Neural-Network-Based Online HJB Solution for Optimal Robust Guaranteed Cost Control of Continuous-Time Uncertain Nonlinear Systems

In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 44; číslo 12; s. 2834 - 2847
Hlavní autori: Liu, Derong, Wang, Ding, Wang, Fei-Yue, Li, Hongliang, Yang, Xiong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach.
AbstractList In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach.In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach.
In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach.
Author Li, Hongliang
Wang, Ding
Wang, Fei-Yue
Liu, Derong
Yang, Xiong
Author_xml – sequence: 1
  givenname: Derong
  surname: Liu
  fullname: Liu, Derong
  email: dliu@ece.uic.edu
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Ding
  surname: Wang
  fullname: Wang, Ding
  email: ding.wang@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Fei-Yue
  surname: Wang
  fullname: Wang, Fei-Yue
  email: feiyue.wang@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Hongliang
  surname: Li
  fullname: Li, Hongliang
  email: hongliang.li@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Xiong
  surname: Yang
  fullname: Yang, Xiong
  email: xiong.yang@ia.ac.cn
  organization: State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25415951$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAQhi1UREvpD0BIyBIXLllix185shFtQdWuRLcHTpGTjCWXrL3YjlCv_PI63WUPPSAsS56xn3fG9vsanTjvAKG3pFwQUtafNs2P5YKWhC1oxaWqxQt0RolQBaWSnxxjIU_RRYz3ZR4qb9XqFTqlnBFec3KG_qxgCnosVpB--_CzWOoIA1670TrA19-W-NaPU7LeYeMDXu-S3eoRf_fdFBO-mnTQLkFWND7njXcp-BF78xRaN_kpFhu7BXzneghJW4dX_qm4Dvj2ISbYxjfopdFjhIvDeo7uLr9smuviZn31tfl8U_SM01QYNvDSGMI7YRgjUOpOSzVI1SkYmFYd78VQVVQxCTXrejA1MT3VgkojWD46Rx_3dXfB_5ogpnZrYw_jqB3ke7ZEcMIqxhn7D5RKUedZZfTDM_TeT8Hlh8yUkLIStcrU-wM1dVsY2l3I_xge2r9GZIDsgT74GAOYI0LKdva7nf1uZ7_bg99ZI59pepv0bFYK2o7_VL7bKy0AHDuJmsxU9QhFb7fb
CODEN ITCEB8
CitedBy_id crossref_primary_10_1177_0142331220953355
crossref_primary_10_1007_s12555_021_0293_8
crossref_primary_10_1002_rnc_6349
crossref_primary_10_1109_TIE_2017_2711499
crossref_primary_10_1109_TFUZZ_2017_2686373
crossref_primary_10_1016_j_jfranklin_2018_11_048
crossref_primary_10_1109_TCYB_2020_2971265
crossref_primary_10_1016_j_automatica_2023_111261
crossref_primary_10_1109_TNNLS_2021_3131261
crossref_primary_10_1177_0954410018776418
crossref_primary_10_1016_j_neucom_2015_08_119
crossref_primary_10_1109_TNNLS_2016_2582849
crossref_primary_10_1016_j_neucom_2019_10_038
crossref_primary_10_1016_j_isatra_2022_03_030
crossref_primary_10_1109_LRA_2024_3504314
crossref_primary_10_1016_j_oceaneng_2024_119323
crossref_primary_10_1007_s12555_017_0710_1
crossref_primary_10_1002_asjc_3845
crossref_primary_10_1016_j_ins_2016_02_022
crossref_primary_10_1109_TFUZZ_2021_3075501
crossref_primary_10_1007_s40815_023_01518_w
crossref_primary_10_1016_j_neucom_2020_04_007
crossref_primary_10_1109_TFUZZ_2020_2979389
crossref_primary_10_1177_0142331220932634
crossref_primary_10_1007_s11071_015_2324_6
crossref_primary_10_1109_TFUZZ_2021_3132151
crossref_primary_10_1109_TCYB_2023_3251653
crossref_primary_10_1109_TNNLS_2022_3221105
crossref_primary_10_1016_j_amc_2021_126336
crossref_primary_10_1109_TNNLS_2015_2402203
crossref_primary_10_1109_TCYB_2019_2958844
crossref_primary_10_1109_TSG_2024_3442923
crossref_primary_10_1109_TSMC_2023_3327492
crossref_primary_10_1109_TIE_2020_2984462
crossref_primary_10_1109_TIA_2019_2961637
crossref_primary_10_1007_s10846_016_0378_4
crossref_primary_10_1177_0142331219868403
crossref_primary_10_1007_s12555_019_0165_7
crossref_primary_10_1109_TIA_2021_3110936
crossref_primary_10_1109_TASE_2025_3564943
crossref_primary_10_1109_TNNLS_2015_2503749
crossref_primary_10_1002_rnc_70152
crossref_primary_10_1109_TSMC_2023_3302656
crossref_primary_10_1109_TNNLS_2016_2599263
crossref_primary_10_1002_oca_2379
crossref_primary_10_1109_TNNLS_2017_2749641
crossref_primary_10_1109_TCSI_2021_3095092
crossref_primary_10_1109_TNNLS_2017_2768820
crossref_primary_10_1109_TAI_2024_3351095
crossref_primary_10_1049_iet_cta_2015_0590
crossref_primary_10_1007_s12652_019_01215_3
crossref_primary_10_1109_ACCESS_2022_3230788
crossref_primary_10_1016_j_neucom_2016_06_020
crossref_primary_10_1109_TNNLS_2023_3264511
crossref_primary_10_3390_math10111904
crossref_primary_10_1016_j_neucom_2023_126964
crossref_primary_10_1016_j_neucom_2019_01_033
crossref_primary_10_1016_j_neucom_2023_126963
crossref_primary_10_1109_TNNLS_2015_2401334
crossref_primary_10_1016_j_neucom_2017_03_047
crossref_primary_10_1016_j_ins_2018_08_006
crossref_primary_10_1016_j_engappai_2023_106450
crossref_primary_10_1109_TNNLS_2017_2650943
crossref_primary_10_1016_j_neucom_2015_09_078
crossref_primary_10_1016_j_amc_2025_129628
crossref_primary_10_1016_j_isatra_2024_02_009
crossref_primary_10_1631_FITEE_1900610
crossref_primary_10_1109_TNNLS_2019_2919338
crossref_primary_10_1016_j_neucom_2019_10_075
crossref_primary_10_1109_ACCESS_2021_3086423
crossref_primary_10_1109_TNNLS_2018_2817256
crossref_primary_10_1109_TCOMM_2020_3017281
crossref_primary_10_1109_TIE_2023_3292873
crossref_primary_10_1109_TNNLS_2023_3292154
crossref_primary_10_1002_rnc_70059
crossref_primary_10_1109_TAES_2023_3294893
crossref_primary_10_1109_TSMC_2019_2946857
crossref_primary_10_1109_TCNS_2022_3181550
crossref_primary_10_1002_oca_2313
crossref_primary_10_1109_TCYB_2020_2977318
crossref_primary_10_1002_rnc_7075
crossref_primary_10_1007_s42417_023_00907_7
crossref_primary_10_1016_j_ins_2020_07_055
crossref_primary_10_1016_j_neucom_2023_126711
crossref_primary_10_1109_TPAMI_2022_3215769
crossref_primary_10_1109_TCYB_2014_2375957
crossref_primary_10_1109_TCYB_2016_2554621
crossref_primary_10_1109_TNNLS_2023_3335138
crossref_primary_10_1016_j_neucom_2025_130125
crossref_primary_10_1007_s11356_021_17505_3
crossref_primary_10_1109_TNNLS_2017_2660070
crossref_primary_10_3390_app132111888
crossref_primary_10_3390_math10214100
crossref_primary_10_1007_s41315_020_00159_8
crossref_primary_10_1007_s12555_020_0812_z
crossref_primary_10_1016_j_isatra_2016_10_019
crossref_primary_10_1080_00207721_2016_1193255
crossref_primary_10_1016_j_isatra_2016_04_023
crossref_primary_10_1109_JIOT_2022_3233087
crossref_primary_10_1007_s12541_019_00257_z
crossref_primary_10_1016_j_neunet_2023_07_044
crossref_primary_10_1109_TSG_2021_3107447
crossref_primary_10_1177_01423312231185383
crossref_primary_10_3390_e24060816
crossref_primary_10_1016_j_ins_2022_07_076
crossref_primary_10_1109_TFUZZ_2019_2935693
crossref_primary_10_1016_j_ins_2021_10_021
crossref_primary_10_1016_j_neucom_2018_09_029
crossref_primary_10_1109_JAS_2020_1003447
crossref_primary_10_1109_TNNLS_2016_2516948
crossref_primary_10_1002_rnc_6688
crossref_primary_10_1016_j_ins_2023_119670
crossref_primary_10_1002_rnc_5419
crossref_primary_10_1016_j_neucom_2020_03_021
crossref_primary_10_1109_TSMC_2024_3495821
crossref_primary_10_1177_0954410017752764
crossref_primary_10_1177_1729881420924610
crossref_primary_10_1109_TIE_2017_2722424
crossref_primary_10_1007_s11432_023_3996_3
crossref_primary_10_1002_rnc_6190
crossref_primary_10_1109_TNNLS_2015_2472974
crossref_primary_10_1016_j_neucom_2018_09_032
crossref_primary_10_1002_rnc_3902
crossref_primary_10_1080_00207179_2019_1648874
crossref_primary_10_1109_TNNLS_2018_2791419
crossref_primary_10_1109_TCYB_2017_2692384
crossref_primary_10_1109_TNNLS_2017_2732240
crossref_primary_10_1002_rnc_5403
crossref_primary_10_1007_s10115_019_01422_6
crossref_primary_10_1016_j_engappai_2024_108899
crossref_primary_10_1109_TNNLS_2016_2614002
crossref_primary_10_1109_TASE_2024_3427771
crossref_primary_10_1016_j_trit_2016_11_002
crossref_primary_10_1109_TIA_2020_3035131
crossref_primary_10_1016_j_neucom_2022_06_110
crossref_primary_10_1038_s41928_022_00728_8
crossref_primary_10_1016_j_ast_2023_108280
crossref_primary_10_1049_cth2_12563
crossref_primary_10_1007_s11768_021_00045_z
crossref_primary_10_1016_j_neucom_2022_06_114
crossref_primary_10_1109_LWC_2020_2973624
crossref_primary_10_1016_j_neunet_2017_05_013
crossref_primary_10_1007_s11063_022_11085_0
crossref_primary_10_1109_TSMC_2016_2562506
crossref_primary_10_1002_acs_2975
crossref_primary_10_1109_TIE_2017_2698377
crossref_primary_10_3390_act14090420
crossref_primary_10_1109_TAC_2021_3126683
crossref_primary_10_1007_s00521_018_3714_8
crossref_primary_10_1109_TNNLS_2015_2499757
crossref_primary_10_1109_TNNLS_2015_2399020
crossref_primary_10_1109_TSMC_2016_2557227
crossref_primary_10_1016_j_isatra_2023_07_023
crossref_primary_10_1109_TSMC_2020_3042876
crossref_primary_10_1109_TSMC_2016_2557223
crossref_primary_10_1109_TCYB_2015_2492242
crossref_primary_10_1109_TCYB_2019_2962011
crossref_primary_10_1109_TNNLS_2015_2424971
crossref_primary_10_1007_s11859_018_1299_9
crossref_primary_10_1016_j_neucom_2017_12_012
crossref_primary_10_1016_j_ifacol_2020_12_2297
crossref_primary_10_1109_TNNLS_2014_2371046
crossref_primary_10_1007_s10796_017_9760_4
crossref_primary_10_1109_TCYB_2019_2925534
crossref_primary_10_1016_j_neunet_2020_07_016
crossref_primary_10_1109_JAS_2024_124317
crossref_primary_10_1109_COMST_2024_3393369
crossref_primary_10_1016_j_jfranklin_2018_09_038
crossref_primary_10_1109_ACCESS_2020_3009178
crossref_primary_10_1016_j_ins_2018_07_047
crossref_primary_10_1016_j_isatra_2021_12_017
crossref_primary_10_1016_j_neucom_2020_10_012
crossref_primary_10_1016_j_engappai_2024_108077
crossref_primary_10_1109_TNNLS_2015_2507790
crossref_primary_10_1109_TSMC_2015_2492941
crossref_primary_10_1016_j_neucom_2025_129673
crossref_primary_10_1088_1742_6596_2746_1_012055
crossref_primary_10_1007_s13369_023_08026_x
crossref_primary_10_1049_iet_cta_2016_1058
crossref_primary_10_1109_TSMC_2016_2563982
crossref_primary_10_1016_j_jfranklin_2023_06_015
crossref_primary_10_1007_s10462_021_10045_9
crossref_primary_10_1007_s00521_020_05311_w
crossref_primary_10_1109_TNNLS_2016_2642128
crossref_primary_10_1109_TNNLS_2015_2490072
crossref_primary_10_1016_j_arcontrol_2022_04_006
crossref_primary_10_1109_TMECH_2019_2937578
crossref_primary_10_1109_TCYB_2017_2653800
crossref_primary_10_1109_TSMC_2019_2931332
crossref_primary_10_1016_j_neucom_2018_09_097
crossref_primary_10_1109_TCST_2022_3174772
crossref_primary_10_1109_TCYB_2017_2712188
crossref_primary_10_1109_TSMC_2023_3320653
crossref_primary_10_1109_TCYB_2018_2857400
crossref_primary_10_1109_TSG_2023_3270564
crossref_primary_10_1109_TSMC_2015_2417510
crossref_primary_10_1016_j_neucom_2017_05_030
crossref_primary_10_1109_TSP_2018_2872832
crossref_primary_10_1109_TNNLS_2020_3006850
crossref_primary_10_1109_TNNLS_2015_2490168
crossref_primary_10_1002_oca_2855
crossref_primary_10_1049_cps2_12009
crossref_primary_10_1016_j_apor_2021_102868
crossref_primary_10_1016_j_asr_2023_08_004
crossref_primary_10_1109_ACCESS_2022_3233567
crossref_primary_10_1109_TCYB_2024_3471987
crossref_primary_10_2514_1_G006417
crossref_primary_10_1016_j_neucom_2021_10_081
crossref_primary_10_1109_TCYB_2020_3003550
crossref_primary_10_1109_TNNLS_2017_2743103
crossref_primary_10_1049_iet_cta_2017_1131
crossref_primary_10_1016_j_amc_2022_127759
crossref_primary_10_1016_j_ins_2018_06_022
Cites_doi 10.1109/TNNLS.2013.2280013
10.1109/TIE.2014.2301770
10.1109/9.661589
10.1016/j.automatica.2010.02.018
10.1109/9.763225
10.1109/TNNLS.2013.2271454
10.1109/TNN.2010.2076370
10.1109/TCST.2013.2246866
10.1109/ACC.2010.5531586
10.1016/j.neucom.2013.04.006
10.1016/j.automatica.2012.05.049
10.1080/00207179.2013.848292
10.3724/SP.J.1004.2013.01858
10.1109/TSMCA.2012.2226024
10.1016/j.neunet.2012.02.027
10.1109/TSMCB.2008.922019
10.1016/S0005-1098(97)00128-3
10.1080/002071700219687
10.1007/s00521-012-1249-y
10.1109/TSMCA.2003.809214
10.1109/TASE.2014.2300532
10.1515/9781400841042
10.1080/00207179.2013.790562
10.1016/j.neunet.2009.03.008
10.1016/j.neucom.2011.05.031
10.1109/MCAS.2009.933854
10.1109/TSG.2011.2174068
10.1109/TNNLS.2013.2276571
10.1109/72.623201
10.1109/TNNLS.2013.2251747
10.1007/s00521-011-0707-2
10.1109/TNN.2009.2027233
10.23919/ACC.1989.4790360
10.1016/j.ins.2014.05.050
10.1016/S1874-1029(13)60031-2
10.1109/72.914523
10.1109/TNNLS.2012.2217349
10.1109/TSMC.2013.2295351
10.1007/s00521-010-0441-1
10.1016/S0167-6911(97)00125-4
10.1016/j.ins.2012.07.006
10.1049/iet-cta.2011.0783
10.1016/S0005-1098(99)00007-2
10.1109/TNNLS.2013.2247627
10.1049/iet-cta.2008.0288
10.1109/TNNLS.2013.2281663
10.1109/TNN.2011.2160968
10.1109/TASE.2013.2296206
10.1109/MCI.2009.932261
10.1109/TSMCB.2012.2203336
10.1109/TAC.1972.1100037
10.1016/j.neucom.2012.11.021
10.23919/ACC.1990.4791280
10.1109/TNNLS.2012.2196708
10.1109/TSMCB.2012.2216523
10.1109/TSMCA.2003.817043
10.1109/TSMCB.2008.924139
10.1016/j.automatica.2012.09.019
10.1109/3468.823480
10.1109/TSMCB.2008.926614
10.1016/j.neunet.2009.03.012
10.1016/j.neucom.2011.03.058
10.1109/MCS.2012.2214134
10.1109/TNNLS.2012.2227339
10.1016/j.automatica.2004.11.034
10.1016/j.automatica.2012.03.007
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2014.2357896
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Aerospace Database
MEDLINE
Aerospace Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2847
ExternalDocumentID 3503475521
25415951
10_1109_TCYB_2014_2357896
6912014
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61034002; 61233001; 61273140; 61304086; 61374105; 71232006
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Beijing Municipality; Beijing Natural Science Foundation
  grantid: 4132078
  funderid: 10.13039/501100004826
– fundername: Early Career Development Award of State Key Laboratory of Management and Control for Complex Systems
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c452t-f4d50ff15b6f441e0aba78d78b8ed4a8b5c6d332847e94bcef91fc2a627f646d3
IEDL.DBID RIE
ISICitedReferencesCount 258
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345629000048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sat Sep 27 20:17:34 EDT 2025
Thu Oct 02 05:42:47 EDT 2025
Mon Jun 30 03:02:10 EDT 2025
Mon Jul 21 05:50:00 EDT 2025
Tue Nov 18 22:16:48 EST 2025
Sat Nov 29 06:48:29 EST 2025
Wed Aug 27 08:36:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords optimal robust guaranteed cost control
uncertain nonlinear systems
adaptive/approximate dynamic programming (ADP)
Adaptive critic designs
Hamilton–Jacobi–Bellman (HJB) equation
neural networks
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-f4d50ff15b6f441e0aba78d78b8ed4a8b5c6d332847e94bcef91fc2a627f646d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25415951
PQID 1626773698
PQPubID 85422
PageCount 14
ParticipantIDs pubmed_primary_25415951
crossref_citationtrail_10_1109_TCYB_2014_2357896
crossref_primary_10_1109_TCYB_2014_2357896
proquest_miscellaneous_1627697693
proquest_journals_1626773698
proquest_miscellaneous_1651434544
ieee_primary_6912014
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref14
ref53
ref52
ref55
ref11
ref10
ref17
ref16
ref18
haddad (ref62) 2008
ref51
ref50
ref46
ref45
ref48
ref42
ref44
ref43
lewis (ref70) 1999
xu (ref58) 2012; 48
liu (ref36) 2008; 38
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ni (ref27) 2013; 24
abu-khalaf (ref37) 2005; 41
ref34
yu (ref65) 2005; 3
ref30
ref33
beard (ref67) 1997; 33
ref32
ref2
ref39
ref38
werbos (ref1) 1992
liu (ref35) 2013; 43
lin (ref63) 1990
ref68
ref24
ref23
ref26
ref69
ref25
ref64
ref20
ref66
ref22
ref21
ref28
liu (ref31) 2014; 25
ref29
ref60
luo (ref54) 0
li (ref19) 1989
wu (ref41) 2012; 23
ref61
bhasin (ref40) 2013; 49
liu (ref47) 2014; 25
References_xml – volume: 25
  start-page: 418
  year: 2014
  ident: ref47
  article-title: Decentralized stabilization for a class of continuous-time nonlinear interconnected systems using online learning optimal control approach
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2280013
– ident: ref30
  doi: 10.1109/TIE.2014.2301770
– ident: ref68
  doi: 10.1109/9.661589
– ident: ref39
  doi: 10.1016/j.automatica.2010.02.018
– ident: ref69
  doi: 10.1109/9.763225
– volume: 24
  start-page: 2038
  year: 2013
  ident: ref27
  article-title: Goal representation heuristic dynamic programming on maze navigation
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2271454
– ident: ref17
  doi: 10.1109/TNN.2010.2076370
– ident: ref28
  doi: 10.1109/TCST.2013.2246866
– ident: ref45
  doi: 10.1109/ACC.2010.5531586
– ident: ref32
  doi: 10.1016/j.neucom.2013.04.006
– ident: ref20
  doi: 10.1016/j.automatica.2012.05.049
– year: 0
  ident: ref54
  article-title: Off-policy reinforcement learning for \(H_{\infty }\) control design
  publication-title: IEEE Trans Cybern
– ident: ref51
  doi: 10.1080/00207179.2013.848292
– ident: ref13
  doi: 10.3724/SP.J.1004.2013.01858
– ident: ref14
  doi: 10.1109/TSMCA.2012.2226024
– ident: ref34
  doi: 10.1016/j.neunet.2012.02.027
– volume: 38
  start-page: 988
  year: 2008
  ident: ref36
  article-title: Adaptive critic learning techniques for engine torque and air-fuel ratio control
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2008.922019
– volume: 33
  start-page: 2159
  year: 1997
  ident: ref67
  article-title: Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation
  publication-title: Automatica
  doi: 10.1016/S0005-1098(97)00128-3
– year: 1999
  ident: ref70
  publication-title: Neural Network Control of Robot Manipulators and Nonlinear Systems
– ident: ref61
  doi: 10.1080/002071700219687
– ident: ref43
  doi: 10.1007/s00521-012-1249-y
– ident: ref7
  doi: 10.1109/TSMCA.2003.809214
– ident: ref52
  doi: 10.1109/TASE.2014.2300532
– year: 2008
  ident: ref62
  publication-title: Nonlinear Dynamical Systems and Control A Lyapunov-Based Approach
  doi: 10.1515/9781400841042
– ident: ref44
  doi: 10.1080/00207179.2013.790562
– year: 1992
  ident: ref1
  article-title: Approximate dynamic programming for real-time control and neural modeling
  publication-title: Handbook of Intelligent Control Neural Fuzzy and Adaptive Approaches
– ident: ref38
  doi: 10.1016/j.neunet.2009.03.008
– ident: ref26
  doi: 10.1016/j.neucom.2011.05.031
– ident: ref10
  doi: 10.1109/MCAS.2009.933854
– ident: ref59
  doi: 10.1109/TSG.2011.2174068
– ident: ref53
  doi: 10.1109/TNNLS.2013.2276571
– ident: ref4
  doi: 10.1109/72.623201
– ident: ref46
  doi: 10.1109/TNNLS.2013.2251747
– ident: ref21
  doi: 10.1007/s00521-011-0707-2
– ident: ref16
  doi: 10.1109/TNN.2009.2027233
– start-page: 1136
  year: 1989
  ident: ref19
  article-title: neural network control of unknown nonlinear systems
  publication-title: 1989 American Control Conference ACC
  doi: 10.23919/ACC.1989.4790360
– ident: ref50
  doi: 10.1016/j.ins.2014.05.050
– ident: ref12
  doi: 10.1016/S1874-1029(13)60031-2
– ident: ref6
  doi: 10.1109/72.914523
– volume: 3
  start-page: 397
  year: 2005
  ident: ref65
  article-title: Optimal guaranteed cost control of linear uncertain systems with input constraints
  publication-title: Int J Control Autom Syst
– volume: 23
  start-page: 1884
  year: 2012
  ident: ref41
  article-title: Neural network based online simultaneous policy update algorithm for solving the HJI equation in nonlinear \(H_{\infty }\) control
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2217349
– ident: ref48
  doi: 10.1109/TSMC.2013.2295351
– ident: ref55
  doi: 10.1007/s00521-010-0441-1
– ident: ref60
  doi: 10.1016/S0167-6911(97)00125-4
– ident: ref33
  doi: 10.1016/j.ins.2012.07.006
– ident: ref23
  doi: 10.1049/iet-cta.2011.0783
– ident: ref66
  doi: 10.1016/S0005-1098(99)00007-2
– ident: ref25
  doi: 10.1109/TNNLS.2013.2247627
– ident: ref56
  doi: 10.1049/iet-cta.2008.0288
– volume: 25
  start-page: 621
  year: 2014
  ident: ref31
  article-title: Policy iterative adaptive dynamic programming algorithm for discrete-time nonlinear systems
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2281663
– ident: ref57
  doi: 10.1109/TNN.2011.2160968
– ident: ref49
  doi: 10.1109/TASE.2013.2296206
– ident: ref9
  doi: 10.1109/MCI.2009.932261
– ident: ref42
  doi: 10.1109/TSMCB.2012.2203336
– ident: ref64
  doi: 10.1109/TAC.1972.1100037
– ident: ref22
  doi: 10.1016/j.neucom.2012.11.021
– start-page: 3048
  year: 1990
  ident: ref63
  article-title: robust control of nonlinear systems: compensating for uncertainty
  publication-title: 1990 American Control Conference ACC
  doi: 10.23919/ACC.1990.4791280
– ident: ref29
  doi: 10.1109/TNNLS.2012.2196708
– volume: 43
  start-page: 779
  year: 2013
  ident: ref35
  article-title: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2216523
– ident: ref8
  doi: 10.1109/TSMCA.2003.817043
– ident: ref2
  doi: 10.1109/TSMCB.2008.924139
– volume: 49
  start-page: 82
  year: 2013
  ident: ref40
  article-title: A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.09.019
– ident: ref5
  doi: 10.1109/3468.823480
– ident: ref15
  doi: 10.1109/TSMCB.2008.926614
– ident: ref3
  doi: 10.1016/j.neunet.2009.03.012
– ident: ref18
  doi: 10.1016/j.neucom.2011.03.058
– ident: ref11
  doi: 10.1109/MCS.2012.2214134
– ident: ref24
  doi: 10.1109/TNNLS.2012.2227339
– volume: 41
  start-page: 779
  year: 2005
  ident: ref37
  article-title: Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.11.034
– volume: 48
  start-page: 1017
  year: 2012
  ident: ref58
  article-title: Stochastic optimal control of unknown linear networked control system in the presence of random delays and packet losses
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.03.007
SSID ssj0000816898
Score 2.5049446
Snippet In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2834
SubjectTerms Adaptive critic designs
adaptive/approximate dynamic programming (ADP)
Algorithms
Artificial Intelligence
Computer Simulation
Control systems
Cost function
Dynamical systems
Equations
Feedback
Feedback control
Hamilton-Jacobi-Bellman (HJB) equation
Mathematical analysis
Models, Statistical
Neural networks
Neural Networks (Computer)
Nonlinear Dynamics
Nonlinear systems
Online
Optimal control
optimal robust guaranteed cost \hbox{control}
Optimization
Robustness
uncertain nonlinear systems
Title Neural-Network-Based Online HJB Solution for Optimal Robust Guaranteed Cost Control of Continuous-Time Uncertain Nonlinear Systems
URI https://ieeexplore.ieee.org/document/6912014
https://www.ncbi.nlm.nih.gov/pubmed/25415951
https://www.proquest.com/docview/1626773698
https://www.proquest.com/docview/1627697693
https://www.proquest.com/docview/1651434544
Volume 44
WOSCitedRecordID wos000345629000048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbaigMXoJTH0oeMxAEQbvNw_DiyK6qKw4JQKy2nKH5JldoEbTb8AH55ZxxvJCSo1FMceRxbHk_m83g8Q8i7whVClwYt7tIybsqMmcoWrHGZcSXnwUgbk03I5VKtVvr7Dvk03YXx3kfnM3-KxXiW7zo7oKnsTOgc9BXfJbtSivGu1mRPiQkkYurbAgoMUIVMh5h5ps8uFz_n6MfFT2N4F42Zi2BrBLq8yv_SSDHFyv_RZtQ6508fNt5n5ElCl_TzuBz2yY5vn5P9JL89fZ-CTH84IH8wKkdzw5ajGzibgzZzdAw8Si--zunWXkYB1dJv8GO5hQ__6MzQbyiuK-QItFh08L4Y_d1pF2Lxuh26oWd4u4ReQcfR6YAux6AczZqmKOkvyNX5l8vFBUv5GJjlVbFhgbsqCyGvjAiAonzWmEYqJ5VR3vFGAZOFK0tUeF5zY33QebBFIwoZBIeql2Sv7Vr_mlAvMwPASOVcllxKqYLnwgZfFA0gnqqckWzLk9qmYOWYM-OmjpuWTNfI0Rpnt04cnZGPU5NfY6SO-4gPkF0TYeLUjBxtGV8nWe7rHPZ8UpZCqxl5O1WDFOLRStN6mFGkkUJjXsn7aBCc8opDN6_GRTX1v12Lb_49rkPyGB-jG80R2dusB39MHtnfm-t-fQLisFInURzuANvqBCk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQXoJRHoICROADCbR5OHB_ZFdUCZUFoK7WnKHZsqVJJ0GbDD-CXM-N4IyFBJW5ObMeWv3FmbI_nA3iZNmmhMk077tJwobOY69ykvG5i3WRCOC2NJ5uQy2V5dqa-7sDb6S6MtdY7n9lDSvqz_KYzA22VHRUqQX0lrsF1Ys4Kt7WmHRVPIeHJb1NMcLQrZDjGTGJ1tJqfz8iTSxz6AC-KuItwcYTaPE_-0EmeZOXf9qbXO8d3_q_Hd-F2sC_Zu1Eg9mDHtvdgL8zgnr0KYaZf78MvistRX_Ll6AjOZ6jPGjaGHmWLjzO23TFjaNeyL_hr-Y4f_tbpod8wkizCBGvMO3yejx7vrHM-edEO3dBzul_CTrFh73bAlmNYjnrNQpz0-3B6_H41X_DAyMCNyNMNd6LJY-eSXBcOEbBxrWtZNrLUpW1EXSLMRZNlpPKsEtpYpxJn0rpIpSsEZj2A3bZr7SNgVsYaTaMyETITUsrSWVEYZ9O0RpsnzyKIt5hUJoQrJ9aMy8ovW2JVEaIVjW4VEI3gzVTlxxir46rC-wTXVDAgFcHBFvgqzOa-SnDVJ2VWqDKCF1M2zkM6XKlbiyNKZWShiFnyqjJkngoU3ggejkI1tb-Vxcd_79dzuLlYfT6pTj4sPz2BW_RqdKo5gN3NerBP4Yb5ubno18_8pPgNaMsGig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-network-based+online+HJB+solution+for+optimal+robust+guaranteed+cost+control+of+continuous-time+uncertain+nonlinear+systems&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Derong&rft.au=Wang%2C+Ding&rft.au=Wang%2C+Fei-Yue&rft.au=Li%2C+Hongliang&rft.date=2014-12-01&rft.eissn=2168-2275&rft.volume=44&rft.issue=12&rft.spage=2834&rft_id=info:doi/10.1109%2FTCYB.2014.2357896&rft_id=info%3Apmid%2F25415951&rft.externalDocID=25415951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon