Neural-Network-Based Online HJB Solution for Optimal Robust Guaranteed Cost Control of Continuous-Time Uncertain Nonlinear Systems
In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 44; číslo 12; s. 2834 - 2847 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach. |
|---|---|
| AbstractList | In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach.In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach. In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach. |
| Author | Li, Hongliang Wang, Ding Wang, Fei-Yue Liu, Derong Yang, Xiong |
| Author_xml | – sequence: 1 givenname: Derong surname: Liu fullname: Liu, Derong email: dliu@ece.uic.edu organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Ding surname: Wang fullname: Wang, Ding email: ding.wang@ia.ac.cn organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Fei-Yue surname: Wang fullname: Wang, Fei-Yue email: feiyue.wang@ia.ac.cn organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 4 givenname: Hongliang surname: Li fullname: Li, Hongliang email: hongliang.li@ia.ac.cn organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Xiong surname: Yang fullname: Yang, Xiong email: xiong.yang@ia.ac.cn organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25415951$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1v1DAQhi1UREvpD0BIyBIXLllix185shFtQdWuRLcHTpGTjCWXrL3YjlCv_PI63WUPPSAsS56xn3fG9vsanTjvAKG3pFwQUtafNs2P5YKWhC1oxaWqxQt0RolQBaWSnxxjIU_RRYz3ZR4qb9XqFTqlnBFec3KG_qxgCnosVpB--_CzWOoIA1670TrA19-W-NaPU7LeYeMDXu-S3eoRf_fdFBO-mnTQLkFWND7njXcp-BF78xRaN_kpFhu7BXzneghJW4dX_qm4Dvj2ISbYxjfopdFjhIvDeo7uLr9smuviZn31tfl8U_SM01QYNvDSGMI7YRgjUOpOSzVI1SkYmFYd78VQVVQxCTXrejA1MT3VgkojWD46Rx_3dXfB_5ogpnZrYw_jqB3ke7ZEcMIqxhn7D5RKUedZZfTDM_TeT8Hlh8yUkLIStcrU-wM1dVsY2l3I_xge2r9GZIDsgT74GAOYI0LKdva7nf1uZ7_bg99ZI59pepv0bFYK2o7_VL7bKy0AHDuJmsxU9QhFb7fb |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1177_0142331220953355 crossref_primary_10_1007_s12555_021_0293_8 crossref_primary_10_1002_rnc_6349 crossref_primary_10_1109_TIE_2017_2711499 crossref_primary_10_1109_TFUZZ_2017_2686373 crossref_primary_10_1016_j_jfranklin_2018_11_048 crossref_primary_10_1109_TCYB_2020_2971265 crossref_primary_10_1016_j_automatica_2023_111261 crossref_primary_10_1109_TNNLS_2021_3131261 crossref_primary_10_1177_0954410018776418 crossref_primary_10_1016_j_neucom_2015_08_119 crossref_primary_10_1109_TNNLS_2016_2582849 crossref_primary_10_1016_j_neucom_2019_10_038 crossref_primary_10_1016_j_isatra_2022_03_030 crossref_primary_10_1109_LRA_2024_3504314 crossref_primary_10_1016_j_oceaneng_2024_119323 crossref_primary_10_1007_s12555_017_0710_1 crossref_primary_10_1002_asjc_3845 crossref_primary_10_1016_j_ins_2016_02_022 crossref_primary_10_1109_TFUZZ_2021_3075501 crossref_primary_10_1007_s40815_023_01518_w crossref_primary_10_1016_j_neucom_2020_04_007 crossref_primary_10_1109_TFUZZ_2020_2979389 crossref_primary_10_1177_0142331220932634 crossref_primary_10_1007_s11071_015_2324_6 crossref_primary_10_1109_TFUZZ_2021_3132151 crossref_primary_10_1109_TCYB_2023_3251653 crossref_primary_10_1109_TNNLS_2022_3221105 crossref_primary_10_1016_j_amc_2021_126336 crossref_primary_10_1109_TNNLS_2015_2402203 crossref_primary_10_1109_TCYB_2019_2958844 crossref_primary_10_1109_TSG_2024_3442923 crossref_primary_10_1109_TSMC_2023_3327492 crossref_primary_10_1109_TIE_2020_2984462 crossref_primary_10_1109_TIA_2019_2961637 crossref_primary_10_1007_s10846_016_0378_4 crossref_primary_10_1177_0142331219868403 crossref_primary_10_1007_s12555_019_0165_7 crossref_primary_10_1109_TIA_2021_3110936 crossref_primary_10_1109_TASE_2025_3564943 crossref_primary_10_1109_TNNLS_2015_2503749 crossref_primary_10_1002_rnc_70152 crossref_primary_10_1109_TSMC_2023_3302656 crossref_primary_10_1109_TNNLS_2016_2599263 crossref_primary_10_1002_oca_2379 crossref_primary_10_1109_TNNLS_2017_2749641 crossref_primary_10_1109_TCSI_2021_3095092 crossref_primary_10_1109_TNNLS_2017_2768820 crossref_primary_10_1109_TAI_2024_3351095 crossref_primary_10_1049_iet_cta_2015_0590 crossref_primary_10_1007_s12652_019_01215_3 crossref_primary_10_1109_ACCESS_2022_3230788 crossref_primary_10_1016_j_neucom_2016_06_020 crossref_primary_10_1109_TNNLS_2023_3264511 crossref_primary_10_3390_math10111904 crossref_primary_10_1016_j_neucom_2023_126964 crossref_primary_10_1016_j_neucom_2019_01_033 crossref_primary_10_1016_j_neucom_2023_126963 crossref_primary_10_1109_TNNLS_2015_2401334 crossref_primary_10_1016_j_neucom_2017_03_047 crossref_primary_10_1016_j_ins_2018_08_006 crossref_primary_10_1016_j_engappai_2023_106450 crossref_primary_10_1109_TNNLS_2017_2650943 crossref_primary_10_1016_j_neucom_2015_09_078 crossref_primary_10_1016_j_amc_2025_129628 crossref_primary_10_1016_j_isatra_2024_02_009 crossref_primary_10_1631_FITEE_1900610 crossref_primary_10_1109_TNNLS_2019_2919338 crossref_primary_10_1016_j_neucom_2019_10_075 crossref_primary_10_1109_ACCESS_2021_3086423 crossref_primary_10_1109_TNNLS_2018_2817256 crossref_primary_10_1109_TCOMM_2020_3017281 crossref_primary_10_1109_TIE_2023_3292873 crossref_primary_10_1109_TNNLS_2023_3292154 crossref_primary_10_1002_rnc_70059 crossref_primary_10_1109_TAES_2023_3294893 crossref_primary_10_1109_TSMC_2019_2946857 crossref_primary_10_1109_TCNS_2022_3181550 crossref_primary_10_1002_oca_2313 crossref_primary_10_1109_TCYB_2020_2977318 crossref_primary_10_1002_rnc_7075 crossref_primary_10_1007_s42417_023_00907_7 crossref_primary_10_1016_j_ins_2020_07_055 crossref_primary_10_1016_j_neucom_2023_126711 crossref_primary_10_1109_TPAMI_2022_3215769 crossref_primary_10_1109_TCYB_2014_2375957 crossref_primary_10_1109_TCYB_2016_2554621 crossref_primary_10_1109_TNNLS_2023_3335138 crossref_primary_10_1016_j_neucom_2025_130125 crossref_primary_10_1007_s11356_021_17505_3 crossref_primary_10_1109_TNNLS_2017_2660070 crossref_primary_10_3390_app132111888 crossref_primary_10_3390_math10214100 crossref_primary_10_1007_s41315_020_00159_8 crossref_primary_10_1007_s12555_020_0812_z crossref_primary_10_1016_j_isatra_2016_10_019 crossref_primary_10_1080_00207721_2016_1193255 crossref_primary_10_1016_j_isatra_2016_04_023 crossref_primary_10_1109_JIOT_2022_3233087 crossref_primary_10_1007_s12541_019_00257_z crossref_primary_10_1016_j_neunet_2023_07_044 crossref_primary_10_1109_TSG_2021_3107447 crossref_primary_10_1177_01423312231185383 crossref_primary_10_3390_e24060816 crossref_primary_10_1016_j_ins_2022_07_076 crossref_primary_10_1109_TFUZZ_2019_2935693 crossref_primary_10_1016_j_ins_2021_10_021 crossref_primary_10_1016_j_neucom_2018_09_029 crossref_primary_10_1109_JAS_2020_1003447 crossref_primary_10_1109_TNNLS_2016_2516948 crossref_primary_10_1002_rnc_6688 crossref_primary_10_1016_j_ins_2023_119670 crossref_primary_10_1002_rnc_5419 crossref_primary_10_1016_j_neucom_2020_03_021 crossref_primary_10_1109_TSMC_2024_3495821 crossref_primary_10_1177_0954410017752764 crossref_primary_10_1177_1729881420924610 crossref_primary_10_1109_TIE_2017_2722424 crossref_primary_10_1007_s11432_023_3996_3 crossref_primary_10_1002_rnc_6190 crossref_primary_10_1109_TNNLS_2015_2472974 crossref_primary_10_1016_j_neucom_2018_09_032 crossref_primary_10_1002_rnc_3902 crossref_primary_10_1080_00207179_2019_1648874 crossref_primary_10_1109_TNNLS_2018_2791419 crossref_primary_10_1109_TCYB_2017_2692384 crossref_primary_10_1109_TNNLS_2017_2732240 crossref_primary_10_1002_rnc_5403 crossref_primary_10_1007_s10115_019_01422_6 crossref_primary_10_1016_j_engappai_2024_108899 crossref_primary_10_1109_TNNLS_2016_2614002 crossref_primary_10_1109_TASE_2024_3427771 crossref_primary_10_1016_j_trit_2016_11_002 crossref_primary_10_1109_TIA_2020_3035131 crossref_primary_10_1016_j_neucom_2022_06_110 crossref_primary_10_1038_s41928_022_00728_8 crossref_primary_10_1016_j_ast_2023_108280 crossref_primary_10_1049_cth2_12563 crossref_primary_10_1007_s11768_021_00045_z crossref_primary_10_1016_j_neucom_2022_06_114 crossref_primary_10_1109_LWC_2020_2973624 crossref_primary_10_1016_j_neunet_2017_05_013 crossref_primary_10_1007_s11063_022_11085_0 crossref_primary_10_1109_TSMC_2016_2562506 crossref_primary_10_1002_acs_2975 crossref_primary_10_1109_TIE_2017_2698377 crossref_primary_10_3390_act14090420 crossref_primary_10_1109_TAC_2021_3126683 crossref_primary_10_1007_s00521_018_3714_8 crossref_primary_10_1109_TNNLS_2015_2499757 crossref_primary_10_1109_TNNLS_2015_2399020 crossref_primary_10_1109_TSMC_2016_2557227 crossref_primary_10_1016_j_isatra_2023_07_023 crossref_primary_10_1109_TSMC_2020_3042876 crossref_primary_10_1109_TSMC_2016_2557223 crossref_primary_10_1109_TCYB_2015_2492242 crossref_primary_10_1109_TCYB_2019_2962011 crossref_primary_10_1109_TNNLS_2015_2424971 crossref_primary_10_1007_s11859_018_1299_9 crossref_primary_10_1016_j_neucom_2017_12_012 crossref_primary_10_1016_j_ifacol_2020_12_2297 crossref_primary_10_1109_TNNLS_2014_2371046 crossref_primary_10_1007_s10796_017_9760_4 crossref_primary_10_1109_TCYB_2019_2925534 crossref_primary_10_1016_j_neunet_2020_07_016 crossref_primary_10_1109_JAS_2024_124317 crossref_primary_10_1109_COMST_2024_3393369 crossref_primary_10_1016_j_jfranklin_2018_09_038 crossref_primary_10_1109_ACCESS_2020_3009178 crossref_primary_10_1016_j_ins_2018_07_047 crossref_primary_10_1016_j_isatra_2021_12_017 crossref_primary_10_1016_j_neucom_2020_10_012 crossref_primary_10_1016_j_engappai_2024_108077 crossref_primary_10_1109_TNNLS_2015_2507790 crossref_primary_10_1109_TSMC_2015_2492941 crossref_primary_10_1016_j_neucom_2025_129673 crossref_primary_10_1088_1742_6596_2746_1_012055 crossref_primary_10_1007_s13369_023_08026_x crossref_primary_10_1049_iet_cta_2016_1058 crossref_primary_10_1109_TSMC_2016_2563982 crossref_primary_10_1016_j_jfranklin_2023_06_015 crossref_primary_10_1007_s10462_021_10045_9 crossref_primary_10_1007_s00521_020_05311_w crossref_primary_10_1109_TNNLS_2016_2642128 crossref_primary_10_1109_TNNLS_2015_2490072 crossref_primary_10_1016_j_arcontrol_2022_04_006 crossref_primary_10_1109_TMECH_2019_2937578 crossref_primary_10_1109_TCYB_2017_2653800 crossref_primary_10_1109_TSMC_2019_2931332 crossref_primary_10_1016_j_neucom_2018_09_097 crossref_primary_10_1109_TCST_2022_3174772 crossref_primary_10_1109_TCYB_2017_2712188 crossref_primary_10_1109_TSMC_2023_3320653 crossref_primary_10_1109_TCYB_2018_2857400 crossref_primary_10_1109_TSG_2023_3270564 crossref_primary_10_1109_TSMC_2015_2417510 crossref_primary_10_1016_j_neucom_2017_05_030 crossref_primary_10_1109_TSP_2018_2872832 crossref_primary_10_1109_TNNLS_2020_3006850 crossref_primary_10_1109_TNNLS_2015_2490168 crossref_primary_10_1002_oca_2855 crossref_primary_10_1049_cps2_12009 crossref_primary_10_1016_j_apor_2021_102868 crossref_primary_10_1016_j_asr_2023_08_004 crossref_primary_10_1109_ACCESS_2022_3233567 crossref_primary_10_1109_TCYB_2024_3471987 crossref_primary_10_2514_1_G006417 crossref_primary_10_1016_j_neucom_2021_10_081 crossref_primary_10_1109_TCYB_2020_3003550 crossref_primary_10_1109_TNNLS_2017_2743103 crossref_primary_10_1049_iet_cta_2017_1131 crossref_primary_10_1016_j_amc_2022_127759 crossref_primary_10_1016_j_ins_2018_06_022 |
| Cites_doi | 10.1109/TNNLS.2013.2280013 10.1109/TIE.2014.2301770 10.1109/9.661589 10.1016/j.automatica.2010.02.018 10.1109/9.763225 10.1109/TNNLS.2013.2271454 10.1109/TNN.2010.2076370 10.1109/TCST.2013.2246866 10.1109/ACC.2010.5531586 10.1016/j.neucom.2013.04.006 10.1016/j.automatica.2012.05.049 10.1080/00207179.2013.848292 10.3724/SP.J.1004.2013.01858 10.1109/TSMCA.2012.2226024 10.1016/j.neunet.2012.02.027 10.1109/TSMCB.2008.922019 10.1016/S0005-1098(97)00128-3 10.1080/002071700219687 10.1007/s00521-012-1249-y 10.1109/TSMCA.2003.809214 10.1109/TASE.2014.2300532 10.1515/9781400841042 10.1080/00207179.2013.790562 10.1016/j.neunet.2009.03.008 10.1016/j.neucom.2011.05.031 10.1109/MCAS.2009.933854 10.1109/TSG.2011.2174068 10.1109/TNNLS.2013.2276571 10.1109/72.623201 10.1109/TNNLS.2013.2251747 10.1007/s00521-011-0707-2 10.1109/TNN.2009.2027233 10.23919/ACC.1989.4790360 10.1016/j.ins.2014.05.050 10.1016/S1874-1029(13)60031-2 10.1109/72.914523 10.1109/TNNLS.2012.2217349 10.1109/TSMC.2013.2295351 10.1007/s00521-010-0441-1 10.1016/S0167-6911(97)00125-4 10.1016/j.ins.2012.07.006 10.1049/iet-cta.2011.0783 10.1016/S0005-1098(99)00007-2 10.1109/TNNLS.2013.2247627 10.1049/iet-cta.2008.0288 10.1109/TNNLS.2013.2281663 10.1109/TNN.2011.2160968 10.1109/TASE.2013.2296206 10.1109/MCI.2009.932261 10.1109/TSMCB.2012.2203336 10.1109/TAC.1972.1100037 10.1016/j.neucom.2012.11.021 10.23919/ACC.1990.4791280 10.1109/TNNLS.2012.2196708 10.1109/TSMCB.2012.2216523 10.1109/TSMCA.2003.817043 10.1109/TSMCB.2008.924139 10.1016/j.automatica.2012.09.019 10.1109/3468.823480 10.1109/TSMCB.2008.926614 10.1016/j.neunet.2009.03.012 10.1016/j.neucom.2011.03.058 10.1109/MCS.2012.2214134 10.1109/TNNLS.2012.2227339 10.1016/j.automatica.2004.11.034 10.1016/j.automatica.2012.03.007 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2014.2357896 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Aerospace Database MEDLINE Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 2847 |
| ExternalDocumentID | 3503475521 25415951 10_1109_TCYB_2014_2357896 6912014 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61034002; 61233001; 61273140; 61304086; 61374105; 71232006 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Beijing Municipality; Beijing Natural Science Foundation grantid: 4132078 funderid: 10.13039/501100004826 – fundername: Early Career Development Award of State Key Laboratory of Management and Control for Complex Systems |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c452t-f4d50ff15b6f441e0aba78d78b8ed4a8b5c6d332847e94bcef91fc2a627f646d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 258 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345629000048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sat Sep 27 20:17:34 EDT 2025 Thu Oct 02 05:42:47 EDT 2025 Mon Jun 30 03:02:10 EDT 2025 Mon Jul 21 05:50:00 EDT 2025 Tue Nov 18 22:16:48 EST 2025 Sat Nov 29 06:48:29 EST 2025 Wed Aug 27 08:36:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | optimal robust guaranteed cost control uncertain nonlinear systems adaptive/approximate dynamic programming (ADP) Adaptive critic designs Hamilton–Jacobi–Bellman (HJB) equation neural networks |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c452t-f4d50ff15b6f441e0aba78d78b8ed4a8b5c6d332847e94bcef91fc2a627f646d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 25415951 |
| PQID | 1626773698 |
| PQPubID | 85422 |
| PageCount | 14 |
| ParticipantIDs | pubmed_primary_25415951 crossref_citationtrail_10_1109_TCYB_2014_2357896 crossref_primary_10_1109_TCYB_2014_2357896 proquest_miscellaneous_1627697693 proquest_journals_1626773698 proquest_miscellaneous_1651434544 ieee_primary_6912014 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-12-01 |
| PublicationDateYYYYMMDD | 2014-12-01 |
| PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2014 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref14 ref53 ref52 ref55 ref11 ref10 ref17 ref16 ref18 haddad (ref62) 2008 ref51 ref50 ref46 ref45 ref48 ref42 ref44 ref43 lewis (ref70) 1999 xu (ref58) 2012; 48 liu (ref36) 2008; 38 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ni (ref27) 2013; 24 abu-khalaf (ref37) 2005; 41 ref34 yu (ref65) 2005; 3 ref30 ref33 beard (ref67) 1997; 33 ref32 ref2 ref39 ref38 werbos (ref1) 1992 liu (ref35) 2013; 43 lin (ref63) 1990 ref68 ref24 ref23 ref26 ref69 ref25 ref64 ref20 ref66 ref22 ref21 ref28 liu (ref31) 2014; 25 ref29 ref60 luo (ref54) 0 li (ref19) 1989 wu (ref41) 2012; 23 ref61 bhasin (ref40) 2013; 49 liu (ref47) 2014; 25 |
| References_xml | – volume: 25 start-page: 418 year: 2014 ident: ref47 article-title: Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approach publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2280013 – ident: ref30 doi: 10.1109/TIE.2014.2301770 – ident: ref68 doi: 10.1109/9.661589 – ident: ref39 doi: 10.1016/j.automatica.2010.02.018 – ident: ref69 doi: 10.1109/9.763225 – volume: 24 start-page: 2038 year: 2013 ident: ref27 article-title: Goal representation heuristic dynamic programming on maze navigation publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2271454 – ident: ref17 doi: 10.1109/TNN.2010.2076370 – ident: ref28 doi: 10.1109/TCST.2013.2246866 – ident: ref45 doi: 10.1109/ACC.2010.5531586 – ident: ref32 doi: 10.1016/j.neucom.2013.04.006 – ident: ref20 doi: 10.1016/j.automatica.2012.05.049 – year: 0 ident: ref54 article-title: Off-policy reinforcement learning for \(H_{\infty }\) control design publication-title: IEEE Trans Cybern – ident: ref51 doi: 10.1080/00207179.2013.848292 – ident: ref13 doi: 10.3724/SP.J.1004.2013.01858 – ident: ref14 doi: 10.1109/TSMCA.2012.2226024 – ident: ref34 doi: 10.1016/j.neunet.2012.02.027 – volume: 38 start-page: 988 year: 2008 ident: ref36 article-title: Adaptive critic learning techniques for engine torque and air-fuel ratio control publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2008.922019 – volume: 33 start-page: 2159 year: 1997 ident: ref67 article-title: Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation publication-title: Automatica doi: 10.1016/S0005-1098(97)00128-3 – year: 1999 ident: ref70 publication-title: Neural Network Control of Robot Manipulators and Nonlinear Systems – ident: ref61 doi: 10.1080/002071700219687 – ident: ref43 doi: 10.1007/s00521-012-1249-y – ident: ref7 doi: 10.1109/TSMCA.2003.809214 – ident: ref52 doi: 10.1109/TASE.2014.2300532 – year: 2008 ident: ref62 publication-title: Nonlinear Dynamical Systems and Control A Lyapunov-Based Approach doi: 10.1515/9781400841042 – ident: ref44 doi: 10.1080/00207179.2013.790562 – year: 1992 ident: ref1 article-title: Approximate dynamic programming for real-time control and neural modeling publication-title: Handbook of Intelligent Control Neural Fuzzy and Adaptive Approaches – ident: ref38 doi: 10.1016/j.neunet.2009.03.008 – ident: ref26 doi: 10.1016/j.neucom.2011.05.031 – ident: ref10 doi: 10.1109/MCAS.2009.933854 – ident: ref59 doi: 10.1109/TSG.2011.2174068 – ident: ref53 doi: 10.1109/TNNLS.2013.2276571 – ident: ref4 doi: 10.1109/72.623201 – ident: ref46 doi: 10.1109/TNNLS.2013.2251747 – ident: ref21 doi: 10.1007/s00521-011-0707-2 – ident: ref16 doi: 10.1109/TNN.2009.2027233 – start-page: 1136 year: 1989 ident: ref19 article-title: neural network control of unknown nonlinear systems publication-title: 1989 American Control Conference ACC doi: 10.23919/ACC.1989.4790360 – ident: ref50 doi: 10.1016/j.ins.2014.05.050 – ident: ref12 doi: 10.1016/S1874-1029(13)60031-2 – ident: ref6 doi: 10.1109/72.914523 – volume: 3 start-page: 397 year: 2005 ident: ref65 article-title: Optimal guaranteed cost control of linear uncertain systems with input constraints publication-title: Int J Control Autom Syst – volume: 23 start-page: 1884 year: 2012 ident: ref41 article-title: Neural network based online simultaneous policy update algorithm for solving the HJI equation in nonlinear \(H_{\infty }\) control publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2012.2217349 – ident: ref48 doi: 10.1109/TSMC.2013.2295351 – ident: ref55 doi: 10.1007/s00521-010-0441-1 – ident: ref60 doi: 10.1016/S0167-6911(97)00125-4 – ident: ref33 doi: 10.1016/j.ins.2012.07.006 – ident: ref23 doi: 10.1049/iet-cta.2011.0783 – ident: ref66 doi: 10.1016/S0005-1098(99)00007-2 – ident: ref25 doi: 10.1109/TNNLS.2013.2247627 – ident: ref56 doi: 10.1049/iet-cta.2008.0288 – volume: 25 start-page: 621 year: 2014 ident: ref31 article-title: Policy iterative adaptive dynamic programming algorithm for discrete-time nonlinear systems publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2281663 – ident: ref57 doi: 10.1109/TNN.2011.2160968 – ident: ref49 doi: 10.1109/TASE.2013.2296206 – ident: ref9 doi: 10.1109/MCI.2009.932261 – ident: ref42 doi: 10.1109/TSMCB.2012.2203336 – ident: ref64 doi: 10.1109/TAC.1972.1100037 – ident: ref22 doi: 10.1016/j.neucom.2012.11.021 – start-page: 3048 year: 1990 ident: ref63 article-title: robust control of nonlinear systems: compensating for uncertainty publication-title: 1990 American Control Conference ACC doi: 10.23919/ACC.1990.4791280 – ident: ref29 doi: 10.1109/TNNLS.2012.2196708 – volume: 43 start-page: 779 year: 2013 ident: ref35 article-title: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems publication-title: IEEE Trans Cybern doi: 10.1109/TSMCB.2012.2216523 – ident: ref8 doi: 10.1109/TSMCA.2003.817043 – ident: ref2 doi: 10.1109/TSMCB.2008.924139 – volume: 49 start-page: 82 year: 2013 ident: ref40 article-title: A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2012.09.019 – ident: ref5 doi: 10.1109/3468.823480 – ident: ref15 doi: 10.1109/TSMCB.2008.926614 – ident: ref3 doi: 10.1016/j.neunet.2009.03.012 – ident: ref18 doi: 10.1016/j.neucom.2011.03.058 – ident: ref11 doi: 10.1109/MCS.2012.2214134 – ident: ref24 doi: 10.1109/TNNLS.2012.2227339 – volume: 41 start-page: 779 year: 2005 ident: ref37 article-title: Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach publication-title: Automatica doi: 10.1016/j.automatica.2004.11.034 – volume: 48 start-page: 1017 year: 2012 ident: ref58 article-title: Stochastic optimal control of unknown linear networked control system in the presence of random delays and packet losses publication-title: Automatica doi: 10.1016/j.automatica.2012.03.007 |
| SSID | ssj0000816898 |
| Score | 2.5049446 |
| Snippet | In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2834 |
| SubjectTerms | Adaptive critic designs adaptive/approximate dynamic programming (ADP) Algorithms Artificial Intelligence Computer Simulation Control systems Cost function Dynamical systems Equations Feedback Feedback control Hamilton-Jacobi-Bellman (HJB) equation Mathematical analysis Models, Statistical Neural networks Neural Networks (Computer) Nonlinear Dynamics Nonlinear systems Online Optimal control optimal robust guaranteed cost \hbox{control} Optimization Robustness uncertain nonlinear systems |
| Title | Neural-Network-Based Online HJB Solution for Optimal Robust Guaranteed Cost Control of Continuous-Time Uncertain Nonlinear Systems |
| URI | https://ieeexplore.ieee.org/document/6912014 https://www.ncbi.nlm.nih.gov/pubmed/25415951 https://www.proquest.com/docview/1626773698 https://www.proquest.com/docview/1627697693 https://www.proquest.com/docview/1651434544 |
| Volume | 44 |
| WOSCitedRecordID | wos000345629000048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaigMXoJTH0oeMxAEQbvNw_DiyK6qKw4JQKy2nKH5JldoEbTb8AH55ZxxvJCSo1FMceRxbHk_m83g8Q8i7whVClwYt7tIybsqMmcoWrHGZcSXnwUgbk03I5VKtVvr7Dvk03YXx3kfnM3-KxXiW7zo7oKnsTOgc9BXfJbtSivGu1mRPiQkkYurbAgoMUIVMh5h5ps8uFz_n6MfFT2N4F42Zi2BrBLq8yv_SSDHFyv_RZtQ6508fNt5n5ElCl_TzuBz2yY5vn5P9JL89fZ-CTH84IH8wKkdzw5ajGzibgzZzdAw8Si--zunWXkYB1dJv8GO5hQ__6MzQbyiuK-QItFh08L4Y_d1pF2Lxuh26oWd4u4ReQcfR6YAux6AczZqmKOkvyNX5l8vFBUv5GJjlVbFhgbsqCyGvjAiAonzWmEYqJ5VR3vFGAZOFK0tUeF5zY33QebBFIwoZBIeql2Sv7Vr_mlAvMwPASOVcllxKqYLnwgZfFA0gnqqckWzLk9qmYOWYM-OmjpuWTNfI0Rpnt04cnZGPU5NfY6SO-4gPkF0TYeLUjBxtGV8nWe7rHPZ8UpZCqxl5O1WDFOLRStN6mFGkkUJjXsn7aBCc8opDN6_GRTX1v12Lb_49rkPyGB-jG80R2dusB39MHtnfm-t-fQLisFInURzuANvqBCk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQXoJRHoICROADCbR5OHB_ZFdUCZUFoK7WnKHZsqVJJ0GbDD-CXM-N4IyFBJW5ObMeWv3FmbI_nA3iZNmmhMk077tJwobOY69ykvG5i3WRCOC2NJ5uQy2V5dqa-7sDb6S6MtdY7n9lDSvqz_KYzA22VHRUqQX0lrsF1Ys4Kt7WmHRVPIeHJb1NMcLQrZDjGTGJ1tJqfz8iTSxz6AC-KuItwcYTaPE_-0EmeZOXf9qbXO8d3_q_Hd-F2sC_Zu1Eg9mDHtvdgL8zgnr0KYaZf78MvistRX_Ll6AjOZ6jPGjaGHmWLjzO23TFjaNeyL_hr-Y4f_tbpod8wkizCBGvMO3yejx7vrHM-edEO3dBzul_CTrFh73bAlmNYjnrNQpz0-3B6_H41X_DAyMCNyNMNd6LJY-eSXBcOEbBxrWtZNrLUpW1EXSLMRZNlpPKsEtpYpxJn0rpIpSsEZj2A3bZr7SNgVsYaTaMyETITUsrSWVEYZ9O0RpsnzyKIt5hUJoQrJ9aMy8ovW2JVEaIVjW4VEI3gzVTlxxir46rC-wTXVDAgFcHBFvgqzOa-SnDVJ2VWqDKCF1M2zkM6XKlbiyNKZWShiFnyqjJkngoU3ggejkI1tb-Vxcd_79dzuLlYfT6pTj4sPz2BW_RqdKo5gN3NerBP4Yb5ubno18_8pPgNaMsGig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-network-based+online+HJB+solution+for+optimal+robust+guaranteed+cost+control+of+continuous-time+uncertain+nonlinear+systems&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Derong&rft.au=Wang%2C+Ding&rft.au=Wang%2C+Fei-Yue&rft.au=Li%2C+Hongliang&rft.date=2014-12-01&rft.eissn=2168-2275&rft.volume=44&rft.issue=12&rft.spage=2834&rft_id=info:doi/10.1109%2FTCYB.2014.2357896&rft_id=info%3Apmid%2F25415951&rft.externalDocID=25415951 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |