Non-integrability of measure preserving maps via Lie symmetries

We consider the problem of characterizing, for certain natural number m, the local Cm-non-integrability near elliptic fixed points of smooth planar measure preserving maps. Our criterion relates this non-integrability with the existence of some Lie Symmetries associated to the maps, together with th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Differential Equations Ročník 259; číslo 10; s. 5115 - 5136
Hlavní autoři: Cima, Anna, Gasull, Armengol, Mañosa, Víctor
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Elsevier Inc 15.11.2015
Témata:
ISSN:0022-0396, 1090-2732
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the problem of characterizing, for certain natural number m, the local Cm-non-integrability near elliptic fixed points of smooth planar measure preserving maps. Our criterion relates this non-integrability with the existence of some Lie Symmetries associated to the maps, together with the study of the finiteness of its periodic points. One of the steps in the proof uses the regularity of the period function on the whole period annulus for non-degenerate centers, question that we believe that is interesting by itself. The obtained criterion can be applied to prove the local non-integrability of the Cohen map and of several rational maps coming from second order difference equations.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2015.06.019