2025_116694
crossref_primary_10_1002_eom2_12106
crossref_primary_10_1016_j_ccr_2021_214300
crossref_primary_10_1016_j_ccr_2022_214642
crossref_primary_10_1016_j_electacta_2020_137563
crossref_primary_10_1080_14658011_2021_1966247
crossref_primary_10_1186_s40824_023_00454_y
crossref_primary_10_1002_celc_201800633
crossref_primary_10_1016_j_ceramint_2023_11_377
crossref_primary_10_1016_j_jssc_2018_06_019
crossref_primary_10_1016_j_cej_2023_145840
crossref_primary_10_1016_j_ccr_2015_09_002
crossref_primary_10_1016_j_jallcom_2025_181324
crossref_primary_10_1002_aenm_201602733
crossref_primary_10_1007_s10854_025_15022_4
crossref_primary_10_1016_j_gee_2021_08_003
crossref_primary_10_1007_s10008_018_4096_7
crossref_primary_10_1016_j_ccr_2020_213341
crossref_primary_10_1016_j_electacta_2025_146498
crossref_primary_10_1016_j_matlet_2018_03_087
crossref_primary_10_1016_j_cej_2019_04_065
crossref_primary_10_1002_celc_202001418
crossref_primary_10_1002_er_7491
crossref_primary_10_1016_j_matt_2019_06_022
crossref_primary_10_1002_smll_201701143
crossref_primary_10_1038_s41598_021_97932_x
crossref_primary_10_1016_j_cej_2024_149365
crossref_primary_10_1016_j_ccr_2023_215335
crossref_primary_10_1016_j_cej_2025_164012
crossref_primary_10_1016_j_fuel_2024_133574
crossref_primary_10_1016_j_est_2022_105897
crossref_primary_10_1016_j_est_2023_109518
crossref_primary_10_1007_s11664_023_10766_3
crossref_primary_10_1016_j_micromeso_2015_11_060
crossref_primary_10_1002_cctc_202400622
crossref_primary_10_1002_slct_202304864
crossref_primary_10_1016_j_ccr_2025_216467
crossref_primary_10_1016_j_matchemphys_2021_125641
crossref_primary_10_1016_j_rechem_2025_102543
crossref_primary_10_1016_j_colsurfa_2025_137269
crossref_primary_10_1016_j_cej_2022_136269
crossref_primary_10_1007_s42765_023_00287_3
crossref_primary_10_1016_j_inoche_2023_111739
crossref_primary_10_1039_D0NR03549A
crossref_primary_10_1007_s40820_022_00910_9
crossref_primary_10_1016_j_electacta_2015_11_123
Cites_doi 10.1351/PAC-CON-09-10-22
10.1002/fuce.201000087
10.1016/j.micromeso.2011.12.040
10.1021/ja2062659
10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z
10.1126/science.1132195
10.1016/j.electacta.2012.03.059
10.1149/1.1650835
10.1002/ange.200704894
10.1016/j.elecom.2010.02.017
10.1126/science.1116275
10.1039/c0ee00074d
10.1016/j.micromeso.2008.11.020
10.1039/C2TA00627H
10.1039/C1CS15092H
10.1002/ange.200605163
10.1016/j.matlet.2011.10.046
10.1002/ange.201001230
10.1016/0003-2670(91)87072-F
10.1016/j.jpowsour.2006.01.015
10.1021/cs300345b
10.1016/j.electacta.2011.02.116
10.1016/S0302-4598(96)05097-0
10.1016/S0378-7753(01)01012-6
10.1016/0301-4622(94)00051-4
10.1016/j.micromeso.2012.12.039
10.1002/anie.200704894
10.1021/cr020730k
10.1038/nchem.454
10.1039/c2ee22989g
10.1039/B704325B
10.1021/ja205827z
10.1002/anie.200605163
10.1016/j.foodchem.2010.12.073
10.1002/anie.201001230
ContentType Journal Article
Copyright Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/celc.201402022
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef
Materials Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage 1188
ExternalDocumentID 3786371941
10_1002_celc_201402022
CELC201402022
Genre article
GrantInformation_xml – fundername: Instituut voor Innovatie door Wetenschap en Technologie
– fundername: European Commission
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZVAB
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAMMB
AAYXX
ABJNI
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
TUS
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c4532-59ba3d3f1850a79582b80a5b1790ac2b0a3dfcc3403393ffea3b816e639d98393
IEDL.DBID DRFUL
ISICitedReferencesCount 178
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000340523000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2196-0216
IngestDate Fri Sep 05 09:00:42 EDT 2025
Fri Jul 25 11:55:35 EDT 2025
Sat Nov 29 07:11:22 EST 2025
Tue Nov 18 22:20:15 EST 2025
Wed Jan 22 16:22:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4532-59ba3d3f1850a79582b80a5b1790ac2b0a3dfcc3403393ffea3b816e639d98393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1706271504
PQPubID 2034587
PageCount 7
ParticipantIDs proquest_miscellaneous_1744709430
proquest_journals_1706271504
crossref_citationtrail_10_1002_celc_201402022
crossref_primary_10_1002_celc_201402022
wiley_primary_10_1002_celc_201402022_CELC201402022
PublicationCentury 2000
PublicationDate July 15, 2014
PublicationDateYYYYMMDD 2014-07-15
PublicationDate_xml – month: 07
  year: 2014
  text: July 15, 2014
  day: 15
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2014
Publisher WILEY‐VCH Verlag
John Wiley & Sons, Inc
Publisher_xml – name: WILEY‐VCH Verlag
– name: John Wiley & Sons, Inc
References 2010; 12
2010; 10
2004; 104
2013; 1
1997; 42
2007
2010 2010; 49 122
2011; 56
2008 2008; 47 120
2006; 313
2011; 133
2010; 82
1991; 242
2011; 126
2012; 153
2012; 2
2004; 151
2007 2007; 46 119
2005; 309
2002; 108
2006; 160
2009; 120
2010; 3
2012; 68
2009; 1
2001; 13
2012; 5
2013; 171
1994; 51
2012; 41
2012; 84
e_1_2_6_30_3
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_3
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_21_3
e_1_2_6_22_2
e_1_2_6_1_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 313
  start-page: 1760
  year: 2006
  end-page: 1763
  publication-title: Science
– volume: 10,
  start-page: 806
  year: 2010
  end-page: 818
  publication-title: Fuel Cells
– volume: 68
  start-page: 126
  year: 2012
  end-page: 128
  publication-title: Mater. Lett.
– volume: 171
  start-page: 53
  year: 2013
  end-page: 57
  publication-title: Microporous Mesoporous Mater.
– volume: 13
  start-page: 813
  year: 2001
  end-page: 819
  publication-title: Electroanalysis
– volume: 42
  start-page: 153
  year: 1997
  end-page: 160
  publication-title: Bioelectrochem. Bioenerg.
– volume: 1
  start-page: 689
  year: 2009
  end-page: 690
  publication-title: Nat. Chem.
– volume: 120
  start-page: 325
  year: 2009
  end-page: 330
  publication-title: Microporous Mesoporous Mater.
– volume: 133
  start-page: 16154
  year: 2011
  end-page: 16160
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 4849
  year: 2011
  end-page: 4857
  publication-title: Electrochim. Acta
– volume: 46 119
  start-page: 3259 3323
  year: 2007 2007
  end-page: 3263 3327
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 309
  start-page: 2040
  year: 2005
  end-page: 2042
  publication-title: Science
– volume: 41
  start-page: 115
  year: 2012
  end-page: 147
  publication-title: Chem. Soc. Rev.
– volume: 49 122
  start-page: 5949 6085
  year: 2010 2010
  end-page: 5952 6088
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 1294
  year: 2010
  end-page: 1301
  publication-title: Energy Environ. Sci.
– volume: 84
  start-page: 165
  year: 2012
  end-page: 173
  publication-title: Electrochim. Acta
– start-page: 2820
  year: 2007
  end-page: 2822
  publication-title: Chem. Commun.
– volume: 151
  start-page: 614
  year: 2004
  end-page: 622
  publication-title: J. Electrochem. Soc.
– volume: 160
  start-page: 542
  year: 2006
  end-page: 547
  publication-title: J. Power Sources
– volume: 108
  start-page: 15
  year: 2002
  end-page: 20
  publication-title: J. Power Sources
– volume: 104
  start-page: 4245
  year: 2004
  end-page: 4269
  publication-title: Chem. Rev.
– volume: 82
  start-page: 1901
  year: 2010
  end-page: 1917
  publication-title: Pure Appl. Chem.
– volume: 153
  start-page: 163
  year: 2012
  end-page: 165
  publication-title: Microporous Mesoporous Mater.
– volume: 5
  start-page: 9269
  year: 2012
  end-page: 9290
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 632
  year: 2010
  end-page: 635
  publication-title: Electrochem. Commun.
– volume: 47 120
  start-page: 3392 3440
  year: 2008 2008
  end-page: 3395 3443
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 2941
  year: 2013
  end-page: 2954
  publication-title: J. Mater. Chem. A
– volume: 126
  start-page: 2005
  year: 2011
  end-page: 2009
  publication-title: Food Chem.
– volume: 133
  start-page: 14522
  year: 2011
  end-page: 14525
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2060
  year: 2012
  end-page: 2065
  publication-title: ACS Catal.
– volume: 51
  start-page: 111
  year: 1994
  end-page: 127
  publication-title: Biophys. Chem.
– volume: 242
  start-page: 249
  year: 1991
  end-page: 257
  publication-title: Anal. Chim. Acta
– ident: e_1_2_6_27_2
  doi: 10.1351/PAC-CON-09-10-22
– ident: e_1_2_6_3_2
  doi: 10.1002/fuce.201000087
– ident: e_1_2_6_13_2
  doi: 10.1016/j.micromeso.2011.12.040
– ident: e_1_2_6_12_2
  doi: 10.1021/ja2062659
– ident: e_1_2_6_19_2
  doi: 10.1002/1521-4109(200106)13:10<813::AID-ELAN813>3.0.CO;2-Z
– ident: e_1_2_6_24_2
  doi: 10.1126/science.1132195
– ident: e_1_2_6_5_2
  doi: 10.1016/j.electacta.2012.03.059
– ident: e_1_2_6_35_2
  doi: 10.1149/1.1650835
– ident: e_1_2_6_30_3
  doi: 10.1002/ange.200704894
– ident: e_1_2_6_15_2
  doi: 10.1016/j.elecom.2010.02.017
– ident: e_1_2_6_25_2
  doi: 10.1126/science.1116275
– ident: e_1_2_6_23_2
  doi: 10.1039/c0ee00074d
– ident: e_1_2_6_33_2
  doi: 10.1016/j.micromeso.2008.11.020
– ident: e_1_2_6_2_2
  doi: 10.1039/C2TA00627H
– ident: e_1_2_6_6_2
  doi: 10.1039/C1CS15092H
– ident: e_1_2_6_9_3
  doi: 10.1002/ange.200605163
– ident: e_1_2_6_14_2
  doi: 10.1016/j.matlet.2011.10.046
– ident: e_1_2_6_21_3
  doi: 10.1002/ange.201001230
– ident: e_1_2_6_31_2
  doi: 10.1016/0003-2670(91)87072-F
– ident: e_1_2_6_20_2
– ident: e_1_2_6_10_2
  doi: 10.1016/j.jpowsour.2006.01.015
– ident: e_1_2_6_16_2
  doi: 10.1021/cs300345b
– ident: e_1_2_6_34_2
– ident: e_1_2_6_26_2
– ident: e_1_2_6_37_2
  doi: 10.1016/j.electacta.2011.02.116
– ident: e_1_2_6_28_2
  doi: 10.1016/S0302-4598(96)05097-0
– ident: e_1_2_6_36_2
  doi: 10.1016/S0378-7753(01)01012-6
– ident: e_1_2_6_29_2
  doi: 10.1016/0301-4622(94)00051-4
– ident: e_1_2_6_32_2
  doi: 10.1016/j.micromeso.2012.12.039
– ident: e_1_2_6_30_2
  doi: 10.1002/anie.200704894
– ident: e_1_2_6_4_2
  doi: 10.1021/cr020730k
– ident: e_1_2_6_11_2
  doi: 10.1038/nchem.454
– ident: e_1_2_6_1_2
– ident: e_1_2_6_7_2
  doi: 10.1039/c2ee22989g
– ident: e_1_2_6_22_2
  doi: 10.1039/B704325B
– ident: e_1_2_6_8_2
  doi: 10.1021/ja205827z
– ident: e_1_2_6_9_2
  doi: 10.1002/anie.200605163
– ident: e_1_2_6_17_2
– ident: e_1_2_6_18_2
  doi: 10.1016/j.foodchem.2010.12.073
– ident: e_1_2_6_21_2
  doi: 10.1002/anie.201001230
SSID ssj0001105386
Score 2.4059064
Snippet Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal–organic framework with iron(III) coordination centers [MIL‐100(Fe),...
Composite supercapacitor electrodes based on carbon nanotubes, carbon black, and a metal-organic framework with iron(III) coordination centers [MIL-100(Fe),...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1182
SubjectTerms Aqueous electrolytes
Capacitors
Carbon
Carbon nanotubes
Electrodes
Electrolytes
Energy storage
hybrid supercapacitors
Metal-organic frameworks
nanotubes
organic–inorganic hybrid composites
Supercapacitors
Title A Hybrid Supercapacitor based on Porous Carbon and the Metal‐Organic Framework MIL‐100(Fe)
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.201402022
https://www.proquest.com/docview/1706271504
https://www.proquest.com/docview/1744709430
Volume 1
WOSCitedRecordID wos000340523000011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2196-0216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105386
  issn: 2196-0216
  databaseCode: DRFUL
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kFfTiW1xfRBDUQ7Hb9HmUukVhV0Rd8WRJ0hQE6UrXFbz5E_yN_hJn-lr3IILemiZNw0wm8yXtfANw4HHfkr5yDY_z1LAd30WTkp7hJhzXQpNzr0gGc9fzLi_9-_vg6lsUf8kP0Ry4kWUU6zUZuJCjkwlpqNJPREHYoQ2QhYvwrIVdOy2YPbuOBr3JOQsCCF4kfETbpP9tO27N3WhaJ9OdTPumCeD8DlsLvxMt_X_Ey7BYYU52Wk6SFZjR2SrMh3WqtzV4OGXnbxS6xW7GzzpX6EAVWnrOyMclbJixq2E-HI9YKHKJJZElDIEj62uE7p_vH2VAp2JR_acX61_08D6O6CjSx-swiLq34blRJV4wlO1w3JwGUvCEp-jLTeEFDqnTFI4kNi-hLGlibaoUt1GXAU9TLbj0O65GtJMEiLj4BrSyYaY3gbkphc4mZpJSBK7pBdiVTHHVcFXgYCdtMGqRx6piJafkGE9xyadsxSS1uJFaGw6b9s8lH8ePLXdqDcaVXY5iIguyPATBdhv2m2qUNn0mEZlGUWIbG2cp0dK3wSr0-cub4rDbC5vS1l8e2oYFuqZD446zA62XfKx3YU69vjyO8r1qTn8BGxbz8w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB7ECvXiW6zPFQT1EEyzeR4lGiqmRbQVT4ZkswFBUklbwZs_wd_oL3Emr9qDCOIxu5vNMjuz8-1m5xuAI4vbWmQLU7E4TxTdsE00qchSzJjjWqhybuXJYO59q9ezHx6cm_I2IcXCFPwQ9YEbWUa-XpOB04H02ZQ1VMhn4iBs0w5Iw1W4oaMuoZI3Lm69gT89aEEEwfOMj2icdOG2bVbkjap2NtvJrHOaIs7vuDV3PN7yPwx5BZZK1MnOCzVZhTmZrkHTrZK9rcPjOeu8UfAWu5u8yEygCxVo6xkjLxezYcpuhtlwMmJumEX4FKYxQ-jIuhLB--f7RxHSKZhX3fVi3Ssfy3FEJ5483YCBd9l3O0qZekERusFxe-pEIY95gt5cDS3HoAlVQyMiPq9QaJGKtYkQXMfZdHiSyJBHdtuUiHdiBzEX34T5dJjKLWBmQsGzsRonFIOrWg52FSW4bpjCMbCTFiiVzANR8pJTeoznoGBU1gKSWlBLrQXHdfuXgpHjx5a71RQGpWWOAqIL0iyEwXoLDutqlDb9KAlTiaLENjrqKRHTt0DLJ_SXLwXupe_WT9t_eekAmp1-1w_8q971DixSOR0ht41dmB9nE7kHC-J1_DTK9ksF_wLIMPfj
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5kFfXiW1yfEQT1UOw2fR6lWhTrsvjCk6VNExCku3RdwZs_wd_oL3Gmr9WDCOKxSZqGmUzmS5r5BmDP4a6RuMLWHM6VZlqujSaVOJqdclwLdc6dIhnMXeh0u-79vderbhNSLEzJD9EcuJFlFOs1GbgcpOpozBoq5BNxEHZoB2TgKjxpUiaZFkyeXAW34figBREELzI-onHShduOXZM36sbR906-O6cx4vyKWwvHE8z_w5AXYK5Cney4nCaLMCGzJZjx62Rvy_BwzM5eKXiLXY8GMhfoQgXaes7Iy6Wsn7FeP--PhsyP8wSf4ixlCB3ZpUTw_vH2XoZ0ChbUd73Y5XmI5Tiig0AersBtcHrjn2lV6gVNmBbH7amXxDzlCr25HjueRQrVYyshPq9YGImOtUoIbqI2Pa6UjHnidmyJeCf1EHPxVWhl_UyuAbMVBc-meqooBld3POwqUbhu2MKzsJM2aLXMI1HxklN6jKeoZFQ2IpJa1EitDftN-0HJyPFjy81ahVFlmcOI6IIMB2Gw2YbdphqlTT9K4kyiKLGNifOUiOnbYBQK_eVLkX8a-s3T-l9e2oHp3kkQhefdiw2YpWI6Qe5Ym9B6zkdyC6bEy_PjMN-u5vcnXFH3Xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Supercapacitor+based+on+Porous+Carbon+and+the+Metal%E2%80%90Organic+Framework+MIL%E2%80%90100%28Fe%29&rft.jtitle=ChemElectroChem&rft.au=Campagnol%2C+Nicol%C3%B2&rft.au=Romero%E2%80%90Vara%2C+Ricardo&rft.au=Deleu%2C+Willem&rft.au=Stappers%2C+Linda&rft.date=2014-07-15&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=1&rft.issue=7&rft.spage=1182&rft.epage=1188&rft_id=info:doi/10.1002%2Fcelc.201402022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_celc_201402022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon